JPS62136553A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS62136553A
JPS62136553A JP60275917A JP27591785A JPS62136553A JP S62136553 A JPS62136553 A JP S62136553A JP 60275917 A JP60275917 A JP 60275917A JP 27591785 A JP27591785 A JP 27591785A JP S62136553 A JPS62136553 A JP S62136553A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
rare earth
maximum energy
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60275917A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60275917A priority Critical patent/JPS62136553A/en
Publication of JPS62136553A publication Critical patent/JPS62136553A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Abstract

PURPOSE:To obtain a permanent magnet contg. a rare earth element and having a much larger maximum energy product by adding Zn to a rare earth element- iron type permanent magnet material having a specified composition. CONSTITUTION:This permanent magnet material is represented by general formula I or II, wherein R is one or more kinds of rare earth elements, X is one or more among B, C, N, Si and P, 0.60<=alpha<=0.85, 0<beta<0.15, 0.001<=gamma<=0.05, M is one or more among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and Al and 0<delta<0.20. Since the permanent magnet material contains Zn, the coercive force (BHC, IHC) can be improved and the maximum energy product [(BH)max] is further increased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、家庭電化製品、音響製品、時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料に関し、とくに希
土類系の永久磁石材料に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention can be used in a wide range of applications using permanent magnets, such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. The present invention relates to permanent magnet materials that can be used, particularly rare earth-based permanent magnet materials.

(従来の技術) 近年、永久磁石材料における最大エネルギ積((BH)
max)の向上はかってのアルニコ系磁石材料等のそれ
に比べて著しいものがあり、とくに家庭電化製品、音響
製品、時計部品、自動車部品、精密機器等々の小型軽量
化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((BH)
max) has been significantly improved compared to that of previous alnico magnet materials, and has contributed greatly to the miniaturization and weight reduction and higher performance of home appliances, audio products, watch parts, automobile parts, precision equipment, etc. are doing.

従来、このような優れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((BH)max)はかなり高い値を示して
いる。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such excellent characteristics, and their maximum energy product ((BH)max) has shown a fairly high value.

(発明が解決しようとする問題点) しかし、最大エネルギ積((BH)max)をさらに向
上させるための研究はいぜんとして続けられ、一部では
他の成分系の希土類磁石の開発も進んでおり、なかには
希土類−鉄系の磁石材料についての開発も行われている
。そして、この希土類−鉄系の磁石材料においても磁気
特性をさらに改善することが望まれていた。
(Problem to be solved by the invention) However, research to further improve the maximum energy product ((BH)max) continues, and some rare earth magnets with other component systems are being developed. Some rare earth-iron magnet materials are also being developed. It has been desired to further improve the magnetic properties of this rare earth-iron magnet material.

この発明は、上述した従来の要望に着目して種々の実験
・研究を進めた結果、希土類−鉄系の永久磁石材料にお
いてZnが保磁力(BHC。
This invention was developed as a result of various experiments and research focusing on the above-mentioned conventional demands, and was made possible by the fact that Zn has a coercive force (BHC) in a rare earth-iron permanent magnet material.

IHC)の向上に有効であることを見い出したことによ
りなされたもので、これによって最大エネルギ積((B
H)max)のより優れた希土類系の永久磁石材料を提
供することを目的としている。
This was done based on the discovery that it was effective in improving the maximum energy product ((B
The purpose of the present invention is to provide a rare earth-based permanent magnet material with better H) max).

[発明の構成] (問題点を解決するための手段) この発明の第1発明による永久磁石材料は、一般式、 R1、−β、、FectXβZn、で表わされ、Rが希
土類元素の1種または2種以上、Feが鉄、XがB、C
,N、St、Pの1種マタは2種以上、Znが亜鉛であ
り、 0.60≦α≦0.85. 0くβ<0.15. 0.001≦γ≦0.05、 であることを特徴としており、また、この発明の第2発
明による永久磁石材料は、一般式。
[Structure of the Invention] (Means for Solving the Problems) A permanent magnet material according to the first aspect of the present invention is represented by the general formula: R1, -β,, FectXβZn, where R is one of rare earth elements. Or 2 or more types, Fe is iron, X is B, C
, N, St, and P are two or more types, Zn is zinc, and 0.60≦α≦0.85. 0kuβ<0.15. 0.001≦γ≦0.05, and the permanent magnet material according to the second aspect of the present invention has a general formula.

Fe  X  Zn  M  テ表 R1−α−β−γ−δ  α β  γ δわされ、R
が希土類元素の1種または2種以上、Feが鉄、XがB
、C,N、St、Pの1種または2種以上、Znが亜鉛
、MがTi、Zr。
Fe X Zn M Te table R1-α-β-γ-δ α β γ δ
is one or more rare earth elements, Fe is iron, and X is B
, C, N, St, and P, Zn is zinc, and M is Ti and Zr.

Hf 、V、Nb、Ta、Cr、Mo、W、AMの1種
または2種以上であり、 0.60≦α≦0.85、 Oくβ<0 、15゜ 0.001≦γ≦0.05. 0くδ≦0.20、 であることを特徴としている。
One or more of Hf, V, Nb, Ta, Cr, Mo, W, and AM, 0.60≦α≦0.85, Okuβ<0, 15°0.001≦γ≦0 .05. It is characterized by the following: 0 δ≦0.20.

この発明による永久磁石材料は、上記のように、一般式
 、Rニー。−β−アFe、XβZn  またはR1−
a−β−アーδ  。 βγ            
   Fe  XZ n yMδで表わされるが、式中
のRはYを含む希土類元素の1種または2種以上である
ことを示し、Sc、Y、La、Ce、Pr、Nd、Pm
The permanent magnetic material according to the present invention has the general formula: R-nee, as described above. -β-AFe, XβZn or R1-
a-β-arδ. βγ
It is represented by Fe
.

Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.

Tm、Yb、Luのうちの1種または2種以上が用いら
れる。
One or more of Tm, Yb, and Lu are used.

また、上記一般式において、Feは鉄であり、0.60
≦α≦0.85の範囲としている。また、この範囲内に
おいてFe中の0.10以下をNi、Mn、Coの1種
または2種以上と置換することができる。この場合、N
i、Mnは保磁力(BHC,夏Hc)の向上に寄与し、
Coはキュリ一点の上昇に寄与するが、これらの合計が
0.10を超えると残留磁束密度(B r)が低下する
ので、置換するとしても0.10以下とするがよい、ま
た、Feの量が多すぎると、残留磁束密度(B r)は
向上するものの、保磁力(BHC、I Ha)が減少す
るため、すぐれた最大エネルギ積((BH)max)を
得がたくなるので、α≦0.85とした。一方、Feの
量が少なすぎると残留磁束密度(Br)が低くなり、最
大エネルギ積((BH)max)が減少するので、0.
60≦αとした。
In addition, in the above general formula, Fe is iron, and 0.60
The range is ≦α≦0.85. Further, within this range, 0.10 or less of Fe can be replaced with one or more of Ni, Mn, and Co. In this case, N
i, Mn contribute to the improvement of coercive force (BHC, summer Hc),
Co contributes to raising the Curie point, but if the total of these exceeds 0.10, the residual magnetic flux density (Br) decreases, so even if it is replaced, it should be 0.10 or less. If the amount is too large, the residual magnetic flux density (Br) will improve, but the coercive force (BHC, I Ha) will decrease, making it difficult to obtain an excellent maximum energy product ((BH)max), so α ≦0.85. On the other hand, if the amount of Fe is too small, the residual magnetic flux density (Br) will become low and the maximum energy product ((BH)max) will decrease, so 0.
60≦α.

さらに、上記一般式において、XはB、C。Furthermore, in the above general formula, X is B or C.

N、St、Pの1種または2種以上であり、Oくβ<0
.15の範囲としている。また、MはTi 、Zr、H
f 、V、Nb、Ta、Cr。
One or more of N, St, and P, and β<0
.. The range is 15. Also, M is Ti, Zr, H
f, V, Nb, Ta, Cr.

M o 、 W 、 A lのうちの1種または2種以
上であり、0≦δ≦0.20の範囲としている。ここで
、上記Mは添加しない場合もあるが、X元素とX元素と
を複合添加することによりX元素の一部が硼化物、炭化
物、窒化物、珪化物、燐化物となり、保磁力(BHC、
IHC)の向上および残留磁束密度(Br)の温度係数
の向上に効果をもたらす。この場合、Mの量が少ないと
残留磁束密度(Br)の温度係数の向上は小さいため、
添加する場合は0.01≦δとするのがより望ましい。
It is one or more of M o , W , and A 1 and is in the range of 0≦δ≦0.20. Here, the above M may not be added, but by adding the X element and the X element in combination, a part of the ,
IHC) and the temperature coefficient of residual magnetic flux density (Br). In this case, if the amount of M is small, the improvement in the temperature coefficient of residual magnetic flux density (Br) is small;
When added, it is more desirable that 0.01≦δ.

しかし、Mの量が多すぎると前記硼化物、炭化物、窒化
物、珪化物、燐化物等の形成量が多くなり、磁気特性が
劣化するので、δ≦0.20とする必要がある。また、
上記Xは希土類系磁石、たとえばNd−Fe系磁石のキ
ュリ一点を常温程度から300℃以上に昇温させる効果
を有するものであるが、Xの量が多すぎると保磁力(B
HC。
However, if the amount of M is too large, the amount of the borides, carbides, nitrides, silicides, phosphides, etc. formed increases and the magnetic properties deteriorate, so it is necessary to satisfy δ≦0.20. Also,
The above X has the effect of raising the temperature of the Curie point of a rare earth magnet, such as an Nd-Fe magnet, from about room temperature to 300°C or more, but if the amount of X is too large, the coercive force (B
H.C.

IHC)および残留磁束密度(B r)が減少し。IHC) and residual magnetic flux density (Br) decrease.

すぐれた最大エネルギ積((BH)max)が得られな
くなるので、β<0.15とした。
Since an excellent maximum energy product ((BH)max) cannot be obtained, β<0.15 is set.

さらにまた、Znは亜鉛であり、このZnを添加するこ
とによって保磁力(BHC、IHa)を向上させること
ができる。そして、このような効果を得るためには0.
001≦γとする必要があるが、Zn量が多すぎると残
留磁束密度(B r)が減少してくるのでγ≦0.05
とした。
Furthermore, Zn is zinc, and by adding this Zn, coercive force (BHC, IHa) can be improved. In order to obtain such an effect, 0.
It is necessary to satisfy 001≦γ, but if the amount of Zn is too large, the residual magnetic flux density (Br) will decrease, so γ≦0.05.
And so.

この発明による永久磁石材料は上記の組成を有するもの
であり、とくにX元素のうちのNとZnとの組み合わせ
が磁気特性の向上に有効であって、この場合にはN添加
量を0.0005≦β≦0、Olの範囲とすることがと
くに望ましい。
The permanent magnet material according to the present invention has the above composition, and the combination of N and Zn of the X elements is particularly effective in improving the magnetic properties. It is particularly desirable to set the range of ≦β≦0, Ol.

このような組成の永久磁石材料を製造するに際しては、
例えば上記組成の合金を溶製したのち造塊し、得られた
インゴットを粗粉砕および微粉砕して磁石用粉末を製造
し、次いでこの磁石用粉末を磁場中プレス成形したのち
焼結あるいは焼結後熱処理する。また、焼結後に熱処理
せず、この熱処理を前記インゴットの段階で行うことも
できる。
When manufacturing a permanent magnet material with such a composition,
For example, after melting an alloy with the above composition, it is ingot-formed, the resulting ingot is coarsely and finely pulverized to produce magnet powder, and then this magnet powder is press-formed in a magnetic field and then sintered or sintered. Post heat treatment. Alternatively, the heat treatment may be performed at the ingot stage without being heat treated after sintering.

(実施例) 表に示す組成よりなる合金をアルゴン雰囲気に調整した
ボタン溶解炉を用いて溶製した0次いで、同じくアルゴ
ン雰囲気中でショークラッシャー、ディスクグラインダ
ーにより前記溶製合金を平均−40メツシユに粗粉砕し
た後、窒素雰囲気中においてジェットミルにて平均粒径
的4、OILm程度まで微粉砕した。
(Example) An alloy having the composition shown in the table was melted using a button melting furnace adjusted to an argon atmosphere.Then, the melted alloy was reduced to an average of -40 mesh using a show crusher and a disc grinder in the same argon atmosphere. After coarsely pulverizing, the mixture was pulverized using a jet mill in a nitrogen atmosphere to an average particle diameter of about 4, OILm.

次に、得られた微粉末を約15KOeの磁場中で約2t
onf/cm2の圧力をかけてプレス成形したのち、各
成形体をアルゴン雰囲気中において1100℃で1時間
の条件で焼結を行い、次いで600℃まで約1℃/mi
nの冷却速度で冷却し、600°Cで1時間保持したの
ち室温まで約100℃/minの冷却速度で急冷した。
Next, the obtained fine powder was placed in a magnetic field of about 15 KOe for about 2 tons.
After press forming with a pressure of onf/cm2, each molded body was sintered at 1100°C for 1 hour in an argon atmosphere, and then heated at about 1°C/mi up to 600°C.
The sample was cooled at a cooling rate of about 100° C./min, held at 600° C. for 1 hour, and then rapidly cooled to room temperature at a cooling rate of about 100° C./min.

次いで、得られた各永久磁石材料の残留磁束密度(Br
)、保磁力(BHC、rHa)および最大エネルギ積(
(BH)max)を調べた。これらの結果を同じく表に
示す。
Next, the residual magnetic flux density (Br
), coercivity (BHC, rHa) and maximum energy product (
(BH)max) was investigated. These results are also shown in the table.

表に示すように、この発明による永久磁石材料No、1
〜7では比較の永久磁石材斜陽、2’。
As shown in the table, permanent magnet material No. 1 according to the present invention
In ~7, the permanent magnet material slope for comparison is 2'.

5′〜7′よりも保磁力(BHC、I Hc)の値が大
きくなっており、それゆえ最大エネルギ積((BH)m
ax)がより大きな値を示していることが明らかである
The value of coercive force (BHC, I Hc) is larger than that of 5′ to 7′, and therefore the maximum energy product
It is clear that ax) shows a larger value.

[発明の効果] 以上説明してきたように、この発明の第1発明による永
久磁石材料は、一般式、 R1−a−13−yFeax13Znyで表わされ、R
が希土類元素の1種または2種以上、Feが鉄、XがB
、C,N、Si、Pの1種マタは2種以上、Znが亜鉛
であり、 0.60≦α≦0.85. 0くβ<0.15. 0.001≦γ≦0.05、 なる組成を有するものであり、また、この発明の第2発
明による永久磁石材料は、一般式、Fe  X  Zn
  M  テ表 R1−α−β−γ−δ  α β  γ δわされ、R
が希土類元素の1種または2種以上、Feが鉄、XがB
、C,N、Si、Pの1種または2種以上、Znが亜鉛
、MがTi、Zr。
[Effects of the Invention] As explained above, the permanent magnet material according to the first aspect of the present invention is represented by the general formula R1-a-13-yFeax13Zny, and R
is one or more rare earth elements, Fe is iron, and X is B
, C, N, Si, and P are two or more types, Zn is zinc, and 0.60≦α≦0.85. 0kuβ<0.15. 0.001≦γ≦0.05, and the permanent magnet material according to the second aspect of the present invention has the general formula: Fe x Zn
M table R1-α-β-γ-δ α β γ δ, R
is one or more rare earth elements, Fe is iron, and X is B
, C, N, Si, and P, Zn is zinc, and M is Ti and Zr.

Hf 、V、Nb、Ta、Cr、Mo、W、AJLの1
種または2種以上であり、 0.60≦α≦0.85゜ 0くβ<0.15. 0.001≦γ≦0.05. 0くδ≦0.20、 なる組成を有するものであるから、保磁力(BHC、I
HC)をさらに向上させることによって最大エネルギ積
((BH)max)がより一層大きな値を示すものとな
り、家庭電化製品、音響製品、時計部品、自動車部品、
精密機器等々の小型軽量化および高性能化を永久磁石の
面から実現することが可能であるという非常に優れた効
果をもたらしうるものである。
1 of Hf, V, Nb, Ta, Cr, Mo, W, AJL
species or two or more species, 0.60≦α≦0.85゜0 and β<0.15. 0.001≦γ≦0.05. Since it has a composition such that δ≦0.20, the coercive force (BHC, I
By further improving the maximum energy product ((BH)max), the maximum energy product ((BH)max) becomes even larger, making it suitable for home appliances, audio products, watch parts, automobile parts,
This can bring about an extremely excellent effect in that it is possible to realize smaller size, lighter weight, and higher performance of precision instruments and the like from the perspective of permanent magnets.

Claims (1)

【特許請求の範囲】 (1)式、R_1_−_α_−_β_−_γFe_αX
_βZn_γで表わされ、Rが希土類元素の1種または
2種以上、Feが鉄、XがB、C、N、Si、Pの1種
または2種以上、Znが亜鉛であり、 0.60≦α≦0.85、 0<β<0.15、 0.001≦γ≦0.05、 であることを特徴とする永久磁石材料。 (2)Fe中の0.10以下をNi、Mn、Coの1種
または2種以上で置換した特許請求の範囲第(1)項記
載の永久磁石材料。 (3)X中のNを0.0005≦β≦0.01の範囲で
添加した特許請求の範囲第(1)項または第(2)項記
載の永久磁石材料。 (4)式、R_1_−_α_−_β_−_γFe_αX
_βZn_γM_δで表わされ、Rが希土類元素の1種
または2種以上、Feが鉄、XがB、C、N、Si、P
の1種または2種以上、Znが亜鉛、MがTi、Zr、
Hf、V、Nb、Ta、Cr、Mo、W、Alの1種ま
たは2種以上であり、0.60≦α≦0.85、 0<β<0.15、 0.001≦γ≦0.05、 0<δ≦0.20、 であることを特徴とする永久磁石材料。 (5)Fe中の0.10以下をNi、Mn、Coの1種
または2種以上で置換した特許請求の範囲第(4)項記
載の永久磁石材料。 (6)X中のNを0.0005≦β≦0.01の範囲で
添加した特許請求の範囲第(4)項または第(5)項記
載の永久磁石材料。
[Claims] Formula (1), R_1_−_α_−_β_−_γFe_αX
It is represented by _βZn_γ, R is one or more rare earth elements, Fe is iron, X is one or more of B, C, N, Si, and P, and Zn is zinc, and 0.60 A permanent magnetic material characterized in that ≦α≦0.85, 0<β<0.15, 0.001≦γ≦0.05. (2) The permanent magnet material according to claim (1), in which 0.10 or less of Fe is replaced with one or more of Ni, Mn, and Co. (3) A permanent magnet material according to claim (1) or (2), in which N in X is added in a range of 0.0005≦β≦0.01. (4) Formula, R_1_−_α_−_β_−_γFe_αX
It is represented by _βZn_γM_δ, R is one or more rare earth elements, Fe is iron, and X is B, C, N, Si, P
one or more of the following, Zn is zinc, M is Ti, Zr,
One or more of Hf, V, Nb, Ta, Cr, Mo, W, and Al, 0.60≦α≦0.85, 0<β<0.15, 0.001≦γ≦0 .05, 0<δ≦0.20, A permanent magnetic material characterized by the following. (5) The permanent magnet material according to claim (4), in which 0.10 or less of Fe is replaced with one or more of Ni, Mn, and Co. (6) The permanent magnet material according to claim (4) or (5), wherein N in X is added in a range of 0.0005≦β≦0.01.
JP60275917A 1985-12-10 1985-12-10 Permanent magnet material Pending JPS62136553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275917A JPS62136553A (en) 1985-12-10 1985-12-10 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275917A JPS62136553A (en) 1985-12-10 1985-12-10 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS62136553A true JPS62136553A (en) 1987-06-19

Family

ID=17562222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275917A Pending JPS62136553A (en) 1985-12-10 1985-12-10 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS62136553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JP2006278990A (en) * 2005-03-30 2006-10-12 Tdk Corp Rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
JP2006278990A (en) * 2005-03-30 2006-10-12 Tdk Corp Rare earth permanent magnet
JP4529180B2 (en) * 2005-03-30 2010-08-25 Tdk株式会社 Rare earth permanent magnet

Similar Documents

Publication Publication Date Title
JPS60254708A (en) Manufacture of permanent magnet
JPH06275414A (en) Nd-fe-b based permanent magnet
JPS60144909A (en) Manufacture of permanent magnet material
JPS6110209A (en) Permanent magnet
JPS62136551A (en) Permanent magnet material
EP0029071A1 (en) Process for producing permanent magnet alloy
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60144906A (en) Permanent magnet material
JPH0551656B2 (en)
JPS6151901A (en) Manufacture of permanent magnet
JP2848533B2 (en) Manufacturing method of permanent magnet
JPS60144908A (en) Permanent magnet material
JPS62136553A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPH0146575B2 (en)
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS62136550A (en) Permanent magnet material
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JPS6180805A (en) Permanent magnet material
JPS62136558A (en) Permanent magnet material
JP3171415B2 (en) Rare earth-Fe-Co-Al-Nb-Ga-B based sintered magnet
JPS60254707A (en) Manufacture of permanent magnet
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet
JP3178848B2 (en) Manufacturing method of permanent magnet