JPS62136550A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPS62136550A
JPS62136550A JP60275918A JP27591885A JPS62136550A JP S62136550 A JPS62136550 A JP S62136550A JP 60275918 A JP60275918 A JP 60275918A JP 27591885 A JP27591885 A JP 27591885A JP S62136550 A JPS62136550 A JP S62136550A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
rare earth
maximum energy
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60275918A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60275918A priority Critical patent/JPS62136550A/en
Publication of JPS62136550A publication Critical patent/JPS62136550A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PURPOSE:To obtain a permanent magnet material contg. a rare earth element and having a much larger maximum energy product by regulating the N content in a rare earth element-iron type permanent magnet material having a specified composition. CONSTITUTION:This permanent magnet material is represented by general formula I or II, wherein R is one or more kinds of rare earth elements, X is one or more among B, C, Si and P, 0.60<=alpha<=0.85, 0<beta<0.15, 0.0005<=gamma<=0.01, M is one or more among Ti, Zr, Hf, V, Nb, Ta, Cr, No, W and Al and 0<delta<=0.10. Because of the regulated N content, the coercive force (BHC, IHC) can be improved and the maximum energy product [(BH)max] is further increased.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は、家庭電化製品、音響製品、時計部品、自動
車部品、精密機器等々の永久磁石を用いる広範囲な用途
に使用することができる永久磁石材料に関し、とくに希
土類系の永久磁石材料に関するものである。
[Detailed description of the invention] "Objective of the invention" (Industrial application field) This invention can be used in a wide range of applications using permanent magnets, such as home appliances, audio products, watch parts, automobile parts, precision instruments, etc. The present invention relates to permanent magnet materials that can be used, particularly rare earth-based permanent magnet materials.

(従来の技術) 近年、永久磁石材料における最大エネルギ積((BH)
max)の向上はかってのアルニコ系磁石材料等のそれ
に比べて著しいものがあり、とくに家庭電化製品、音響
製品、時計部品、自動車部品、精密機器等々の小型軽量
化および高性能化等に大きく貢献している。
(Prior art) In recent years, the maximum energy product ((BH)
max) has been significantly improved compared to that of previous alnico magnet materials, and has contributed greatly to the miniaturization and weight reduction and higher performance of home appliances, audio products, watch parts, automobile parts, precision equipment, etc. are doing.

従来、このような優れた特性の永久磁石材料としては希
土類−コバルト系磁石が代表的なものであり、その最大
エネルギ積((BH)max)はかなり高い値を示して
いる。
Conventionally, rare earth-cobalt magnets have been typical as permanent magnet materials with such excellent characteristics, and their maximum energy product ((BH)max) has shown a fairly high value.

(発明が解決しようとする問題点) しかし、@大エネルギ積((BH)max)をさらに向
上させるための研究はいぜんとして続けられ、一部では
他の成分系の希土類磁石の開発も進んでおり、なかには
希土類−鉄系の磁石材料についての開発も行われている
。そして、この希土類−鉄系の磁石材料においても磁気
特性をさらに改善することが望まれていた。
(Problem to be solved by the invention) However, research to further improve @large energy product ((BH)max) continues, and some rare earth magnets with other component systems are also being developed. , Some rare earth-iron magnet materials are also being developed. It has been desired to further improve the magnetic properties of this rare earth-iron magnet material.

この発明は、上述した従来の要望に着目して種々の実験
・研究を進めた結果、希土類−鉄系の永久磁石材料にお
いてN含有量を規制することによって保磁力(BHC、
rHc)を向上できることを見い出したことによりなさ
れたもので、これによって最大エネルギ積((BH)m
ax)のより優れた希土類系の永久磁石材料を提供する
ことを目的としている。
As a result of various experiments and research focusing on the above-mentioned conventional demands, this invention has been developed to improve coercive force (BHC) by regulating the N content in rare earth-iron permanent magnet materials.
This was done based on the discovery that it was possible to improve the maximum energy product ((BH)m
The purpose of the present invention is to provide a rare earth-based permanent magnet material that is superior to the above.

[発明の構成] (問題点を解決するための手段) この発明の第1発明による永久磁石材料は、一般式、 R1−a−β−yFeaxf3Nyで表わされ、Rが希
土類元素の1種または2種以上、Feが鉄、XカB 、
 C、S i 、 Pc7)1種または2種以上、Nが
窒素であり、 0.60≦α≦0.85. 0<β<0.15. 0.0005≦γ≦0.01、 であることを特徴としており、また、この発明の第2発
明による永久磁石材料は、一般式、R1−α−β−γ−
δFeαXβNγMδ1表わされ、Rが希土類元素の1
種または2種以上、Feが鉄、XがB、C、Si、Pの
1種または2種以上、Nが窒素、MがTi、Zr、Hf
、V。
[Structure of the Invention] (Means for Solving the Problems) A permanent magnet material according to the first aspect of the present invention is represented by the general formula R1-a-β-yFeaxf3Ny, where R is one of rare earth elements or 2 or more types, Fe is iron,
C, S i , Pc7) One or more types, N is nitrogen, 0.60≦α≦0.85. 0<β<0.15. 0.0005≦γ≦0.01, and the permanent magnet material according to the second aspect of the present invention has a general formula, R1-α-β-γ-
δFeαXβNγMδ1, where R is 1 of a rare earth element
species or two or more, Fe is iron, X is one or more of B, C, Si, P, N is nitrogen, M is Ti, Zr, Hf
,V.

Nb、Ta、Cr、Mo、W、AJIの1種または2種
以上であり、 0.60≦α≦0.85. 0<β<0.15. 0.0005≦γ≦0.01、 Oくδ≦0.10、 であることを特徴としている。
One or more of Nb, Ta, Cr, Mo, W, AJI, and 0.60≦α≦0.85. 0<β<0.15. It is characterized in that 0.0005≦γ≦0.01, and δ≦0.10.

この発明による永久磁石材料は、上記のように、一般式
、R1−cx−β−アFe、xβNアまたiiR,−α
−β−γ−δ  α β γ δFe  X  N  
M で表わされるが、式中のRはYを含む希土類元素の1種
または2種以上であることを示し、Sc、Y、La、C
e、Pr、Nd、Pm。
As described above, the permanent magnet material according to the present invention has the general formula R1-cx-β-aFe, xβNa or iiR,-α
-β-γ-δ α β γ δFe X N
R in the formula represents one or more rare earth elements including Y, Sc, Y, La, C
e, Pr, Nd, Pm.

Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.

Tm、Yb、Luのうちの1種または2種以上が用いら
れる。
One or more of Tm, Yb, and Lu are used.

また、上記一般式において、Feは鉄であり、0.60
≦α≦0.85の範囲としている。また、この範囲内に
おいてFe中の0.10以下をN i 、 M n 、
 Coの1種または2種以上と置換することができる。
In addition, in the above general formula, Fe is iron, and 0.60
The range is ≦α≦0.85. Also, within this range, 0.10 or less in Fe is N i , M n ,
It can be replaced with one or more types of Co.

この場合、Ni。In this case, Ni.

Mnは保磁力(nHc 、 ■Hc)の向上に寄与し、
COはキュリ一点の上昇に寄与するが、これらの合計が
0.toを超えると残留磁束密度(B r)が低下する
ので、置換するとしても0.10以下とするがよい。ま
た、Feの量が多すぎると、残留磁束密度(B r)は
向上するものの、保磁力(nHc 、x He)が減少
するため、すぐれた最大エネルギa ((BH)max
)を得がたくなるので、α≦0.85とした。一方、F
eの量が少なすぎると残留磁束密度(B r)が低くな
り、最大エネルギ積((BH)max)が減少するので
、0.60≦αとした。
Mn contributes to improving coercive force (nHc, ■Hc),
CO contributes to an increase of one Curie point, but the total of these is 0. If it exceeds to, the residual magnetic flux density (Br) will decrease, so even if it is replaced, it is preferably 0.10 or less. Furthermore, if the amount of Fe is too large, although the residual magnetic flux density (Br) increases, the coercive force (nHc, x He) decreases, resulting in an excellent maximum energy a ((BH)max
), it was set to α≦0.85. On the other hand, F
If the amount of e is too small, the residual magnetic flux density (Br) will become low and the maximum energy product ((BH)max) will decrease, so it was set to 0.60≦α.

さらに、上記一般式において、XはB、C。Furthermore, in the above general formula, X is B or C.

St 、Pの1種または2種以上であり、0<β<0.
15の範囲としている。また、MはTi。
One or more types of St, P, and 0<β<0.
The range is 15. Moreover, M is Ti.

Zr、Hf、V、Nb、Ta、Cr、Mo。Zr, Hf, V, Nb, Ta, Cr, Mo.

W、Auのうちの1種または2種以上であリ、0≦δ≦
0.10の範囲としている。ここで、上記Mは添加しな
い場合もあるが、X元素とX元素とを複合添加すること
によりX元素の一部が硼化物、炭化物、窒化物、珪化物
、燐化物となり、保磁力(BHC、rHc)の向上およ
び残留磁束密度(B r)の温度係数の向上に効果をも
たらす。この場合、Mの量が少ないと残留磁束密度(B
r)の温度係数の向上は小さいため、添加する場合は0
.01≦δとするのがより望ましい。
One or more of W and Au, 0≦δ≦
The range is 0.10. Here, the above M may not be added, but by adding the X element and the X element in combination, a part of the , rHc) and the temperature coefficient of residual magnetic flux density (Br). In this case, if the amount of M is small, the residual magnetic flux density (B
The improvement in the temperature coefficient of r) is small, so when added, it is 0.
.. It is more desirable that 01≦δ.

しかし、Mの量が多すぎると前記硼化物、炭化物、窒化
物、珪化物、燐化物等の形成量が多くなり、磁気特性が
劣化するので、δ≦0.10とする必要がある。また、
上記Xは希土類系磁石、たとえばNd−Fe系磁石のキ
ュリ一点を常温程度から300℃以上に昇温させる効果
を有するものであるが、Xの量が多すぎると保磁力(n
Hc。
However, if the amount of M is too large, the amount of the borides, carbides, nitrides, silicides, phosphides, etc. formed increases and the magnetic properties deteriorate, so it is necessary to satisfy δ≦0.10. Also,
The above X has the effect of raising the temperature of the Curie point of a rare earth magnet, such as an Nd-Fe magnet, from about room temperature to over 300°C, but if the amount of X is too large, the coercive force (n
Hc.

IHc)および残留磁束密度(B r)が減少し、すぐ
れた最大エネルギ積((BH)max)が得られなくな
るので、β<0.15とした。
IHc) and residual magnetic flux density (Br) decrease, making it impossible to obtain an excellent maximum energy product ((BH)max), so β<0.15 was set.

さらにまた、Nは窒素であり、このN量を規制すること
によって保磁力(BHC、I Hc)を向上させること
ができる。そして、このような効果を得るためには0.
0005≦γとする必要があるが、N量が多すぎると残
留磁束密度(Br)が減少してくるのでγ≦0.01と
した。
Furthermore, N is nitrogen, and coercive force (BHC, I Hc) can be improved by regulating the amount of N. In order to obtain such an effect, 0.
Although it is necessary to satisfy 0005≦γ, if the amount of N is too large, the residual magnetic flux density (Br) decreases, so γ≦0.01 is set.

このような組成の永久磁石材料を製造するに際しては、
例えば上記組成の合金を溶製したのち造塊し、得られた
インゴットを粗粉砕および微粉砕して磁石用粉末を製造
し、次いでこの磁石用粉末を磁場中プレス成形したのち
焼結あるいは焼結後熱処理する。また、焼結後に熱処理
せず、この熱処理を前記インゴットの段階で行うことも
できる。
When manufacturing a permanent magnet material with such a composition,
For example, after melting an alloy with the above composition, it is ingot-formed, the resulting ingot is coarsely and finely pulverized to produce magnet powder, and then this magnet powder is press-formed in a magnetic field and then sintered or sintered. Post heat treatment. Alternatively, the heat treatment may be performed at the ingot stage without being heat treated after sintering.

(実施例) 表に示す組成よりなる合金をアルゴン雰囲気に調整した
ボタン溶解炉を用いて溶製した0次いで、同じくアルゴ
ン雰囲気中でショークラッシャー、ディスクグラインダ
ーにより前記溶製合金を平均−40メツシユに粗粉砕し
た後、窒素雰囲気中においてジェットミルにて平均粒径
的4.0ルm程度まで微粉砕した。
(Example) An alloy having the composition shown in the table was melted using a button melting furnace adjusted to an argon atmosphere.Then, the melted alloy was reduced to an average of -40 mesh using a show crusher and a disc grinder in the same argon atmosphere. After coarsely pulverizing, the mixture was pulverized to an average particle size of about 4.0 lm using a jet mill in a nitrogen atmosphere.

次に、得られた微粉末を約15KOeの磁場中で約2t
onf/cm2の圧力をかけてプレス成形したのち、各
成形体をアルゴン雰囲気中において1100℃で1時間
の条件で焼結を行い1次いで600℃まで約1℃/mi
nの冷却速度で冷却し、600℃で1時間保持したのち
室温まで約100℃/ m i nの冷却速度で急冷し
た。
Next, the obtained fine powder was placed in a magnetic field of about 15 KOe for about 2 tons.
After press forming with a pressure of onf/cm2, each molded body was sintered at 1100°C for 1 hour in an argon atmosphere, and then heated to 600°C at a rate of about 1°C/mi.
The sample was cooled at a cooling rate of about 100° C./min, held at 600° C. for 1 hour, and then rapidly cooled to room temperature at a cooling rate of about 100° C./min.

次いで、得られた各永久磁石材料の残留磁束両度(Br
)、保磁力(BHC、I Ha)および最大エネルギ積
((BH)max)を調べた。これらの結果を同じく表
に示す。
Next, the residual magnetic flux strength (Br
), coercive force (BHC, I Ha) and maximum energy product ((BH)max) were investigated. These results are also shown in the table.

表に示すように、この発明による永久磁石材斜陽、1〜
4では比較の永久磁石材斜陽、1’。
As shown in the table, permanent magnet material decline according to the present invention, 1~
In 4, the permanent magnet material slope is 1' for comparison.

3’ 、4’よりも保磁力(BHC、I Hc)の値が
大きくなっており、それゆえ最大エネルギ積((BH)
max)がより大きな値を示していることが明らかであ
る。
The values of coercive force (BHC, I Hc) are larger than those of 3' and 4', and therefore the maximum energy product ((BH)
It is clear that max) shows a larger value.

[発明の効果] 以上説明してきたように、この発明の第1発明による永
久磁石材料は、一般式、 R1−a−β−yFeaX9Nyで表わされ、Rが希土
類元素の1種または2種以上、Feが鉄、XカB 、 
C、S i 、 Pc7)1種または2種以上、Nが窒
素であり。
[Effects of the Invention] As explained above, the permanent magnet material according to the first aspect of the present invention is represented by the general formula R1-a-β-yFeaX9Ny, where R is one or more rare earth elements. , Fe is iron,
C, S i , Pc7) One or more types, N is nitrogen.

0.60≦α≦0.85. 0<β<0.15. 0.0005≦γ≦0.01、 なる組成を有するものであり、また、この発明の第2発
明による永久磁石材料は、一般式、Fe  X  N 
 M  で表わ R,−α−β−γ−δ  α β γ δされ、Rが希
土類元素の1種または2種以上、Feが鉄、XがB、C
、Si、P(7)1種または2種以上、Nが窒素、Mが
Ti、Zr、Hf、V。
0.60≦α≦0.85. 0<β<0.15. 0.0005≦γ≦0.01, and the permanent magnet material according to the second aspect of the present invention has the general formula: Fe X N
M is represented by R, -α-β-γ-δ α β γ δ, where R is one or more rare earth elements, Fe is iron, and X is B, C
, Si, P(7) or more, N is nitrogen, and M is Ti, Zr, Hf, or V.

N b 、 T a 、 Cr 、 M o 、 W 
、 A文の1種または2種以上であり、 0.60≦α≦0.85、 O<β<0 、15゜ 0.0005≦γ≦0.01、 0くδ≦0.10、 なる組成を有するものであるから、保磁力(BHC、x
Hc)をさらに向上させることによって最大エネルギ積
((BH)max)がより一層大きな値を示すものとな
り、家庭電化製品、音響製品、時計部品、自動車部品、
精V、機器等々の小型軽量化および高性能化を永久磁石
の面から実現することが可能であるという非常に優れた
効果をもたらしうるものである。
Nb, Ta, Cr, Mo, W
, one or more types of A sentence, 0.60≦α≦0.85, O<β<0, 15゜0.0005≦γ≦0.01, 0kuδ≦0.10, Since it has a composition, the coercive force (BHC, x
By further improving Hc), the maximum energy product ((BH)max) will show an even larger value, making it suitable for home appliances, audio products, watch parts, automobile parts,
It is possible to bring about a very excellent effect in that it is possible to realize miniaturization, weight reduction, and high performance of magnets, equipment, etc. from the perspective of permanent magnets.

Claims (1)

【特許請求の範囲】 (1)式、R_1_−_α_−_β_−_γFe_αX
_βN_γで表わされ、Rが希土類元素の1種または2
種以上、Feが鉄、XがB、C、Si、Pの1種または
2種以上、Nが窒素であり、 0.60≦α≦0.85、 0<β<0.15、 0.0005≦γ≦0.01、 であることを特徴とする永久磁石材料。 (2)Fe中の0.10以下をNi、Mn、Coの1種
または2種以上で置換した特許請求の範囲第(1)項記
載の永久磁石材料。 (3)式、R_1_−_α_−_β_−_γFe_αX
_βN_γM_δで表わされ、Rが希土類元素の1種ま
たは2種以上、Feが鉄、XがB、C、Si、Pの1種
または2以上、Nが窒素、MがTi、Zr、Hf、V、
Nb、Ta、Cr、Mo、W、Alの1種または2種以
上であり、 0.60≦α≦0.85、 0<β<0.15、 0.0005≦γ≦0.01、 0<δ≦0.10、 であることを特徴とする永久磁石材料。 (4)Fe中の0.10以下をNi、Mn、Coの1種
または2種以上で置換した特許請求の範囲第(3)項記
載の永久磁石材料。
[Claims] Formula (1), R_1_−_α_−_β_−_γFe_αX
It is represented by _βN_γ, and R is one or two rare earth elements.
Fe is iron, X is one or more of B, C, Si, and P, N is nitrogen, 0.60≦α≦0.85, 0<β<0.15, 0. A permanent magnetic material characterized in that 0005≦γ≦0.01. (2) The permanent magnet material according to claim (1), in which 0.10 or less of Fe is replaced with one or more of Ni, Mn, and Co. (3) Formula, R_1_−_α_−_β_−_γFe_αX
It is represented by _βN_γM_δ, R is one or more rare earth elements, Fe is iron, X is one or more of B, C, Si, P, N is nitrogen, M is Ti, Zr, Hf, V,
One or more of Nb, Ta, Cr, Mo, W, and Al, 0.60≦α≦0.85, 0<β<0.15, 0.0005≦γ≦0.01, 0 <δ≦0.10, A permanent magnetic material characterized by the following. (4) The permanent magnet material according to claim (3), in which 0.10 or less of Fe is replaced with one or more of Ni, Mn, and Co.
JP60275918A 1985-12-10 1985-12-10 Permanent magnet material Pending JPS62136550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275918A JPS62136550A (en) 1985-12-10 1985-12-10 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275918A JPS62136550A (en) 1985-12-10 1985-12-10 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPS62136550A true JPS62136550A (en) 1987-06-19

Family

ID=17562235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275918A Pending JPS62136550A (en) 1985-12-10 1985-12-10 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPS62136550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506412A2 (en) * 1991-03-27 1992-09-30 Kabushiki Kaisha Toshiba Magnetic material
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089546A (en) * 1983-10-21 1985-05-20 Sumitomo Special Metals Co Ltd Permanent magnet alloy and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089546A (en) * 1983-10-21 1985-05-20 Sumitomo Special Metals Co Ltd Permanent magnet alloy and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186766A (en) * 1988-09-14 1993-02-16 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic materials containing rare earth element iron nitrogen and hydrogen
EP0506412A2 (en) * 1991-03-27 1992-09-30 Kabushiki Kaisha Toshiba Magnetic material
US5480495A (en) * 1991-03-27 1996-01-02 Kabushiki Kaisha Toshiba Magnetic material
US5482573A (en) * 1991-10-16 1996-01-09 Kabushiki Kaisha Toshiba Magnetic material

Similar Documents

Publication Publication Date Title
JPH06275414A (en) Nd-fe-b based permanent magnet
JPS60254708A (en) Manufacture of permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
JPS60144909A (en) Manufacture of permanent magnet material
JPS62136551A (en) Permanent magnet material
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60144906A (en) Permanent magnet material
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2000114016A (en) Permanent magnet and manufacture thereof
JPS6151901A (en) Manufacture of permanent magnet
JPS62177158A (en) Permanent magnet material and its production
JPS62136550A (en) Permanent magnet material
JPS60144908A (en) Permanent magnet material
JPH0146575B2 (en)
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS60144907A (en) Permanent magnet material
JPS62136553A (en) Permanent magnet material
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS6180805A (en) Permanent magnet material
JPS62136558A (en) Permanent magnet material
JPH045739B2 (en)
JPS60254707A (en) Manufacture of permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JP3298220B2 (en) Rare earth-Fe-Nb-Ga-Al-B sintered magnet