JPS62131903A - Speed control device for steam turbine - Google Patents

Speed control device for steam turbine

Info

Publication number
JPS62131903A
JPS62131903A JP60271912A JP27191285A JPS62131903A JP S62131903 A JPS62131903 A JP S62131903A JP 60271912 A JP60271912 A JP 60271912A JP 27191285 A JP27191285 A JP 27191285A JP S62131903 A JPS62131903 A JP S62131903A
Authority
JP
Japan
Prior art keywords
signal
steam
speed
control valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271912A
Other languages
Japanese (ja)
Inventor
Yuuji Koshi
古志 裕司
Mitsuharu Kuramachi
倉町 充治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP60271912A priority Critical patent/JPS62131903A/en
Publication of JPS62131903A publication Critical patent/JPS62131903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent a nuclear reactor from being unnecessarily suspended ion case of a failure of an electric power system by changing a load setting fixed bias of a power control device for the nuclear reactor into a variable bias system. CONSTITUTION:The deviation of an actual speed signal 'a' from a set value by a turbine speed setting unit 20 is inputted into a function generator 23 for generating a load setting bias signal 'b2' based on a predetermined function so as to input thereof into an adder 24. In the adder 24, a signal 'b1' from a speed governor 22 and a predetermined load set signal 'c' are added to the bias signal 'b2' so as to be inputted into a low value priority circuit 26. And the function generator 23 is provided with non-linear characteristics which yield the output in such a way that the opening of a main steam control valve can be kept constant over the range of a speed deviation signal from a value equivalent to the opening requirement signal of a main steam control valve which can be absorbed by the capacity of a by-pass valve to a value equivalent to that opening requirement signal of the main steam control valve which is greater by a certain amount than said opening requirement signal of the main steam control valve.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子カプラント等に用いられる蒸気タービン
速度制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in steam turbine speed control devices used in atomic couplants and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、沸騰水型原子カプラントの如き蒸気タービンプ
ラントにおいては、タービン発電機が遮断器を介して電
気的に電力系統と直結されている。
Generally, in a steam turbine plant such as a boiling water atomic coupler plant, a turbine generator is directly electrically connected to a power system via a circuit breaker.

従って、電力系統に周波数変動が発生すると、タービン
発電機の回転速度はこれに引込まれて変動することにな
る。
Therefore, when a frequency fluctuation occurs in the power system, the rotational speed of the turbine generator is influenced by this and fluctuates.

即ち、電力系統内に送電線事故等の故障が発生したよう
な場合には、電力系統に連結されている発電機群のトー
タル発電量とユーザの電力使用量とのバランスが崩れ、
周波数変動が発生してタービン発電機の回転速度の変動
を1′Eり。従って、この回転速度の変動に応じてター
ビン速度制御装置が作動して蒸気加減弁の開度が制御さ
れ、タービンへの蒸気流入量が制御される。その結果、
原子炉で発生する蒸気が円滑に消費されなくなり、原子
炉の圧力が変動する。
In other words, in the event of a breakdown such as a transmission line accident in the power system, the balance between the total power generation of the generators connected to the power system and the power consumption of the user will be disrupted.
Frequency fluctuations occur and the rotational speed of the turbine generator changes by 1'E. Therefore, the turbine speed control device operates in accordance with this variation in rotational speed to control the opening degree of the steam control valve, thereby controlling the amount of steam flowing into the turbine. the result,
The steam generated in the reactor is no longer consumed smoothly, and the reactor pressure fluctuates.

ところで、この原子炉の圧力変動は、沸騰水型原子炉に
とっては炉出力の変動をもたらすことになり好ましくな
く、特に圧力が上昇すれば炉出力が上昇して、制限値を
越えると原子炉の運転が自動停止し、発電所の運転が停
止されることになる。
By the way, pressure fluctuations in the reactor are undesirable for boiling water reactors because they cause fluctuations in the reactor output.In particular, as the pressure increases, the reactor output increases, and if the limit value is exceeded, the reactor The operation will automatically stop, and the power plant will be shut down.

そこで従来、主蒸気導管の途中から主蒸気の一部をター
ビンにバイパスさせて復水器に導くためのバイパス導管
を、主蒸気導管から分岐させることが行われている。
Conventionally, therefore, a bypass conduit has been branched from the main steam conduit for bypassing a part of the main steam to the turbine and guiding it to the condenser from the middle of the main steam conduit.

第5図は従来の原子力タービンプラントの概略系統図で
あって、原子炉1で発生した蒸気は主蒸気導管2を通り
、蒸気加減弁3でその流山を制御されながら蒸気タービ
ン4に導入される。そして、蒸気タービン4に導入され
た蒸気はそこで仕事を行い、蒸気タービン4に直結され
た発電115を駆動し、そこで発電された電力は遮断器
6を介して電力系統に送り出される。一方、蒸気タービ
ン4で仕事を行った蒸気は復水器7に送られ、そこで復
水せしめられる。
FIG. 5 is a schematic system diagram of a conventional nuclear turbine plant, in which steam generated in a nuclear reactor 1 passes through a main steam conduit 2 and is introduced into a steam turbine 4 while its flow rate is controlled by a steam control valve 3. . The steam introduced into the steam turbine 4 performs work there, driving the power generation 115 directly connected to the steam turbine 4, and the power generated there is sent to the power system via the circuit breaker 6. On the other hand, the steam that has performed work in the steam turbine 4 is sent to the condenser 7, where it is condensed.

また、主蒸気導管2にはバイパス弁8を有するバイパス
導管9が分岐導出されており、必要に応じて主蒸気の一
部を蒸気タービン4をバイパスして復水器7に導くよう
にしである。
Further, a bypass conduit 9 having a bypass valve 8 is branched out from the main steam conduit 2, and a part of the main steam is guided to the condenser 7 by bypassing the steam turbine 4 as necessary. .

一方、電力系統への遮断器6の出口部には、電力系統周
波数を測定する周波数検出器10が設けられ、この周波
数検出器10で検出された周波数信号が、比較器11に
入力され、そこで予め設定された周波数設定値と比較さ
れ、上記周波数信号が周波数設定値を越えた場合、比較
器11の出力信号は加算器14に負荷設定器13の出力
信号と共に加えられ、その偏差信号により再循環ポンプ
12を減速し、原子炉の出力を減じ、発生蒸気を減じる
ようにしである。
On the other hand, a frequency detector 10 for measuring the power system frequency is provided at the exit of the circuit breaker 6 to the power system, and the frequency signal detected by this frequency detector 10 is input to a comparator 11, where It is compared with a preset frequency setting value, and if the frequency signal exceeds the frequency setting value, the output signal of the comparator 11 is added to the adder 14 together with the output signal of the load setting device 13, and the deviation signal is used again. This is to reduce the speed of the circulation pump 12, reduce the reactor output, and reduce the steam generated.

なお、上記負荷設定器13の設定値は、系統周波数の微
弱な変化によるプラントへの外乱を除去する目的で、通
常要求される負荷設定値より10[%]程度高い値が設
定されており、この上乗せ分を負荷設定バイアスと呼ぶ
。さらに、前記蒸気1)D減弁3は、タービン実速度と
設定速度との偏差が一定範囲内に納まるようにタービン
速度制御装置によってその開度が制卸され、タービンへ
の蒸気流入量が調整される。また、蒸気加減弁3の閉方
向の制御に対応して、バイパス弁8が開方向に制御され
、余剰蒸気が復水器7に導かれるものとなっている。
The set value of the load setter 13 is set to a value approximately 10% higher than the normally required load set value for the purpose of eliminating disturbances to the plant due to weak changes in the system frequency. This additional amount is called load setting bias. Further, the opening of the steam 1) D reducing valve 3 is controlled by the turbine speed control device so that the deviation between the actual turbine speed and the set speed is within a certain range, and the amount of steam flowing into the turbine is adjusted. be done. Furthermore, in response to the control of the steam control valve 3 in the closing direction, the bypass valve 8 is controlled in the opening direction, and excess steam is guided to the condenser 7.

ところが、一般にバイパス弁8で流せる蒸気容部は、蒸
気加減弁3の容量100[%]に対し25[%]程度で
ある。そのため、電力系統の周波数が大きく上昇するよ
うな場合において、回転速度の上昇を防止するように蒸
気加減弁3の開度を大幅に絞るとき、蒸気加減弁3の絞
り込み身が25[%コ以内であれば、25[%1容量を
持つ伍を吸収することができて、原子炉圧力の上昇を防
止することができる。しかし、蒸気加減弁3がそれ以上
絞り込まれるような周波数上昇が生じれば、蒸気加減弁
3がバイパス弁8の容量以上に絞り込まれ、原子炉圧力
の上昇を引起こし、原子炉出力の上昇により原子炉が自
動停止する等の問題がある。
However, generally, the steam capacity that can flow through the bypass valve 8 is about 25% of the capacity of the steam control valve 3, which is 100%. Therefore, when the frequency of the power system increases significantly and the opening degree of the steam regulating valve 3 is significantly reduced to prevent the rotation speed from increasing, the opening of the steam regulating valve 3 must be within 25%. If so, it would be possible to absorb 5% of the capacity and prevent the reactor pressure from rising. However, if a frequency increase occurs that would cause the steam regulator 3 to be throttled further, the steam regulator 3 would be throttled beyond the capacity of the bypass valve 8, causing an increase in reactor pressure and an increase in reactor output. There are problems such as the reactor automatically shutting down.

周波数の上昇量と蒸気加減弁の絞り込み量は、タービン
速度制御装置における速度調定率により決まり、現状で
は速度調定率は5[%]としである。即ち、タービン実
速度が5[%〕上昇すると、蒸気加減弁が100[%]
絞り込まれることになっており、タービン実速度の5[
%〕上昇は、50[Hzコに換算すると、52.5[H
zlになる。
The amount of increase in frequency and the amount of throttling of the steam control valve are determined by the speed regulation rate in the turbine speed control device, and currently the speed regulation rate is 5%. In other words, when the actual turbine speed increases by 5%, the steam control valve increases by 100%.
It is supposed to be narrowed down to 5[ of the actual turbine speed.
%] increase is 52.5[H when converted to 50[Hz]
It becomes zl.

第6図は速度調定率5[%コでの周波数と蒸気加減弁開
度との関係を示す図であり、ここでバイパス弁による吸
収可能な周波数の上昇限界を求めると、前述の負荷設定
バイアス10[%コを考慮し、50.875[Hzlと
なる。
Figure 6 is a diagram showing the relationship between the frequency and the opening degree of the steam control valve at a speed regulation rate of 5%.If the limit of increase in the frequency that can be absorbed by the bypass valve is determined here, the load setting bias Considering 10[%], it becomes 50.875[Hzl.

一方、一般的に電力系統の故障では、最大1.5[H2
]の周波数上昇を考えておく必要がある。従って、現状
のバイパス弁の容量では不足することになるが、バイパ
ス弁の容量を増すことは大幅な設備増となり、プラント
建設コストのアップとなり現実的でない。
On the other hand, power system failures generally have a maximum of 1.5[H2
] It is necessary to consider the frequency increase. Therefore, the current capacity of the bypass valve is insufficient, but increasing the capacity of the bypass valve would require a significant increase in equipment and increase plant construction costs, which is not realistic.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、現状のバイパス弁の各層を増すことな
く、電力系統の周波数が1.5[Hzl程度上昇しても
、原子炉を停止することなく連続運転ができるようにし
た蒸気タービン速度制tII装置を提供することにある
The present invention was made in consideration of the above circumstances, and its purpose is to prevent the nuclear reactor from increasing even if the frequency of the power system increases by about 1.5 Hz, without increasing the layers of the current bypass valve. An object of the present invention is to provide a steam turbine speed control tII device that allows continuous operation without stopping the steam turbine.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、原子炉出力制御装置の負荷設定固定バ
イアスを可変バイアス方式とすることにより、電力系統
の事故発生時に生じる僅かな周波数上昇程度では、バイ
パス弁全開の状態で周波数の回復を待ちながら、プラン
トの連続運転を行うことにある。
The gist of the present invention is to change the load setting fixed bias of the reactor power control device to a variable bias system, so that in the event of a slight increase in frequency that occurs when an accident occurs in the power system, the bypass valve is fully opened and the system waits for the frequency to recover. The aim is to operate the plant continuously.

即ち本発明は、タービン実速度と予め定められた設定速
度との偏差信号を入力し所定の関数に基づいて負荷設定
バイアス信号を出力する関数発生器と、上記偏差信号を
入力して調速信号を出力する調速器と、上記負荷設定バ
イアス信号、調速信号及び予め定められた負荷設定信号
をそれぞれ加算する加算器と、この加算器の加算出力を
速度要求信号として蒸気加減弁の開度制御を行う手段と
を具備してなる蒸気タービン速度制御装置であり、前記
関数発生器として、前記偏差信号がバイパス弁の容量で
吸収可能な量の蒸気加減弁開度の要求信号に相当する値
から更にそれより一定邑だけ大きな蒸気加減弁開度要求
信号に相当する値となる範囲に亙っで蒸気加減弁開度を
一定に、或いは原子炉の連続運転を可能とする範囲で略
一定に保持するような出力を出す非線形特性を有するも
のを用いるようにしたものであり、上記範囲に1つでは
バイパス弁全開の状態で蒸気加減弁の絞り込みを行わな
いようにし、プラント停止がみだりに発生しないように
したものである。
That is, the present invention includes a function generator that inputs a deviation signal between an actual turbine speed and a predetermined set speed and outputs a load setting bias signal based on a predetermined function, and a function generator that inputs the deviation signal and generates a governor signal. an adder that adds the load setting bias signal, the speed governor signal, and a predetermined load setting signal, respectively, and the added output of this adder is used as a speed request signal to determine the opening of the steam control valve. A steam turbine speed control device comprising means for controlling the speed of a steam turbine, wherein the function generator is a steam turbine speed control device, in which the deviation signal is a value corresponding to a request signal for the opening of the steam control valve in an amount that can be absorbed by the capacity of the bypass valve. The steam regulating valve opening is kept constant over a range from 100 to a value corresponding to a steam regulating valve opening request signal that is a certain amount larger than that, or is kept approximately constant within a range that allows continuous operation of the reactor. The system is designed to use a valve with non-linear characteristics that produces an output that maintains the level of output, and if it is within the above range, the steam control valve will not be throttled when the bypass valve is fully open, so that the plant will not shut down unnecessarily. This is how it was done.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる蒸気タービン速度制
御装置の概略構成を示すブロック図である。タービンの
実速度信号aが速度設定器20の速度設定値と共に減算
器21に入力され、減算出力である偏差信号が関数発生
器23に入力される。
FIG. 1 is a block diagram showing a schematic configuration of a steam turbine speed control device according to an embodiment of the present invention. The actual speed signal a of the turbine is input to the subtracter 21 together with the speed setting value of the speed setter 20, and a deviation signal which is the subtracted output is input to the function generator 23.

この関数発生器23は、後述するような非線形特性を有
し、そこで上記偏差信号に非線形補正が加えられ、負荷
設定バイアス信号b2として出力される。また、上記偏
差信号は調速器22に入力され、偏差信号の5[%]の
変化が負荷設定値の100[%]の変化に対応するよう
に補正され、調速型出力信号b1として出力される。
This function generator 23 has non-linear characteristics as described later, so non-linear correction is applied to the deviation signal and outputted as a load setting bias signal b2. Further, the deviation signal is input to the speed governor 22, and is corrected so that a 5% change in the deviation signal corresponds to a 100% change in the load setting value, and is output as a speed governor output signal b1. be done.

上記調速型出力信号b1.負荷設定バイアス信号b2及
び負荷設定器25に設定された負荷設定信号Cは加算器
24に入力され、これらの加算出力から速度要求信号d
が求められる。そして、速度要求信号dは低l[gI先
回路26に入力される。
The speed regulating output signal b1. The load setting bias signal b2 and the load setting signal C set in the load setting device 25 are input to the adder 24, and the speed request signal d is output from the addition output.
is required. Then, the speed request signal d is input to the low l[gI destination circuit 26.

ここで、負荷設定器25の設定値は、従来装置の場合前
述のように系統周波数の微少な変化によるプラントへの
外乱を除去する目的で、通常要求される負荷設定値より
も10[%]高い値が設定されているが、本実施例の場
合この負荷設定バイアス10[%]が上記関数発生器2
3の設定値に含まれているため、目標とする負荷設定値
そのものの値を設定すればよい。
Here, the set value of the load setter 25 is set to 10% more than the normally required load set value in order to eliminate disturbances to the plant due to minute changes in the system frequency in the case of conventional equipment, as described above. Although a high value is set, in this embodiment, this load setting bias of 10 [%] is set to the function generator 2.
Since it is included in the set value of No. 3, it is sufficient to set the value of the target load set value itself.

上記低値優先回路26には、原子炉の圧力を一定に制御
するための圧力制御器27から出力される圧力要求信号
eも入力されており、ここで上記2つの信号のうち低値
信号が前記蒸気加減弁に対する加減弁開度要求信号fと
して出力され、この信号によって蒸気加減弁の開度が制
御される。
The low value priority circuit 26 also receives a pressure request signal e outputted from the pressure controller 27 for controlling the reactor pressure at a constant level, and here the low value signal of the two signals is inputted. It is output as a control valve opening request signal f for the steam control valve, and the opening degree of the steam control valve is controlled by this signal.

一方、上記圧力制御器27から出力された圧力要求信号
eは減算器28にも加えられており、そこで上記加減弁
開度要求信号fと比較され、その偏差信号がバイパス弁
開度要求信号9として出力され、そのバイパス弁開度要
求信号Qによって前記バイパス弁の開度が制御される。
On the other hand, the pressure request signal e outputted from the pressure controller 27 is also applied to a subtracter 28, where it is compared with the adjustment valve opening request signal f, and the deviation signal is the bypass valve opening request signal 9. The bypass valve opening request signal Q controls the opening of the bypass valve.

ところで、前記関数発生器23には、第2図に示すよう
な特性が与えられており、その動作は以下のようになる
By the way, the function generator 23 is given characteristics as shown in FIG. 2, and its operation is as follows.

まず、前記関数発生器23への入力が+5〜−1.75
 [%]の間、つまり周波数偏差が−2,5〜+o、8
75 [Hllの間は負荷設定バイアス+10[%]が
負荷設定直に加算されることになる。従って、系統周波
数の上昇偏差が十0.875[Hz]に至るまでは、そ
の上昇偏差に合わせて、前記調速器22の速度調定率(
5%の偏差を負荷設定値の100%に補正する)に従い
、蒸気加減弁は絞り込まれ、またバイパス弁は蒸気加減
弁が絞り込まれた分だけ解放される。但し、周波数偏差
+0.875[Hz]は、バイパス弁開度に換算すると
25[%]になる。この値は次のようにして求められる
First, the input to the function generator 23 is +5 to -1.75.
[%], that is, the frequency deviation is between -2, 5 and +o, 8
75 [During Hll, the load setting bias +10[%] is added directly to the load setting. Therefore, until the deviation in increase in the system frequency reaches 100.875 [Hz], the speed regulation rate (
(correcting a 5% deviation to 100% of the load set value), the steam control valve is throttled, and the bypass valve is opened by the amount by which the steam control valve is throttled. However, the frequency deviation +0.875 [Hz] becomes 25 [%] when converted to the bypass valve opening degree. This value is obtained as follows.

上記周波数届差十〇、875[)1zlは、定常設定周
波数50[Hz]の1.75[%]になり、これは上記
速度調定率により負荷設定値に換算すると、負荷設定値
の35[%]に当たることになるが、通常負荷設定値に
は前述のように+10[%]の負荷設定バイアスが加え
られているため、この値を引くと負荷設定値25[%]
に相当することになる。これにより、周波数偏差+0.
875[Hllは蒸気加減弁開度要求として75[%]
となり、バイパス弁への開度要求としては定格運転時の
蒸気加減弁開度要求1100[%]と上記蒸気加減弁開
度要求75[%]の差である25[%コ開度の要求が出
ることになる。
The frequency difference 10,875[)1zl is 1.75[%] of the steady set frequency 50[Hz], which is 35[%] of the load setting value when converted to the load setting value using the speed adjustment rate above. %], but as mentioned above, a load setting bias of +10 [%] is added to the normal load setting value, so subtracting this value gives the load setting value 25 [%].
It will be equivalent to . As a result, frequency deviation +0.
875 [Hll is 75 [%] as steam control valve opening request
Therefore, the opening requirement for the bypass valve is 25%, which is the difference between the steam regulating valve opening requirement of 1100% during rated operation and the steam regulating valve opening requirement of 75%. I'm going to go out.

次に、前記関数発生器23への入力が −1,75〜−3[%]の間、つまり周波数偏差+Q、
875〜+i、5 [Hzコの間は負荷設定バイアスが
+10〜士35[%]と線形的に変化し、負荷設定値に
加算されることになる。これは、この間の周波数上昇に
対しては蒸気加減弁に対する開度要求が周波数偏差+0
.875[Hz]の場合と同じ値に保持されることを意
味する。
Next, the input to the function generator 23 is between -1,75 and -3 [%], that is, the frequency deviation +Q,
Between 875 and +i, 5 Hz, the load setting bias changes linearly from +10 to +35%, and is added to the load setting value. This means that for the frequency increase during this period, the opening request for the steam control valve is frequency deviation + 0.
.. This means that it is held at the same value as in the case of 875 [Hz].

−例を示すと、周波数偏差+1.5[Hllの場合の減
算器21の出力信号である偏差信号は−3[%]となる
。この値を入力とする調速器22の出力である調速器用
力信号す、は前述の速度調定率により補正され、−60
[%]となる。また、関数発生器23への入力は偏差信
号−3[%]であり、その出力である負荷設定バイアス
信号b2は35[%]となる。
- To give an example, when the frequency deviation is +1.5[Hll, the deviation signal which is the output signal of the subtracter 21 is -3[%]. The speed governor force signal S, which is the output of the speed governor 22 which receives this value as input, is corrected by the speed regulation rate mentioned above, and is -60
[%]. Further, the input to the function generator 23 is the deviation signal -3 [%], and the output thereof, the load setting bias signal b2, is 35 [%].

ここで、上記調速器用力信号bt、負荷設定バイアス信
号b2及び負荷設定信号Cは、前述の通り加算器24で
加算される。今、プラントは定格運転状態であると仮定
すると、上記負荷設定信号Cは100[%]である。従
って、上記3つの信号を加算すると、加算器24の出力
信号である速度要求信号dとして75[%]が得られる
。つまり、蒸気加減弁への絞り込み要求が25[%]出
されたことになり、またバイパス弁に対しても間予の解
放要求が出されていることになる。以上により、バイパ
ス弁に対する解放要求ff125[%]は、前述の周波
数鍋差十〇、875[Hllの場合と間借であり、変化
していないことになる。
Here, the governor force signal bt, the load setting bias signal b2, and the load setting signal C are added by the adder 24 as described above. Assuming that the plant is now in the rated operating state, the load setting signal C is 100%. Therefore, by adding the above three signals, 75% is obtained as the speed request signal d, which is the output signal of the adder 24. In other words, a 25% reduction request has been issued to the steam control valve, and a preliminary release request has also been issued to the bypass valve. As a result of the above, the release request ff125 [%] for the bypass valve is different from the case where the frequency pot difference is 10, 875 [Hll] and has not changed.

従って、周波数偏差0.875〜1.5[)lxコの間
は、蒸気加減弁開度及びバイパス弁開度が一定に保持さ
れていることになる。
Therefore, during the frequency deviation of 0.875 to 1.5 lx, the steam control valve opening and the bypass valve opening are held constant.

更に、前記関数発生器23への入力が−3〜−51%1
の間、つまり周波数偏差+1.5〜+2.5[Tolの
間は負荷設定バイアスが+35〜+10C%]と線形的
に変化し負荷設定値に加算される。従って、蒸気加減弁
は周波数偏差の上昇に伴い75[%]開度から更に絞り
込まれるが、バイパス弁の放出容量は25[%]が上限
であるので、余剰蒸気の放出ができず、原子炉圧力が上
昇し、これにより中性子束がスクラム設定値に至った時
点でプラントは停止することになる。
Furthermore, the input to the function generator 23 is -3 to -51%1
In other words, the frequency deviation varies linearly from +1.5 to +2.5 [load setting bias is +35 to +10 C% during Tol] and is added to the load setting value. Therefore, as the frequency deviation increases, the opening of the steam control valve is further narrowed down from 75%, but since the upper limit of the release capacity of the bypass valve is 25%, excess steam cannot be released, and the reactor The pressure will increase and the plant will shut down once the neutron flux reaches the scram set point.

これまでに説明した周波数変化と加減弁開度との関係を
、第3図に示しておく。
FIG. 3 shows the relationship between the frequency change and the opening degree of the control valve as described above.

第4図は本発明装置における系統周波数上昇時における
蒸気加減弁等の過度応答説明図であって、(a)は電力
系統の周波数、(b)は蒸気加減弁及びバイパス弁の開
度、(C)は原子炉出力のそれぞれの時間変化を示す。
FIG. 4 is an explanatory diagram of the transient response of the steam control valve, etc. when the system frequency increases in the device of the present invention, in which (a) is the frequency of the power system, (b) is the opening degree of the steam control valve and the bypass valve, ( C) shows the respective temporal changes in the reactor output.

第4図(a)に示すように、周波数がその設定周波数5
0[)1!]から2秒で51.5[tb]まで上昇し、
3秒間で51.5[Hllをホールドして、その後5秒
時点でさらに上昇したとする。すると、周波数上昇に伴
いタービン実速度が上昇し速度要原信号が小さくなり、
圧力要求信号は略一定で100[%]を保っているため
、低値I先回路26を経て速度要求信号が加減弁開度要
求信号となり、第4図(b)に示すように、蒸気加減弁
は徐々に閉じてくる。そして、周波数が 50.875[Hz]に達した時点で蒸気加減弁は25
[%コに絞り込んだ状態となる。反対にバイパス弁は蒸
気加減弁の絞り込み歯に対応して開き、バイパス弁の容
量が蒸気加減弁の容量の25[%]であることから、蒸
気加減弁が25[%1絞り込んだ時点で全開となる。
As shown in FIG. 4(a), the frequency is set to 5.
0[)1! ] to 51.5 [tb] in 2 seconds,
Assume that 51.5 [Hll is held for 3 seconds and then further increased at 5 seconds. Then, as the frequency increases, the actual turbine speed increases and the speed signal becomes smaller.
Since the pressure request signal remains approximately constant at 100%, the speed request signal passes through the low value I circuit 26 and becomes the adjustment valve opening request signal, and as shown in FIG. 4(b), the steam adjustment The valve gradually closes. Then, when the frequency reaches 50.875 [Hz], the steam control valve turns 25
[It will be narrowed down to %co.] On the contrary, the bypass valve opens in response to the throttle teeth of the steam control valve, and since the capacity of the bypass valve is 25% of the capacity of the steam control valve, it opens fully when the steam control valve is throttled by 25%1. becomes.

そこで、さらに周波数が上昇すると、従来の装置におい
ては、第4図(b)の点線で示すように蒸気加減弁は更
に絞り込まれ、これに対しバイパス弁は既に全開となっ
ているため、原子炉出力が増え、やがてスクラム設定値
を越え、原子炉は自a停止に至る。しかしながら、本実
施例においては前記第2図に示すような特性を有する関
数発生器23が制御量回路に設けられているので、50
.875〜51.5 [)121の間では蒸気加減弁の
開度は75[%]開度の状態で保持され、電力系統の周
波数が50EHz]へ回復することを待つことになる。
Therefore, when the frequency increases further, in the conventional system, the steam control valve is further narrowed down as shown by the dotted line in Figure 4 (b), whereas the bypass valve is already fully open, so the reactor The output increases and eventually exceeds the scram set value, causing the reactor to self-shut down. However, in this embodiment, since the function generator 23 having the characteristics as shown in FIG.
.. Between 875 and 51.5[)121, the opening degree of the steam control valve is maintained at 75[%], and it is waited for the frequency of the power system to recover to 50EHz].

即ち、この期間内において、通常再循環ポンプの減速効
果が発揮されて、原子炉の出力上昇が抑えられ、周波数
上昇は数秒で納まるため、原子炉が自動停止に至ること
が防止される。
That is, during this period, the deceleration effect of the recirculation pump is usually exerted to suppress the increase in the output of the reactor, and the increase in frequency is contained within a few seconds, thereby preventing the reactor from automatically shutting down.

また、万一、第4図(a)に示すように5秒時点以上で
の周波数がさらに上昇した場合には、蒸気加減弁が閉方
向に作動され、同図(C)に示すように原子炉出力が上
背して原子炉は自動停止することになる。しかしながら
、これは大幅な系統周波数の上昇を抑制するために設置
されている系統安定化装置が正常に作動しない場合であ
り、原子炉が停止することは止むを得ない。
In addition, in the unlikely event that the frequency increases further after 5 seconds as shown in Figure 4 (a), the steam control valve is operated in the closing direction and the atomic The reactor output will rise and the reactor will automatically shut down. However, this is a case where the system stabilization device installed to suppress a significant increase in system frequency does not operate normally, and it is unavoidable that the reactor will shut down.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述のように構成したので、電力系統の周波
数上昇時に25[%]容量のバイパス弁を有するプラン
トにおいても、そのバイパス弁の容量で吸収可能な範囲
を越えた周波数上昇に対して直ちにプラント停止に至る
ようなことが防止され、通常の電力系統に事故発生時に
生じる周波数上昇程度では、プラントの停止は発生せず
、バイパス弁全開の状態で周波数の回復を待ちながら、
プラントの連続運転を行うことができる。
Since the present invention is configured as described above, even in a plant having a bypass valve with a capacity of 25% when the frequency of the power system increases, the frequency increase exceeding the range that can be absorbed by the capacity of the bypass valve can be prevented. Immediate plant shutdowns are prevented, and even if the frequency increases that occur when an accident occurs in a normal power system, plant shutdowns will not occur, and the bypass valve will be fully open while waiting for the frequency to recover.
Continuous operation of the plant is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる蒸気タービン速度制
御装置の概略構成を示すブロック図、第2図は上記実施
例装置に用いた間数発生器の非線形特性を示す模式図、
第3図は上記実施例装置における周波数変化と加減弁開
度との関係を示す模式図、第4図(a)(b)(C)は
それぞれ周波数上昇時における周波数、加減弁開度、並
びに原子炉の出力の時間的変化を示す模式図、第5図は
原子力タービンプラントの系統図、第6図は従来のター
ビン速度制御装置における周波数変化と蒸気加減弁開度
との関係を示す模式図である。 1・・・原子炉、3・・・蒸気加減弁、4・・・蒸気タ
ービン、5・・・発電機、8・・・バイパス弁、20・
・・速度設定器、21.28・・・減算器、22・・・
調速器、23・・・関数発生器、24・・・加算器、2
5・・・負荷設定器、26・・・低値優先回路、27・
・・圧力制陣器。
FIG. 1 is a block diagram showing a schematic configuration of a steam turbine speed control device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the nonlinear characteristics of a frequency generator used in the above embodiment device.
FIG. 3 is a schematic diagram showing the relationship between the frequency change and the adjustment valve opening in the above-mentioned embodiment device, and FIGS. 4(a), (b), and (C) show the frequency, adjustment valve opening, and A schematic diagram showing temporal changes in the output of a nuclear reactor, Fig. 5 is a system diagram of a nuclear turbine plant, and Fig. 6 is a schematic diagram showing the relationship between frequency changes and steam control valve opening in a conventional turbine speed control device. It is. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 3... Steam control valve, 4... Steam turbine, 5... Generator, 8... Bypass valve, 20...
...Speed setter, 21.28...Subtractor, 22...
Speed governor, 23...Function generator, 24...Adder, 2
5... Load setting device, 26... Low value priority circuit, 27.
...Pressure control device.

Claims (2)

【特許請求の範囲】[Claims] (1)タービン実速度と予め定められた設定速度との偏
差信号を入力し所定の関数に基づいて負荷設定バイアス
信号を出力する関数発生器と、上記偏差信号を入力して
調速信号を出力する調速器と、上記負荷設定バイアス信
号、調速信号及び予め定められた負荷設定信号をそれぞ
れ加算する加算器と、この加算器の加算出力を速度要求
信号として蒸気加減弁の開度制御を行う手段とを具備し
、前記関数発生器は、前記偏差信号がバイパス弁の容量
で吸収可能な量の蒸気加減弁開度の要求信号に相当する
値から更にそれより一定量だけ大きな蒸気加減弁開度要
求信号に相当する値となる範囲に亙つて蒸気加減弁開度
を一定に、或いは原子炉の連続運転を可能とする範囲で
略一定に保持するような出力を出す非線形特性を有する
ものであることを特徴とする蒸気タービン速度制御装置
(1) A function generator that inputs a deviation signal between the actual turbine speed and a predetermined set speed and outputs a load setting bias signal based on a predetermined function, and a function generator that inputs the deviation signal and outputs a speed governor signal. a speed governor, an adder that adds the load setting bias signal, the speed governor signal, and a predetermined load setting signal, respectively, and the addition output of this adder is used as a speed request signal to control the opening of the steam control valve. the function generator is configured to generate a steam regulator whose deviation signal is a value corresponding to a request signal for the opening of the steam regulator which can be absorbed by the capacity of the bypass valve, and which is larger by a certain amount. A device with nonlinear characteristics that produces an output that keeps the steam control valve opening constant over the range of values corresponding to the opening request signal, or approximately constant within the range that allows continuous operation of the reactor. A steam turbine speed control device characterized in that:
(2)電力系統の周波数設定値が50[Hz]の場合、
周波数上昇が0.875〜1.5[Hz]の間だけ、蒸
気加減弁が一定開度に保持されることを特徴とする特許
請求の範囲第1項記載の蒸気タービン速度制御装置。
(2) If the frequency setting value of the power grid is 50 [Hz],
2. The steam turbine speed control device according to claim 1, wherein the steam control valve is maintained at a constant opening only when the frequency rise is between 0.875 and 1.5 [Hz].
JP60271912A 1985-12-03 1985-12-03 Speed control device for steam turbine Pending JPS62131903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271912A JPS62131903A (en) 1985-12-03 1985-12-03 Speed control device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271912A JPS62131903A (en) 1985-12-03 1985-12-03 Speed control device for steam turbine

Publications (1)

Publication Number Publication Date
JPS62131903A true JPS62131903A (en) 1987-06-15

Family

ID=17506611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271912A Pending JPS62131903A (en) 1985-12-03 1985-12-03 Speed control device for steam turbine

Country Status (1)

Country Link
JP (1) JPS62131903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110813A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Turbine controller
US6198786B1 (en) * 1998-05-22 2001-03-06 General Electric Company Methods of reactor system pressure control by reactor core power modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110813A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Turbine controller
US6198786B1 (en) * 1998-05-22 2001-03-06 General Electric Company Methods of reactor system pressure control by reactor core power modulation

Similar Documents

Publication Publication Date Title
JPH11352284A (en) Reactor system pressure control method through core power control
JPH0566601B2 (en)
JPS62131903A (en) Speed control device for steam turbine
JPH0221558B2 (en)
JPS63120297A (en) Speed controller for steam turbine
JPH01114797A (en) Speed controller for steam turbine
JP2720032B2 (en) Turbine control device
JPS63117298A (en) Turbine controller
JPS62142809A (en) Speed control device for steam turbine
JPS61157705A (en) Steam turbine velocity control device
JP2863581B2 (en) Turbine steam control valve controller
JPS60256098A (en) Controller for pressure of nuclear reactor
JPS63195595A (en) Nuclear power plant
JPS6275003A (en) Steam turbine speed control device
JPH05927B2 (en)
JPS60129694A (en) Controller for pressure of nuclear power plant
JPS63314302A (en) Turbine controller for nuclear power station
JPS61159198A (en) Load follow-up controller for boiling water type nuclear power plant
JPH0241720B2 (en)
JPH0441800B2 (en)
JPS60225100A (en) Controller for pressure of nuclear reactor
JPS63277804A (en) Turbine control device for steam generating plant
JPS6029916B2 (en) Boiling water reactor water supply control device
JPH0410040B2 (en)
JPS6299604A (en) Steam turbine control device