JPS6029916B2 - Boiling water reactor water supply control device - Google Patents

Boiling water reactor water supply control device

Info

Publication number
JPS6029916B2
JPS6029916B2 JP56029679A JP2967981A JPS6029916B2 JP S6029916 B2 JPS6029916 B2 JP S6029916B2 JP 56029679 A JP56029679 A JP 56029679A JP 2967981 A JP2967981 A JP 2967981A JP S6029916 B2 JPS6029916 B2 JP S6029916B2
Authority
JP
Japan
Prior art keywords
flow rate
signal
water supply
reactor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029679A
Other languages
Japanese (ja)
Other versions
JPS57144498A (en
Inventor
誠志郎 川上
士郎 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56029679A priority Critical patent/JPS6029916B2/en
Publication of JPS57144498A publication Critical patent/JPS57144498A/en
Publication of JPS6029916B2 publication Critical patent/JPS6029916B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Flow Control (AREA)

Description

【発明の詳細な説明】 本発明は、沸騰水型原子炉の給水制御装置に関する。[Detailed description of the invention] The present invention relates to a water supply control device for a boiling water nuclear reactor.

第1図に沸騰水型原子力発電所の全体の構成ならびに給
水制御系の概要構成を示す。
Figure 1 shows the overall configuration of a boiling water nuclear power plant and the schematic configuration of the water supply control system.

蒸気循環系について説明すると、原子炉格納容器1内に
原子炉の圧力容器2が収納されていて、炉心18は原子
炉の圧力容器内に収納されており、炉心18で発生した
蒸気は圧力容器2内において炉心上部に位置する気水分
離器4、蒸気乾燥器3を通り、次いで圧力容器2を出て
主蒸気気管21、加減弁11を介して主タービン13に
到る。次に、主タービン13に導ぴかれた蒸気は復水器
16、復水ポンプ22、復水脱塩器16、給水加熱器1
7を経たのち給水ポンプ19により原子炉に戻る。給水
ポンプ19は駆動用タービン9により駆動される。主タ
ービン13から戻ってきた給水と気水分雛器4から落下
してくる水は、再循環ポンプ10‘こより炉○下部へ送
られて再び炉○の冷却に供される。
To explain the steam circulation system, a reactor pressure vessel 2 is housed within a reactor containment vessel 1, a reactor core 18 is housed within the reactor pressure vessel, and the steam generated in the reactor core 18 is transferred to the pressure vessel. The steam passes through a steam separator 4 and a steam dryer 3 located in the upper part of the reactor core within the reactor core, and then exits the pressure vessel 2 and reaches the main turbine 13 via a main steam trachea 21 and a control valve 11. Next, the steam guided to the main turbine 13 is transferred to a condenser 16, a condensate pump 22, a condensate demineralizer 16, and a feedwater heater 1.
After passing through 7, the water is returned to the reactor by the water supply pump 19. The water supply pump 19 is driven by a driving turbine 9. The water supply returning from the main turbine 13 and the water falling from the steam/moisture mixer 4 are sent to the lower part of the furnace ○ through a recirculation pump 10' and are again used to cool the furnace ○.

なお、バイパス弁12は事故、起動時等に関なって主タ
ービン13をバィパスし、直接復水器15へ蒸気を送る
Note that the bypass valve 12 bypasses the main turbine 13 in case of an accident, startup, etc., and sends steam directly to the condenser 15.

給水制御系は、原子炉の炉水位を検出する炉水位検出器
5、炉入口給水流量を検出する給水流量金6、炉出口蒸
気流量を検出する主蒸気流量計7およびこれらの検出器
または流量計による検出値に基づいて原子炉に対する給
水を制御する給水制御装置8とから構成される。
The feed water control system includes a reactor water level detector 5 that detects the reactor water level of the reactor, a feed water flow meter 6 that detects the reactor inlet feed water flow rate, a main steam flow meter 7 that detects the reactor outlet steam flow rate, and these detectors or flow rates. and a water supply control device 8 that controls the water supply to the reactor based on the detected value by the meter.

本発明はこの給水制御装置8に関するものである。次に
、第2図に従来の給水制御装置8の構成をブロック図で
示す。
The present invention relates to this water supply control device 8. Next, FIG. 2 shows a block diagram of the configuration of a conventional water supply control device 8. As shown in FIG.

給水制御装置8は、第2図に示すように、給水流量と主
蒸気流量との間の平衡を制御するミスマッチ制御部Aと
、炉水位を一定に維持する水位制御部Bと、給水ポンプ
流量を制御する流量制御部Cとに大別される。ミスマッ
チ制御部Aは、主蒸気流量計7により検出された主蒸気
流量信号S,および給水流量計6に検出された給水流量
信号S2を入力信号とし、加算演算器Z.により両信号
S,、S2の差を求め、その差を第1給水流量要求信号
S3として出力する。
As shown in FIG. 2, the feed water control device 8 includes a mismatch control section A that controls the balance between the feed water flow rate and the main steam flow rate, a water level control section B that maintains the reactor water level constant, and a feed water pump flow rate control section A that controls the balance between the feed water flow rate and the main steam flow rate. It is roughly divided into a flow rate control section C that controls the flow rate. The mismatch control unit A receives the main steam flow rate signal S detected by the main steam flow meter 7 and the feed water flow rate signal S2 detected by the feed water flow meter 6 as input signals, and uses the addition calculator Z. The difference between the two signals S, , S2 is determined, and the difference is output as the first water supply flow rate request signal S3.

第1給水流量要求信号S3は加算演算回路25に送られ
る。水位制御部Bは、主蒸気流量信号S,と水位設定器
Bから予め設定された値の水位設定信号S,3を入力信
号とする。
The first water supply flow rate request signal S3 is sent to the addition calculation circuit 25. The water level control section B receives the main steam flow rate signal S and the water level setting signals S and 3 having preset values from the water level setting device B as input signals.

この水位設定信号S,3は気水分離効率が最適となるよ
うに補正信号S4によって修正される。すなわち、最適
気水分離効率は主蒸気流量(したがって、信号S,)の
関数であり、その関数は関数発生器&に設定されている
。この関数発生器B2には主蒸気流量信号S,が入力さ
れ、その入力値に応じて所定の桶信号S4が出される。
そして、補正信号S4と水位設定信号S,3とが加算演
算回路23にて加え合わされ、その結果、補正水位設定
信号S5が得られる。次いで、補正水位設定信号S5は
加算演算回路24に入力され、炉水位検出器5からの炉
水位信号S6が差し引かれる。その結果得られた水位偏
差信号S7は流量制限器&、比例積分制御器(以下、P
I制御器という。)Rを介して第2給水流量要求信号S
8となって出力される。この第2給水流量要求信号S6
は加算演算回路25に入力される。加算演算回路25は
第2給水流量要求信号S8とミスマッチ制御部Aから第
1給水流量要求信号S3との和を求め、全給水流量要求
信号S9を出力する。
This water level setting signal S,3 is corrected by a correction signal S4 so that the steam/water separation efficiency is optimized. That is, the optimum steam/water separation efficiency is a function of the main steam flow rate (and therefore the signal S,), which function is set in the function generator &. A main steam flow rate signal S, is inputted to this function generator B2, and a predetermined bucket signal S4 is outputted in accordance with the input value.
Then, the correction signal S4 and the water level setting signals S, 3 are added together in the addition calculation circuit 23, and as a result, a corrected water level setting signal S5 is obtained. Next, the corrected water level setting signal S5 is input to the addition calculation circuit 24, and the reactor water level signal S6 from the reactor water level detector 5 is subtracted. The resulting water level deviation signal S7 is transmitted to the flow rate limiter & proportional integral controller (hereinafter referred to as P
It is called an I controller. ) R via the second water supply flow rate request signal S
8 and is output. This second water supply flow rate request signal S6
is input to the addition calculation circuit 25. The addition calculation circuit 25 calculates the sum of the second water supply flow rate request signal S8 and the first water supply flow rate request signal S3 from the mismatch control section A, and outputs a total water supply flow rate request signal S9.

この全給水流量要求信号S9は流量制御部Cに入力され
る。流量制御部Cでは、全給水流量要求信号S9から給
水流量計6(第1図)にて検出された給水ポンプ流量S
,。
This total water supply flow rate request signal S9 is input to the flow rate control section C. In the flow rate control section C, the water supply pump flow rate S detected by the water supply flow meter 6 (Fig. 1) is determined from the total water supply flow rate request signal S9.
,.

が加算演算回路Z6において差し引かれる。その差信号
は流量偏差信号S,.として流量制限器&に入力され、
次いでPI制御器氏を介して関数発生器Bに入力される
。関数発生器Bは給水ポンプ駆動用タービン9の加減弁
20が有する非線形特性を補償するためのものである。
関数発生器B7は加減弁20への開度要求信号S.2を
出力する。次に、丈記制御系の制御動作について説明す
る。
is subtracted in the addition calculation circuit Z6. The difference signals are flow rate deviation signals S, . is entered into the flow restrictor & as,
It is then input to function generator B via the PI controller. The function generator B is for compensating for the nonlinear characteristics of the regulator valve 20 of the feed water pump driving turbine 9.
The function generator B7 generates an opening request signal S. Outputs 2. Next, the control operation of the control system will be explained.

炉心圧力低下による水位上昇が発生した場合の一例とし
てタービンバイパス弁12(第1図)の誤開による発生
状態について述べる(第3図参照)。まず、タービンバ
イパス弁12が誤開すると、主蒸気流量が増加する。
As an example of a case where a water level rise occurs due to a drop in core pressure, a situation where the turbine bypass valve 12 (FIG. 1) is erroneously opened will be described (see FIG. 3). First, when the turbine bypass valve 12 is erroneously opened, the main steam flow rate increases.

タービン13に供給される分の他にバイパス路を通じて
直接復水器15に送られる分だけ増加するからである。
主蒸気流量が増加すると、ミスマッチ制御部Aは主蒸気
流量の増加債に見合うだけの給水流量増加の内容をもつ
給水流量要求信号S3を出力する。この主蒸気流量の増
加は炉心圧力の低下を引き起すこととなり、その結果、
炉内ボィドが減圧効果によって急増する。ので炉水位が
上昇することとなる。一方、水位制御部Bは炉水位の上
昇を抑制すべき給水流量を絞り込む旨の内容をもつ給水
流量要求信号S8を出力する。このような過渡現象発生
時においては、原子炉にとっては炉水位の上昇を抑える
ことを優先すべきである。
This is because, in addition to the amount supplied to the turbine 13, the amount directly sent to the condenser 15 through the bypass path increases.
When the main steam flow rate increases, the mismatch control section A outputs a water supply flow rate request signal S3 having the content of an increase in the water supply flow rate commensurate with the increase in the main steam flow rate. This increase in main steam flow rate causes a decrease in core pressure, and as a result,
Voids in the furnace increase rapidly due to the depressurization effect. Therefore, the reactor water level will rise. On the other hand, the water level control section B outputs a water supply flow rate request signal S8 having the content of narrowing down the water supply flow rate at which the rise in the reactor water level should be suppressed. When such a transient phenomenon occurs, the priority for the reactor should be to suppress the rise in the reactor water level.

それにもかかわらず、流量制御部Cに与えられる全給水
流量要求信号S9はミスマッチ制御部Aからの信号S3
による給水増加要求と水位制御部Bからの信号S8によ
る給水絞り込み要求の和であるため、炉水位上昇抑制の
ための給水流量絞り込みが十分に達成されず、その結果
炉水位が高水位トリップ点に到り、プラントの運転の停
止を余儀なくされることとなる。ここに、高水位トリッ
プ点とは炉水位が高くなりすぎることにより気水分離器
4の効率が低下し、主タービン13に供給される蒸気内
に含まれる湿分が増加してタービン器に悪影響が生じる
ので、その保護のための設定された水位点のことである
。このように、従来の給水制御装置では炉心圧力低下に
よる急激な炉水位の上昇を円滑に制御することが困難で
あった。
Nevertheless, the total water supply flow rate request signal S9 given to the flow rate controller C is the signal S3 from the mismatch controller A.
Because this is the sum of the water supply increase request by S8 and the water supply throttling request by signal S8 from water level control unit B, the water supply flow rate cannot be sufficiently throttled to suppress the rise in the reactor water level, and as a result, the reactor water level reaches the high water level trip point. As a result, the plant would be forced to shut down. Here, the high water level trip point is when the reactor water level becomes too high, the efficiency of the steam water separator 4 decreases, and the moisture contained in the steam supplied to the main turbine 13 increases, which adversely affects the turbine unit. This refers to the water level set for the protection of water. As described above, with conventional water supply control devices, it is difficult to smoothly control the sudden rise in reactor water level due to a drop in core pressure.

そこで本発明は、かかる従来装置の欠点を解消し、炉′
D圧力低下による急激な炉水位上昇を最小に制御するこ
とができる給水制御装置を提供するおとを目的とする。
Therefore, the present invention eliminates the drawbacks of such conventional devices and
An object of the present invention is to provide a water supply control device that can minimize a sudden rise in reactor water level due to a drop in D pressure.

本発明の主な特徴はは、流量制御部に給水絞り込み回路
を設け、炉心圧力の低下時に給水ポンプをランバックさ
せることによって給水流量を急速に絞り込むようにした
点にある。以下本発明を図示する実施例に基づいて詳述
する。
The main feature of the present invention is that a feed water throttling circuit is provided in the flow rate control section, and the feed water flow rate is rapidly throttled by causing the feed water pump to run back when the core pressure decreases. The present invention will be described in detail below based on illustrated embodiments.

第4図に本発明による給水制御装置の制制御動作概念図
、および第5図に本発明による流量制御部の一実施例を
示す。なお、図中、第2図、第3図と同一の部分には同
一の符号を付して説明する。まず、本発明の給水制御装
置における制御概念について述べると、第4図に示すよ
うに、炉心圧力を検出してその炉心圧力が低下した場合
に給水絞り込み回路により給水ポンプ19をランバツク
させようとするものである。
FIG. 4 shows a conceptual diagram of the control operation of the water supply control device according to the present invention, and FIG. 5 shows an embodiment of the flow rate control section according to the present invention. In the figure, the same parts as in FIGS. 2 and 3 are designated by the same reference numerals and will be explained. First, the control concept of the feedwater control system of the present invention will be described. As shown in FIG. 4, when the core pressure is detected and the core pressure decreases, the feedwater throttling circuit attempts to run back the feedwater pump 19. It is something.

ここに、ランバツクとは給水ポンプ19を駆動するター
ビン9の加減弁20を急閉することにより給水ポンプ1
9の駆動速度を急速に低下させることをいう。したがっ
て、その意味で絞り込み回路を以下給水ポンプランバツ
ク回路馬という。本発明による給水制御装置は流量制御
部Cに給水ポンプランバック回路B9を設けたこと以外
、ミスマッチ制御部Aおよび水位制御部Bについての構
成は第2図と同様であるので省略し、流量制御部Cのみ
第5図に示すこととする。
Here, runback means that the water supply pump 1 is suddenly closed by quickly closing the regulating valve 20 of the turbine 9 that drives the water supply pump 19.
This refers to rapidly reducing the driving speed of the 9. Therefore, in this sense, the narrowing circuit will hereinafter be referred to as the water supply pump runback circuit. In the water supply control device according to the present invention, the configurations of the mismatch control section A and the water level control section B are the same as those in FIG. 2, except that the flow rate control section C is provided with a water supply pump runback circuit B9, so their explanations are omitted. Only part C is shown in FIG.

第5図において、給水ランバツク回路B9はPI制御器
耳と関数発生器B7との間に設けられている。
In FIG. 5, a water runback circuit B9 is provided between the PI controller ear and the function generator B7.

給水ランバック回路B9には、PI制御器&からの制御
信号S,4に加えて予め設定されたランバック圧力設定
値信号S,9、炉心圧力信号S,3が入力され、炉心圧
力値に応じて通常制御信号またはランバック要求信号を
選択的に出力する。その出力信号S,5とする。第6図
に給水ポンプランバック回路&の詳細な構成を示す。
In addition to the control signal S, 4 from the PI controller &, a runback pressure set value signal S, 9 and a core pressure signal S, 3 set in advance are input to the water supply runback circuit B9, and the core pressure value is Accordingly, a normal control signal or a runback request signal is selectively output. The output signal is S,5. Figure 6 shows the detailed configuration of the water pump runback circuit &.

給水ポンプランバック回路B9は、比較演算回路A,と
、給水流量の上限値が設定された流量制限器A2とPI
制御器&からの制御信号S,4と流量制限器A2からの
ランバツク信号S,7とを切換える切換回路へとから構
成される比較演算回路A,はランバツク圧力設定値信号
S,9と炉心圧力信号S,3を入力力信号として両信号
を比較演算し、炉心圧力信号Sはの値がランバック圧力
が設定値信号S,9の値よりも低い場合に切換回路A4
の切換スイッチA3に切換信号S,8を出力して接点を
C2かC,へ切換える。
The water supply pump runback circuit B9 includes a comparison calculation circuit A, a flow rate limiter A2 in which an upper limit value of the water supply flow rate is set, and a PI.
A comparison calculation circuit A, which is composed of a switching circuit that switches between the control signal S, 4 from the controller &, and the runback signal S, 7 from the flow restrictor A2, is connected to the runback pressure set value signal S, 9 and the core pressure. Using signals S, 3 as an input force signal, both signals are compared and calculated, and when the value of core pressure signal S is lower than the value of runback pressure set value signal S, 9, switching circuit A4 is
A switching signal S, 8 is output to the switching switch A3 to switch the contact between C2 and C.

この切換えによって出力信号S,5の内容は通常制御信
号S,4からランバック信号S,7に功換わる。流量制
限器んは一種の関数発生器であり、その関数は第7図に
示すように入力される制御信号S,4(内容的には流量
要求信号であり、その値をD,とする。
By this switching, the content of the output signal S,5 is changed from the normal control signal S,4 to the runback signal S,7. The flow rate limiter is a kind of function generator, and its function is inputted as shown in FIG.

)に対し、給水ポンプランバツク時の流量上限値D3が
設定されている。したがって、流量制限器A2は流量要
求信号○,が流量上限値D3以上のときはその出力信号
をD3の値に一定にしてこれをランバック信号S,7と
して出力する。流量要求信号D,が上限値D3以下の場
合にはD,に比例した値を出力する。いま、定常運転時
における制御信号S,4の内容が点○4であった場合、
ランバックが必要なときにはたとえ動作点が○4であっ
ても強制的にD3の値で出力する。したがって流量制御
Cから出力される加減弁2川こ対する関度要求信号S,
2はこの上限値ぴの値に対応する値となる。以上のよう
に、炉心圧力信号S,3がランバック圧力設定値信号S
,9より低下した場合(S,3<S,9)、比較演算回
路A,から切換信号S.8が出力され、その切換信号S
,8によって切換スイッチA3が接点C2からC,に切
換られる。
), a flow rate upper limit value D3 at the time of water pump runback is set. Therefore, when the flow rate request signal .largecircle. is equal to or higher than the flow rate upper limit value D3, the flow rate limiter A2 keeps its output signal constant at the value of D3 and outputs it as the runback signal S,7. When the flow rate request signal D is less than the upper limit value D3, a value proportional to D is output. Now, if the content of the control signal S, 4 during steady operation is point ○4,
When runback is necessary, the value of D3 is forcibly output even if the operating point is 4. Therefore, the relationship request signal S for the two regulating valves output from the flow rate control C,
2 is a value corresponding to this upper limit value P. As described above, the core pressure signal S, 3 is the runback pressure set value signal S.
, 9 (S, 3 < S, 9), the switching signal S. 8 is output, and its switching signal S
, 8 switches the changeover switch A3 from contact C2 to C.

切換えられると、流量制限器A2で設定された上限値D
3のランバック信号S,7が制御信号として出力(S,
5)され、この上限値D3に基づいて加減弁20が急速
に閉じられることとなる。その結果、給水ポンプ!9の
回転速度が急速に低下し、したがって給水量も急減する
ことになる。次に、給水流量の応答、原子炉水位の制御
応答に関して本発明の給水制御装置と従来の装置との比
較を第8図a,bに示す。
When switched, the upper limit value D set by the flow restrictor A2
Runback signals S and 7 of 3 are output as control signals (S,
5), and the control valve 20 is rapidly closed based on this upper limit value D3. As a result, the water pump! 9's rotational speed decreases rapidly, and therefore the amount of water supplied also decreases rapidly. Next, FIGS. 8a and 8b show a comparison between the feed water control device of the present invention and a conventional device with respect to the response of the feed water flow rate and the control response of the reactor water level.

図において、実線で示すNが本発明の場合、破線で示す
○が従釆の場合である。これからもわかるように、従来
では前述した理由によって給水流の絞り込みが遅れるの
に対し、本発明によれば急速に絞り込むことができるの
で給水流量の減少速度がきわめて遠いa図。それに伴っ
て原子炉水位b図は大きく増加することなく、従来のよ
うにプラントトリップ値T,を越えるようなことなく、
最小限に抑制することが可能となる。以上の通り、本発
明によれば、何らかの原因により原子炉圧力が低下した
場合、原子炉水位の増加を最小限に抑制することができ
るので、不要なプラントトリップを回避することができ
る。
In the figure, N shown by a solid line is the case of the present invention, and ○ shown by a broken line is a case of a subordinate. As can be seen from this figure, in contrast to the conventional technique in which the water supply flow is slow to be narrowed down due to the above-mentioned reasons, according to the present invention, the water supply flow can be rapidly narrowed down, so that the rate of decrease in the water supply flow rate is extremely slow. As a result, the reactor water level B does not increase significantly, and does not exceed the plant trip value T, as in the past.
It becomes possible to suppress it to the minimum. As described above, according to the present invention, when the reactor pressure decreases due to some cause, the increase in the reactor water level can be suppressed to a minimum, so unnecessary plant trips can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉発電所の全体の構成ならびに給
水制御系の構成を示す概略図、第2図は従来の給水制御
装置の構成を示すブロック図、第3図は従来の給水制御
装置の動作説明図、第4図は本発明による給水制御装置
の動作説明図、第5図は本発明における流量制御部の構
成を示すブロック図、第6図は給水ポンプランバック回
路の構成を示すブロック図、第7図は流量制限器の動作
特性を示す説明図、第8図はa,bは給水流量および原
子炉水位の制御応答を従来と本発明とで比較して示した
説明図である。 A・・・ミスマッチ制御部、B・・・水位制御部、C・
・・給水流量制御部、A.・・・比較演算回路、A2・
・・流量制限器、A3…切換スイッチ、&…給水ポンラ
ンバック回路(給水絞り込み回路)、S.・・・蒸気流
量信号、S2・・・給水流量信号、S3・・・第1給水
流量要求信号、S8・・・第2給水流量信号、S9・・
・全給水流量信号、S,o…・・・給水ポンプ流量信号
、S,.・・・流量偏差信号、S,2…関度要信号、S
,3…炉心圧力信号、S,5・・・出力信号、S.7・
・・ランバック信号、S,8・・・切換信号、S,9・
・・ランバック圧力設定値信号。 多ュ図第2図 第3図 多4図 第6図 第6図 努ク図 第8図
Figure 1 is a schematic diagram showing the overall configuration of a boiling water reactor power plant and the configuration of the water supply control system, Figure 2 is a block diagram showing the configuration of a conventional water supply control device, and Figure 3 is a conventional water supply control system. FIG. 4 is an explanatory diagram of the operation of the device, FIG. 4 is an explanatory diagram of the operation of the water supply control device according to the present invention, FIG. 5 is a block diagram showing the configuration of the flow rate control section in the present invention, and FIG. FIG. 7 is an explanatory diagram showing the operating characteristics of the flow restrictor, and FIG. It is. A... Mismatch control section, B... Water level control section, C.
・・Water supply flow rate control unit, A. ... Comparison calculation circuit, A2.
...Flow rate restrictor, A3...changeover switch, &...Water supply pump runback circuit (water supply narrowing circuit), S. ...Steam flow rate signal, S2... Water supply flow rate signal, S3... First water supply flow rate request signal, S8... Second water supply flow rate signal, S9...
- Total water supply flow rate signal, S, o... Water supply pump flow rate signal, S, . ...Flow rate deviation signal, S, 2...Relationship required signal, S
, 3... Core pressure signal, S, 5... Output signal, S. 7.
・Runback signal, S, 8 ・Switching signal, S, 9・
...Runback pressure set value signal. Figure 2 Figure 3 Figure 4 Figure 6 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】 1 給水流量信号と原子炉出口蒸気流量信号を入力信号
として給水流量と原子炉出口蒸気流量を平衡状態に制御
する第1給水流量要求信号を出力するミスマツチ制御部
、原子炉出口蒸気流量信号と予め設定された原子炉水位
設定値信号を入力信号として原子炉水位を一定に保持す
るための第2給水流量要求信号を出力する水位制御と、
前記第1、第2給水流量要求信号の和信号と給水ポンプ
流量信号との偏差を求め、その偏差信号に基づいて給水
ポンプの流量制御信号を出力する給水流量制御部とを備
えた沸騰水型原子炉の給水制御装置であつて、前記給水
流量制御部は、予め設定された原子炉圧力設定値信号と
実際の炉心圧力信号とを比較して実際の炉心圧力が設定
値以下に低下したとき通常の流量制御信号に代つて前記
給水ポンプの給水流量を急速に低下させる制御信号を切
換えて出力する給水絞込みを有することを特徴とする沸
騰水型原子炉の給水制御装置。 2 給水絞込み回炉は、予め設定された原子炉圧力設定
値信号と実際の炉心圧力信号とを比較して実際の炉心圧
力が設定以下の場合には切換作動信号を出力する比較演
算回炉、前記切換作業信号によつて給水ポンプの流量制
御信号を流量制限信号に切換えるスイツチと、第1、第
2給水流量要求信号の和信号に基づいて流量制限信号を
出力する流量制限器とを備えたことを特徴とする特許請
求の範囲第1項記載の沸騰水型原子炉の給水流量制御装
置。
[Scope of Claims] 1. A mismatch control unit that outputs a first feed water flow rate request signal for controlling the feed water flow rate and the reactor outlet steam flow rate to an equilibrium state using the feed water flow rate signal and the reactor outlet steam flow rate signal as input signals, and a nuclear reactor. water level control that outputs a second water supply flow rate request signal for keeping the reactor water level constant using the outlet steam flow rate signal and a preset reactor water level set value signal as input signals;
A boiling water type water supply system comprising: a water supply flow rate control section that calculates a deviation between a sum signal of the first and second water supply flow rate request signals and a water supply pump flow rate signal, and outputs a flow rate control signal for the water supply pump based on the deviation signal. In the reactor water supply control device, the water supply flow rate control unit compares a preset reactor pressure set value signal and an actual core pressure signal, and when the actual core pressure falls below the set value. A water supply control device for a boiling water reactor, characterized in that it has a water supply throttling function that switches and outputs a control signal that rapidly reduces the water supply flow rate of the water supply pump in place of a normal flow rate control signal. 2. The feed water narrowing reactor is a comparative calculation reactor that compares a preset reactor pressure set value signal with an actual core pressure signal and outputs a switching activation signal when the actual core pressure is less than the set value, and the switching reactor. The present invention is equipped with a switch that switches the flow rate control signal of the water supply pump to a flow rate restriction signal in response to a work signal, and a flow limiter that outputs a flow rate restriction signal based on a sum signal of the first and second water supply flow rate request signals. A water supply flow rate control device for a boiling water nuclear reactor according to claim 1.
JP56029679A 1981-03-02 1981-03-02 Boiling water reactor water supply control device Expired JPS6029916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029679A JPS6029916B2 (en) 1981-03-02 1981-03-02 Boiling water reactor water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029679A JPS6029916B2 (en) 1981-03-02 1981-03-02 Boiling water reactor water supply control device

Publications (2)

Publication Number Publication Date
JPS57144498A JPS57144498A (en) 1982-09-07
JPS6029916B2 true JPS6029916B2 (en) 1985-07-13

Family

ID=12282796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029679A Expired JPS6029916B2 (en) 1981-03-02 1981-03-02 Boiling water reactor water supply control device

Country Status (1)

Country Link
JP (1) JPS6029916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105599A (en) * 1982-12-08 1984-06-18 株式会社東芝 Reactor water level control device

Also Published As

Publication number Publication date
JPS57144498A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
JP2809977B2 (en) Control device
JPH11352284A (en) Reactor system pressure control method through core power control
JPS6029916B2 (en) Boiling water reactor water supply control device
JPH0577841B2 (en)
JP2863581B2 (en) Turbine steam control valve controller
JPH0539901A (en) Method and device for automatically controlling boiler
JPS6158903A (en) Turbine controller for nuclear reactor
JPH04214907A (en) Turbine controlling device
JP2731331B2 (en) Feedwater pump recirculation flow control device
JPS6217121B2 (en)
JPS5927293A (en) Reactor power control device
JPS63117298A (en) Turbine controller
JPS62131903A (en) Speed control device for steam turbine
JPH1184078A (en) Abnormal time cooperative control system
JPS629106A (en) Controller for steam generating plant
JPH0245601A (en) Turbine control device
JPH0441798B2 (en)
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JPH0241720B2 (en)
JPS61225504A (en) Controller for feed pump
JPH06230176A (en) Turbine controller
JPH04366798A (en) Turbine controller
JPS63314302A (en) Turbine controller for nuclear power station
JPS62210205A (en) Turbine controller