JPS62127407A - Method and apparatus for manufacturing rapidly cooled and solidified powder - Google Patents

Method and apparatus for manufacturing rapidly cooled and solidified powder

Info

Publication number
JPS62127407A
JPS62127407A JP26793385A JP26793385A JPS62127407A JP S62127407 A JPS62127407 A JP S62127407A JP 26793385 A JP26793385 A JP 26793385A JP 26793385 A JP26793385 A JP 26793385A JP S62127407 A JPS62127407 A JP S62127407A
Authority
JP
Japan
Prior art keywords
metal
powder
fluid
ultra
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26793385A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nasu
敏幸 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26793385A priority Critical patent/JPS62127407A/en
Publication of JPS62127407A publication Critical patent/JPS62127407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily obtain perfect amorphousness without requiring powdering machine and coiling machine of ribbon, by directly contacting molten material to be powdered with an ultralow temp. cooling fluid to simultaneously apply rapid cooling and crushing due to expansion. CONSTITUTION:Gaseous N2, etc., at normal temp. are supplied from an inert gas source 32 into a melting chamber 13 and a pelletizing chamber 14, a radiating valve 33 is opened to substitute inner part air with inert gas and oxidation of a molten metal 35 (described later) is prevented. Next, metal to be powdered is melted by a high frequency melting furnace 15 and the molten metal 35 is allowed to flow into a tundish 16. On the other hand, the ultralow temp. cooling fluid 22 such as liquid nitrogen is supplied from holes 23 to a drum 18 being revolved,and jetted from many small holes 21 to grooves 19 while being gasified little by little. There, the metal 35 is allowed to flow down in sheet state in order from a nozzle 17 into the groove 19 at the highest part to envelop the fluid 22. Thus, the metal 35 is rapidly cooled, simultaneously crushed by explosive expansion due to rapid heating of the gasified fluid 22, and a rapidly cooled and solidified powder 31 made perfectly amorphous is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は粉末冶金の原料となる急冷凝固粉末の製造方
法および装置に関し、粉末の品質向上と装置の簡略化を
企図したものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method and apparatus for producing rapidly solidified powder, which is a raw material for powder metallurgy, and is intended to improve the quality of the powder and simplify the apparatus.

〔従来の技術〕[Conventional technology]

最近、粉末冶金が技術的に注目されており、加工技術と
して完成形状に近い形状に出来ることや高性能新合金の
開発が出来ることがその大きな理由となっている。
Recently, powder metallurgy has been attracting attention from a technical standpoint, and the main reason for this is that it is a processing technology that can produce shapes close to the finished shape and that it is possible to develop new high-performance alloys.

このような粉末冶金には、原料となる金属や非金属等の
粉末が必要であり、秤々の製造方法や装置が開発されて
いる。
Such powder metallurgy requires powders of metals, non-metals, etc. as raw materials, and methods and devices for manufacturing scales have been developed.

中でも、急冷凝固ににつて得られる金属粉末は、従来の
溶解法で製造された金属粉末に比べて冷却速度が104
℃/秒以上と非常に早いため(通常のインゴット凝固の
冷却速度は早くても102℃/秒程度)、次のような改
質がなされる。
Among these, the metal powder obtained by rapid solidification has a cooling rate of 104% compared to metal powder produced by the conventional melting method.
Since the cooling rate is extremely fast at 102° C./second or more (the cooling rate for normal ingot solidification is about 102° C./second at the earliest), the following modification is performed.

■:酸成分偏析減少 ■二結晶の微細化 ■:固溶限の拡大 ■:過冷却組is、<非平衡相) ■:凝安定相 ■:原子空孔の増加 ■:その伯 特に、冷却速度が106℃/秒以上になると、アモルフ
ァス(非晶質)金属となり、耐1?耗性。
■: Decreased segregation of acid components ■ Refinement of two crystals ■: Expansion of solid solubility limit ■: Supercooled group is, <non-equilibrium phase) ■: Solidification stable phase ■: Increase in atomic vacancies ■: Particularly cooling When the speed exceeds 106°C/sec, it becomes an amorphous metal and has a resistance of 1? Wearability.

透磁性、触媒性および光電性に優れたものとなる。It has excellent magnetic permeability, catalytic properties, and photoelectricity.

光電性について特に注目されているのが太陽電池用のア
七ルフ7スシリコンである。
Particular attention has been focused on photoelectric properties of 70% silicon for solar cells.

このアモルファスは金属だけぐなく非金属でも司能であ
る。
This amorphous is effective not only for metals but also for non-metals.

このように優れた特性を有する急冷凝固粉末の製造法と
して急冷ロール法があり、その原理は、第3図に示すよ
うに、タンディツシュ1に入れられた溶融金属2をスリ
ット状のノズル3がら毎分数千回転という高速で回転す
る内部を水冷された冷u10−ル4の表面に簿帯状に噴
出させ、急冷凝固さけ、板厚20〜55μm1幅110
0a、長さ300m以上のリボン状のアモルファス金属
5を(ワ、これをボールミル等の粉砕機で粉砕して粉末
とするものである。
There is a quench roll method as a method for producing quenched solidified powder with such excellent properties, and its principle is as shown in FIG. The inside, which rotates at a high speed of several thousand revolutions, is ejected onto the surface of a water-cooled u10-ru 4 in the form of a strip to avoid rapid solidification.
0a, a ribbon-shaped amorphous metal 5 having a length of 300 m or more is pulverized into powder using a pulverizer such as a ball mill.

(発明が解決しようとする問題点) このような急冷ロール7人にtよ、次のような問題点が
ある。
(Problems to be Solved by the Invention) There are seven problems with such a quenching roll as follows.

■:冷却「】−ルに」;り急冷凝固されろアモルファス
金属の形状がリボン状に限定されるため、粉末とするの
に、必ず粉砕機が必要となる。
(2): Since the shape of the amorphous metal that is rapidly solidified by cooling is limited to a ribbon shape, a pulverizer is always required to make it into powder.

■ニア七ルファス金属は硬くて粉砕しにくいため、粉砕
用のボールの1?耗が激しく、且つボールの1?耗粉が
不純物としてU人してしまう。
■ Near 7 Rufus Metal is hard and difficult to crush, so it is difficult to crush it, so it can be used as a crushing ball. The wear is severe and the ball is 1? Worn particles are treated as impurities.

■:冷却ロールが高速回転されるのにとらないリボン状
のアモルファス金属が高速(数十〜数白m/秒)で繰り
出されるため、高速巻取1M構が必要である。
(2): Although the cooling roll is rotated at high speed, the ribbon-shaped amorphous metal is unrolled at high speed (several tens to several meters per second), so a high-speed winding 1M structure is required.

■:冷却ロールで急冷凝固されるリボン状のアモルファ
ス金属は、冷却ロールと接づる面は急冷されるが、反対
の面は冷却ロール側からの伝熱冷却となるため冷!J速
度が近く、完全イ1アモルファスになりにくい。
■: Ribbon-shaped amorphous metal that is rapidly solidified by a cooling roll is rapidly cooled on the surface that comes into contact with the cooling roll, but the opposite surface is cooled by heat transfer from the cooling roll side! The J speed is close and it is difficult to become completely amorphous.

■:冷却ロールでは、水冷による間接冷!JIのため、
冷却能力を増大するには、冷11水を高速で循環覆るだ
けでは足りず、冷U】ロールを高速回転させねばならな
い。
■: Indirect cooling using water cooling with cooling rolls! For JI,
In order to increase the cooling capacity, it is not enough to simply circulate cold water at high speed; the cooling roll must be rotated at high speed.

この発明はかかる従来技術に鑑みてなされたもので、ア
モルファス粉末等を簡単に得ることができるとともに、
品質の良い粉末を得ることができる急冷凝固粉末の製造
方法および装置を提供しようとするものである。
This invention has been made in view of such prior art, and it is possible to easily obtain amorphous powder, etc.
It is an object of the present invention to provide a method and apparatus for producing rapidly solidified powder that can produce powder of good quality.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためこの発明の急冷凝固粉末の製
造方法は、超低温冷却流体を粉末にずべき溶融物で覆っ
て互いを直接接触させ、溶融物を急冷凝固させると同時
に、超低温冷7Jl流体の急激な体積膨脹により凝固す
る溶融物を粉砕するようにしたことを特徴とし、この発
明の急冷凝固粉末の製造装4は、粉末にすべき溶融物の
供給手段と、超低温冷却流体の供給および回収手段と、
超低温冷却流体を溶融物で覆うよう直接接触させ溶融物
を急冷凝固させると同時に急激な体積膨脹により粉砕す
る急冷粉砕手段とで構成したことを特徴とするものであ
る。
In order to solve the above-mentioned problems, the method for producing rapidly solidified powder of the present invention involves covering the ultra-low-temperature cooling fluid with a molten material and bringing the powder into direct contact with each other, thereby rapidly solidifying the molten material, and at the same time The rapidly solidified powder manufacturing apparatus 4 of the present invention is characterized by pulverizing the molten material that solidifies due to rapid volume expansion of the powder. collection means,
The present invention is characterized by comprising a rapid cooling and pulverizing means that brings the ultra-low temperature cooling fluid into direct contact with the molten material so as to cover it with the molten material, rapidly solidifies the molten material, and at the same time pulverizes the molten material by rapid volume expansion.

(作 用〕 液体窒素や液体ヘリウムまたはこれらのガス等の超低温
冷7Jl流体を粉末とすべき溶融物を板状等にしたもの
で覆って直接接触さけ、溶融物を急冷凝固させると同時
に、熱交換により加熱される超低温冷却流体の急激な体
積膨脹を利用して凝固づる溶融物の粉砕を行なうように
しており、急冷と粉砕とを同時に行なう。
(Function) Ultra-low-temperature cold 7Jl fluid such as liquid nitrogen, liquid helium or these gases is covered with a plate-shaped object to avoid direct contact with the melt to be turned into powder, and the melt is rapidly solidified while at the same time being heated. The rapid volume expansion of the ultra-low temperature cooling fluid heated by exchange is used to crush the solidified molten material, and rapid cooling and crushing are performed simultaneously.

〔実施例〕〔Example〕

以下この発明の実施例を図面に基づき3T If t、
:ノ1明する。
Embodiments of the present invention will be described below based on the drawings.
: No. 1 clear.

第1図はこの発明の急冷凝固粉末の製造方法が適用され
る製造装置の一実施例の概略前面図である。
FIG. 1 is a schematic front view of an embodiment of a manufacturing apparatus to which the method for manufacturing rapidly solidified powder of the present invention is applied.

この急冷凝固粉末の製造装置10は、中間部に取付けら
れた衝突板11で上下に仕切られた気齋v4造のケーシ
ング12を具えており、上側が溶解室13とされ、下側
が造粒室14と<1っている。
This rapidly solidified powder manufacturing apparatus 10 is equipped with a casing 12 made of air hydride V4 which is partitioned into upper and lower parts by a collision plate 11 attached to the middle part, with the upper side serving as a melting chamber 13 and the lower side serving as a granulation chamber. 14 and <1.

溶解室13内の上部には、粉末とすべき金属や非金属の
素材を溶解する高周波溶解炉15が設;iしである。
In the upper part of the melting chamber 13, there is installed a high frequency melting furnace 15 for melting metal and non-metal materials to be powdered.

この高周波溶解炉15の下方の溶解室13内には、タン
ディツシュ16が設置され、その底部に突設されたノズ
ル17が衝突板11を貫通して造粒室14内に位置する
ようになっている。
A tundish 16 is installed in the melting chamber 13 below the high-frequency melting furnace 15, and a nozzle 17 protruding from the bottom of the tundish 16 penetrates through the collision plate 11 and is positioned in the granulation chamber 14. There is.

このノズル17は、その先端開口が長子方向く第1図の
紙面心角方向)に良いスリット状に形成されている。
This nozzle 17 has a tip opening formed in the shape of a good slit in the longitudinal direction (in the direction of the center angle of the plane of the paper in FIG. 1).

造粒室14のノズル17の下方には、ノズル17のスリ
ット状の開口に対応した幅を右するドラム18が回転駆
動されるよう設置しである。
A drum 18 having a width corresponding to the slit-shaped opening of the nozzle 17 is installed below the nozzle 17 of the granulation chamber 14 so as to be rotationally driven.

このドラム18は中空構造とされ、外周壁の表面に、軸
方向と平行で断面形状が円弧状の溝19が全周に渡って
設けられており、谷溝19の底部と中空Is 20とが
多数の細孔21で連通されている。また、このドラム1
8の中心部には、液体窒素(−196℃)や液体ヘリウ
ム(−269℃)等の超低温冷却流体22を供給するた
めの供給孔23が形成してあり、中空部20と連通する
ようになっている。
This drum 18 has a hollow structure, and a groove 19 parallel to the axial direction and having an arcuate cross-section is provided on the surface of the outer peripheral wall over the entire circumference, and the bottom of the valley groove 19 and the hollow Is 20 A large number of pores 21 communicate with each other. Also, this drum 1
A supply hole 23 for supplying an ultra-low temperature cooling fluid 22 such as liquid nitrogen (-196°C) or liquid helium (-269°C) is formed in the center of the hole 8 so as to communicate with the hollow part 20. It has become.

したがって、このドラム18は熱伝尋性にゆれ、かつ低
湿脆性の少ない金属、例えば銅で作られている。
Therefore, this drum 18 is made of a metal that has good thermal conductivity and low low humidity brittleness, such as copper.

また、造粒室14を形成覆るケーシング12の側壁にガ
ス化した超低温冷11流体22を回収するためのガス回
収口24が形成され、除[!1m’21:25゜ブロア
ー26.再液化用冷凍様27.送給ポンプ28および流
m調整弁29を介して回収再液化後、循環されるように
なっている。このガス回収口24が形成された造粒室1
4の内側には、円筒状のじゃま板30が取付けられ、急
冷凝固した粉末31が直接ガス回収口24に入るのを防
止する。
In addition, a gas recovery port 24 for recovering the gasified ultra-low temperature cold 11 fluid 22 is formed on the side wall of the casing 12 that forms and covers the granulation chamber 14. 1m'21: 25° blower 26. Frozen type for reliquefaction 27. After being recovered and reliquefied, it is circulated through a feed pump 28 and a flow adjustment valve 29. Granulation chamber 1 in which this gas recovery port 24 is formed
A cylindrical baffle plate 30 is attached to the inside of the gas recovery port 4 to prevent the rapidly solidified powder 31 from directly entering the gas recovery port 24 .

さらに、ケーシング12には、溶解室13および造粒室
14内の空気を排除するため、常温の窒素ガスやヘリウ
ムガス等の不活性ガス供給源32が接続されるとともに
、放散弁33が設けである。
Further, the casing 12 is connected to an inert gas supply source 32 such as nitrogen gas or helium gas at room temperature, and is provided with a release valve 33 in order to eliminate air in the melting chamber 13 and the granulation chamber 14. be.

ケーシング12の底部には、急冷凝固した粉末31を取
り出すための取出バルブ34が取付(〕である。
A take-out valve 34 for taking out the rapidly solidified powder 31 is attached to the bottom of the casing 12.

かように構成した急冷凝固粉末の製造装置10の作動と
ともに、急冷凝固粉末の製造方法について説明する。
The operation of the apparatus 10 for producing rapidly solidified powder configured as described above and the method for producing rapidly solidified powder will be described.

まず、粉末とすべき溶融金属35の酸化を防止するため
、溶解室13および造粒室14内に不活性ガス供給源3
2から常温の窒素ガスまたはヘリウムガス等を供給する
とともに、放散弁33を開いて内部の空気をパージして
不活性ガスで置換する。
First, in order to prevent oxidation of the molten metal 35 to be made into powder, an inert gas supply source 3 is installed in the melting chamber 13 and the granulation chamber 14.
2 supplies nitrogen gas or helium gas at room temperature, and at the same time opens the diffusion valve 33 to purge the internal air and replace it with inert gas.

こののち、高周波溶解炉15で粉末とすべき金属を溶解
し、溶融金属35をタンディツシュ16に流し込む。
Thereafter, the metal to be made into powder is melted in the high frequency melting furnace 15, and the molten metal 35 is poured into the tundish 16.

一方、回転駆動されているドラム18には、液体窓M(
−196℃)や液体ヘリウム(−269℃)等の超低温
冷却流体22が供給孔23から供給され、中空部20を
経て多数の細孔21から満19に少しずつガス化して噴
出している。
On the other hand, a liquid window M (
An ultra-low temperature cooling fluid 22 such as -196°C) or liquid helium (-269°C) is supplied from the supply hole 23, passes through the hollow part 20, and is gradually gasified and ejected from a large number of pores 21.

このような状態のドラム18の最上部の:j/i 19
には、順次、タンディツシュ16のノズル17から溶融
金属35が薄い板状で流下し、i苫19の細孔21から
噴出しているガス化した超低温冷却流体22を包み込む
The top of the drum 18 in this state: j/i 19
Then, the molten metal 35 sequentially flows down from the nozzle 17 of the tundish 16 in the form of a thin plate, enveloping the gasified ultra-low temperature cooling fluid 22 jetting out from the pores 21 of the tundish 19.

すると、高温の溶融金fi35と超低温の冷却流体22
が直接接触することとなり、溶融金属35が急冷される
と同時に、ガス化した超低温冷却流体22が急激に加熱
される。
Then, the high temperature molten gold fi35 and the ultra low temperature cooling fluid 22
come into direct contact with each other, the molten metal 35 is rapidly cooled, and at the same time, the gasified ultra-low temperature cooling fluid 22 is rapidly heated.

この急激な加熱によりガス化した超低温冷却流体22は
爆発的に膨張し、溶融金属35を急冷凝固すると同時に
粉砕して粉末31を作り出す。
The ultra-low temperature cooling fluid 22 gasified by this rapid heating expands explosively, rapidly solidifies the molten metal 35, and simultaneously crushes it to create a powder 31.

この場合の溶融金属35は、106℃/秒以1−の冷却
速度で急冷されるため、粉末31は完全にアモルファス
化される。
In this case, the molten metal 35 is rapidly cooled at a cooling rate of 106° C./second or higher, so that the powder 31 is completely amorphized.

爆発的な膨張により、噴霧状(ふとなった粉末31は、
造粒室14上部の衝突板11に衝突して造粒室1/l下
部に落下する。
Due to explosive expansion, the powder 31 becomes atomized.
It collides with the collision plate 11 at the upper part of the granulation chamber 14 and falls to the lower part of the granulation chamber 1/l.

また、細孔21から噴出し、爆発的に膨張したガス状態
の超低温冷7J]流体22は、ガス回収口24より回収
され、除塵器25で除IlNされてブロアー26を杼で
再液化用冷凍F327で液化され、送給ポンプ28より
流m調整弁29で供給過が調整されて再びドラム18の
供給孔23に送給される。
In addition, the ultra-low temperature cold 7J] fluid 22 in the gaseous state ejected from the pores 21 and expanded explosively is collected from the gas recovery port 24, removed by the dust remover 25, and frozen for reliquefaction using the blower 26 in the shuttle. It is liquefied in F327, and is fed again to the feed hole 23 of the drum 18 after being liquefied by the feed pump 28 and the flow m adjustment valve 29 adjusting excess supply.

なお、第1図て・は、粉末31の1I(1霧状態をドラ
ム133の回Φi1方向(こひどつ・j゛れた1(ち1
9で示しである。
In addition, in Fig. 1, the powder 31 is 1I (1 mist state) and the drum 133 is rotated in the 1 direction (1 direction).
It is indicated by 9.

、した、運転中は、溶融金属35が流入しない最1部以
外の溝19の細孔21からちわずかずつ超低温冷7J]
流体22がガス化して噴出することとなるが、このガス
(ま、造粒室14内のル2麿を低温に保1\′lする役
目を果している。
During operation, ultra-low temperature cooling 7J is applied little by little from the pores 21 of the groove 19 except for the first part where the molten metal 35 does not flow.]
The fluid 22 is gasified and spouted out, but this gas serves to keep the temperature inside the granulation chamber 14 at a low temperature.

このようにして造粒゛Jと14の下部に落下した急冷凝
固粉末31は、−宙吊製造されたのち、取出バルブ34
をあけて取り出される。
The rapidly solidified powder 31 that has fallen to the bottom of the granules J and 14 in this way is suspended in the air, and then placed in the take-out valve 34.
It is opened and taken out.

このJ、うにしてyJi2iされる急冷凝固ね末31の
粒度は、ドラム18の8満19に流入する溶融金属35
の吊、1Jなわら、溝19土の溶融金属35のIF) 
!’ノに左らされ、ドラム18の回転数を早めて満19
上の溶融金属35の膜厚を薄くすれば粒度1よ小さくな
り、ドラム18の回転数を遅くして満19−1の膜19
を厚く寸れば粒度は大きくなる。
The particle size of the rapidly solidified powder 31 that is yJi2i is the same as that of the molten metal 35 that flows into the drum 18.
hanging, 1J straw, groove 19 soil molten metal 35 IF)
! Feeling left behind, I increased the rotation speed of the drum 18 to reach 19.
If the film thickness of the upper molten metal 35 is made thinner, the grain size becomes smaller than 1, and by slowing down the rotation speed of the drum 18, a film 19 of full size 19-1 is obtained.
The thicker the particle size, the larger the particle size.

したがって、ドラム18の回転数を調整することに1J
、す、急冷凝固粉末31の粒度を容易に制η口でさ信 次に、第1図中のΔ部に相当づろ部分を拡大して示した
第2図に」、す、この発明の他の実膿1り1について説
明する。
Therefore, it takes 1J to adjust the rotation speed of the drum 18.
The particle size of the rapidly solidified powder 31 can be easily controlled by controlling the diameter of the powder. Other cases of pus will be explained.

この実施例の急冷凝固粉末の製造装置10て゛は、ドラ
ム18の満19の形状を変えて冷fJ]能力と粉砕能力
とを強化するようにしている。
In the rapidly solidified powder manufacturing apparatus 10 of this embodiment, the shape of the drum 18 is changed to enhance the cold fJ] capacity and the crushing capacity.

−1なわら、ドラム18の8満19の底部に満19より
小さい溝状のガス136が形成しである。
-1, a groove-shaped gas 136 smaller than 19 is formed at the bottom of 8 full 19 of the drum 18.

なお、他の構成は一ト記実施例と同一である。Note that the other configurations are the same as those in the above embodiment.

このようなガス溜36を設けることにより、ノズル17
から流下する溶融金属35によって包まれるガス化した
超低温冷却流体22の串が増加し、直接接触による冷U
]能力と急激な加熱による爆発的な膨1表による粉砕能
力とが強化される。
By providing such a gas reservoir 36, the nozzle 17
The skewer of gasified cryogenic cooling fluid 22 enveloped by the molten metal 35 flowing down from the U
] capacity and crushing capacity due to explosive expansion caused by rapid heating are enhanced.

なお、上記各実施例では、ドラムの満に連通して形成さ
れる細孔を直線状としたが、これに限らず細孔を屈曲さ
せておき、粉砕時に爆発的に膨張する超低温冷却流体が
細孔を介して逆流しようとする場合の抵抗を増大させて
粉砕能力を強化するJ、うにしても良い。また、ドラム
の外周壁を無数の′6!i細孔を有する多孔r1材料で
形成し、細孔の加工を省略するようにしても良い。
In each of the above embodiments, the pores formed by communicating with each other in the drum are linear, but the pores are not limited to this, and the pores are curved, so that the ultra-low temperature cooling fluid that expands explosively during pulverization can be It may also be used to enhance the crushing ability by increasing the resistance when flowing back through the pores. Also, the outer peripheral wall of the drum is covered with countless '6! It may be formed of a porous r1 material having i pores, and the processing of the pores may be omitted.

さらに、ドラムの細孔に送給する超低温冷却流体(まガ
ス化させて噴出させる揚台のみならず、液体のまま圧送
したり、モ細管現象を利用してにじみ出づようにしても
良い。
Furthermore, the ultra-low-temperature cooling fluid that is fed into the pores of the drum (not only can it be gasified and ejected from a platform, but it can also be fed under pressure as a liquid, or it can be made to ooze out using the capillary phenomenon).

また、超低湯冷IJI流体の供給品を調整して冷7JI
allJを少しff<”Iれば、インゴット凝固により
青られる金属とアしルノIス金属との中間の結晶状部の
急冷凝固仝属粉末b 8 hUに装造づ−ろことがでさ
る。
In addition, we have adjusted the supply of ultra-low hot water cold IJI fluid to
If allJ is slightly reduced, it will be possible to incorporate the rapidly solidified metal powder b 8 hU in the crystalline part between the metal blued by ingot solidification and the arsenal metal.

さらに、粉末と寸べさ溶融物は金属に限らず、11金属
であっても良< 、 1l−i1様にして急冷凝固粉末
をnることがT:さる。
Further, the powder and the molten material are not limited to metals, and may be metals.

〔発明の効果] 以1一実施例ととbに具体的に説明したようにこの発明
によれば、溶rR物と超低温冷IJI流体とを直接接触
さけて急冷と膨張によるわ)砕とを同口1に行なわせる
ことができるので、粉砕機が不要となるとともに、リボ
ンの巻取機構も不要となり、装置lの簡略化や低コスト
化がはかれる。
[Effects of the Invention] As specifically explained in the following 11 Examples and (b), according to the present invention, direct contact between the molten R and the ultra-low-temperature cold IJI fluid is avoided, and pulverization (by rapid cooling and expansion) is achieved. Since the process can be carried out in the same mouth 1, a crusher and a ribbon winding mechanism are also not required, and the apparatus 1 can be simplified and the cost can be reduced.

また、急冷のために超低温冷II流体を用いるので、水
冷ロールの場合に比べ冷却能力が格段に大きく、完全な
ア七ルフ7スを容易に製造できる。
Furthermore, since ultra-low temperature cold II fluid is used for rapid cooling, the cooling capacity is much greater than that of water-cooled rolls, and a complete A7F7 can be easily produced.

さらに、超低温冷却流体の熱交換による急激な膨張によ
り溶解物を粉砕するようにしているので、粉砕l!横が
筒中となるとともに、粉砕された粉末の粒i¥も小さく
品質の良い粉末が1qられ、粉砕に要する超低温冷II
流体の使用吊し少<E < C潰む。
Furthermore, since the melt is pulverized by the rapid expansion caused by heat exchange of the ultra-low temperature cooling fluid, pulverization l! As the side becomes the inside of the cylinder, the grains of the crushed powder are also small and 1q of high-quality powder is obtained, and the ultra-low temperature cooling II required for crushing is
Use of fluid less than E < C.

また、粉砕のlこめボールミル等の機械的乃木を使用け
ず、流体の膨張を利用するので、摩耗粉等の不純物が混
入することがなく、品質の良い粉末が1!1られる。
In addition, since a mechanical grinder such as a ball mill or the like is not used for grinding, and the expansion of the fluid is used, impurities such as abrasion powder are not mixed in, and a high-quality powder is produced.

さらに、粉末の粒度をドラムの回転数で簡11に調整で
きる。
Furthermore, the particle size of the powder can be easily adjusted by adjusting the rotation speed of the drum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図お」;び第2図はそれぞれこの発明の急冷凝固粉
末の製造装置の一実施例にかかり、第1図は概略断面図
、第2図は第1図中のA部に相当する部分の拡大断面図
、第3図は従来装冒の概略断面図である。 10・・・急冷凝固粉末の製造装置、11・・・衝突板
、12・・・ケーシング、13・・・溶解室、14・・
・造粒室、15・・・高周波溶解炉、16・・・タンデ
ィツシュ、17・・・ノズル、18・・・ドラム、19
・・・溝、20・・・中空部、21・・・細孔、22・
・・超低温冷却流体、23・・・供給孔、24・・・ガ
ス回収口、30・・・じヤま板、31・・・急冷凝固粉
末、32・・・不活性ガス供給源、33・・・放散弁、
34・・・取出バルブ、35・・・溶融金属、36・・
・ガス溜。 (ほか 1 名) 第2図 3I; 第3図
Figures 1 and 2 respectively show an embodiment of the rapidly solidified powder production apparatus of the present invention, with Figure 1 being a schematic sectional view and Figure 2 corresponding to section A in Figure 1. FIG. 3 is a schematic cross-sectional view of a conventional equipment. DESCRIPTION OF SYMBOLS 10... Rapidly solidified powder manufacturing device, 11... Collision plate, 12... Casing, 13... Melting chamber, 14...
・Pelletization chamber, 15...High frequency melting furnace, 16...Tandish, 17...Nozzle, 18...Drum, 19
... Groove, 20 ... Hollow part, 21 ... Pore, 22.
...Ultra-low temperature cooling fluid, 23.. Supply hole, 24.. Gas recovery port, 30.. Diameter board, 31.. Rapidly solidified powder, 32.. Inert gas supply source, 33..・Discharge valve,
34... Take-out valve, 35... Molten metal, 36...
・Gas reservoir. (1 other person) Figure 2 3I; Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)超低温冷却流体を粉末にすべき溶融物で覆つて互
いを直接接触させ、溶融物を急冷凝固させると同時に、
超低温冷却流体の急激な体積膨脹により凝固する溶融物
を粉砕するようにしたことを特徴とする急冷凝固粉末の
製造方法。
(1) Covering the ultra-low temperature cooling fluid with the melt to be powdered and bringing them into direct contact with each other, rapidly solidifying the melt, and simultaneously
A method for producing rapidly solidified powder, characterized in that a molten material solidified by rapid volume expansion of an ultra-low temperature cooling fluid is pulverized.
(2)粉末にすべき溶融物の供給手段と、超低温冷却流
体の供給および回収手段と、超低温冷却流体を溶融物で
覆うよう直接接触させ溶融物を急冷凝固させると同時に
急激な体積膨脹により粉砕する急冷粉砕手段とで構成し
たことを特徴とする急冷凝固粉末の製造装置。
(2) A means for supplying a molten material to be powdered, a means for supplying and recovering an ultra-low temperature cooling fluid, and the ultra-low temperature cooling fluid is brought into direct contact so as to be covered with the molten material, and the molten material is rapidly solidified and simultaneously pulverized by rapid volume expansion. What is claimed is: 1. An apparatus for producing rapidly solidified powder, characterized by comprising: a rapidly cooling and crushing means;
JP26793385A 1985-11-28 1985-11-28 Method and apparatus for manufacturing rapidly cooled and solidified powder Pending JPS62127407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26793385A JPS62127407A (en) 1985-11-28 1985-11-28 Method and apparatus for manufacturing rapidly cooled and solidified powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26793385A JPS62127407A (en) 1985-11-28 1985-11-28 Method and apparatus for manufacturing rapidly cooled and solidified powder

Publications (1)

Publication Number Publication Date
JPS62127407A true JPS62127407A (en) 1987-06-09

Family

ID=17451618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26793385A Pending JPS62127407A (en) 1985-11-28 1985-11-28 Method and apparatus for manufacturing rapidly cooled and solidified powder

Country Status (1)

Country Link
JP (1) JPS62127407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887162A1 (en) * 2005-06-20 2006-12-22 Bernard Serole Rapid cooling procedure for forming metal alloys from powders uses flattened hyperboloid tube positioned close to outlet of gas atomiser
JP2011508080A (en) * 2007-12-21 2011-03-10 シーマ ナノ テック イスラエル リミティド Method for producing metal nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887162A1 (en) * 2005-06-20 2006-12-22 Bernard Serole Rapid cooling procedure for forming metal alloys from powders uses flattened hyperboloid tube positioned close to outlet of gas atomiser
JP2011508080A (en) * 2007-12-21 2011-03-10 シーマ ナノ テック イスラエル リミティド Method for producing metal nanoparticles

Similar Documents

Publication Publication Date Title
US3862658A (en) Extended retention of melt spun ribbon on quenching wheel
US4069045A (en) Metal powder suited for powder metallurgical purposes, and a process for manufacturing the metal powder
KR100526646B1 (en) Thin metal strip producing device
US5400851A (en) Process of producing monotectic alloys
KR100673046B1 (en) Nanocomposite magnet powder and method for producing the magnet
CN112584950B (en) Granulation method and apparatus
JP4224453B2 (en) Rare earth metal-containing alloy production system
JP6406156B2 (en) Method for producing water atomized metal powder
EP0784350B1 (en) Method for producing hydrogen-absorbing alloy
JPS62127407A (en) Method and apparatus for manufacturing rapidly cooled and solidified powder
JP3604308B2 (en) Raw material alloy for nanocomposite magnet, powder and manufacturing method thereof, and nanocomposite magnet powder and magnet manufacturing method
JP3981788B2 (en) Rare earth element-containing alloy casting apparatus and manufacturing method
JPS6340627B2 (en)
JP4157616B2 (en) Casting equipment
JPH10158755A (en) Production of bcc type hydrogen storage alloy
JP2017031465A (en) Production method of water atomization metal powder
CN113210576B (en) Method and device for producing metal thin strip
JP2002167611A (en) Method and device for manufacturing metal flake
JPS6260803A (en) Production of amorphous alloy powder
KR100300567B1 (en) Method for manufacturing quenched aluminum alloy powder using quenched aluminum alloy flakes
JPS59166606A (en) Preparation of amorphous metal fine powder
JPS586907A (en) Manufacture of amorphous metallic powder
JPS6260802A (en) Production of metallic powder
JPS60108146A (en) Apparatus for producing amorphous material
JP2002080906A (en) Alloy powder manufacturing apparatus, and alloy powder manufacturing method