JPS59166606A - Preparation of amorphous metal fine powder - Google Patents

Preparation of amorphous metal fine powder

Info

Publication number
JPS59166606A
JPS59166606A JP3894283A JP3894283A JPS59166606A JP S59166606 A JPS59166606 A JP S59166606A JP 3894283 A JP3894283 A JP 3894283A JP 3894283 A JP3894283 A JP 3894283A JP S59166606 A JPS59166606 A JP S59166606A
Authority
JP
Japan
Prior art keywords
molten metal
powder
metal
amorphous metal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3894283A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Ishii
石井 博義
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP3894283A priority Critical patent/JPS59166606A/en
Publication of JPS59166606A publication Critical patent/JPS59166606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily prepare an amorphous metal fine powder, by a method wherein a molten metal is formed into molten metal droplets by a roll rotated at a high speed and the formed metal droplets are converted to an amorphous metal powder by a high speed rotor while said powder is ground in a recirculated jet stream. CONSTITUTION:A molten metal 2 is fallen and supplied to the surface of a roll 4 which has a surface layer low in wettability to the molten metal 2 and is rotated at a peripheral speed of 2m/sec or more from the tangential direction and divided into fine molten metal droplets 6. These metal droplets 6 are further impinged against a metal rotor 7 rotated at a peripheral speed of 10m/sec or more and quenched and solidified to be received in a container 9 as an amorphous metal powder 8. Subsequently, this amorphous metal powder 8 is thrown into a feed hopper 10 and guided into a mill 12 accelerated to a supersonic speed through a ventrui nozzle 11. The metal powder 8 supplied to a grinding zone 15 formed by the pressure fluid emitted from a grinding nozzle 14 through an air sending pipe 13 to be ground into a fine powder with a particle size of several mum while only an ultra-fine powder is taken out of the system from an exhaust port 19 through a rising passage 16 and a classification part 17.

Description

【発明の詳細な説明】 この発明は非晶質金属微粉末の製造方法に係る。[Detailed description of the invention] The present invention relates to a method for producing amorphous metal fine powder.

非晶質金属粉末は耐食材料、高強度高靭性材料、軟磁性
材料等の原料に用いられるほか触媒等に使用され、最近
その用途が拡大されつつある。その製造方法としては溶
融金属を霧状にしたのち冷却液によって冷却して急速凝
固させ粉末とする方法、或いはリボン状の非晶質金属を
機械的に粉砕する方法等が提案されている。しかしなが
ら、冷却液によって冷却する前者の方法では得られる冷
却速度には限界があるので、非晶質粉末とすることので
きる金属の化学組成は狭い範囲に限られる上に、大きな
粒子は非晶質になシ難い。後者の方法では非晶質金属特
有の大きな靭性のため粉砕が容易でない等の問題がある
。この後者の問題点を解決するため粉砕に先立って、非
晶質金属が結晶質に転移する温度(以下転位温度という
)とその温度よ9250℃下の温度との範囲内に加熱し
て脆化させ粉砕を容易にする方法C特開昭55−128
506号)や、粉砕に先立って転位温度よシ低い温度で
水素をチャージさせて脆化させ粉砕を容易にする方法(
特開昭56−87610号)が提案されている。特開昭
55−128506号の方法で得られる非晶質金属粉は
転位温度に近づける熱処理を施して構造緩和させる結果
、非晶質金属としての特性、とりわけ靭性、磁気特性が
劣化するという問題が新たに発生する。而も、この構造
緩和は非可逆であって熱処理前の特性を回復することが
できないので好ましくない。また、特開昭56−876
10号の方法では脆化した非晶質金属粉から水素を完全
に放出することは不可能であυ、この方法で得られる非
晶質金属粉の粒度は同公報に記載の実施例によれば最大
1ssoミクロンとかなり粗い。
Amorphous metal powder is used as a raw material for corrosion-resistant materials, high-strength and high-toughness materials, soft magnetic materials, etc., and is also used for catalysts, etc., and its uses are recently expanding. Proposed methods for producing the metal include a method in which molten metal is atomized and then cooled with a cooling liquid to rapidly solidify it into a powder, or a method in which a ribbon-shaped amorphous metal is mechanically pulverized. However, the cooling rate that can be achieved with the former method of cooling with a cooling liquid is limited, so the chemical composition of the metal that can be made into amorphous powder is limited to a narrow range, and large particles are It's difficult. The latter method has problems such as difficulty in pulverization due to the large toughness characteristic of amorphous metals. To solve this latter problem, prior to pulverization, the amorphous metal is heated to a temperature within the range of the temperature at which it transitions to a crystalline state (hereinafter referred to as the transition temperature) and a temperature 9250°C below that temperature to cause embrittlement. Method C for facilitating grinding and grinding JP-A-55-128
506), or a method of charging hydrogen at a temperature lower than the dislocation temperature prior to pulverization to make it brittle and facilitate pulverization (
JP-A-56-87610) has been proposed. The amorphous metal powder obtained by the method of JP-A-55-128506 is subjected to a heat treatment close to the dislocation temperature to relax the structure, which causes the problem that the properties as an amorphous metal, especially the toughness and magnetic properties, deteriorate. A new occurrence. However, this structural relaxation is not preferable because it is irreversible and the properties before heat treatment cannot be restored. Also, JP-A-56-876
In method No. 10, it is impossible to completely release hydrogen from the embrittled amorphous metal powder, and the particle size of the amorphous metal powder obtained by this method is based on the example described in the publication. It is quite rough, with a maximum of 1 sso micron.

先に本出願人は前記の如き問題点を解消し、広い化学組
成範囲にわたって溶融金属から容易に非晶質金属粉を製
造する方法を提供することを目的とし、溶融金属に対し
て濡れ性の小さな表面層を有し2m/秒以上の周速度で
回転しているロール表面に溶融金属をノズルを経由して
供給し、該溶融金属を微細な溶融金属滴に分断したのち
、引続いて該溶融金属滴を10m/秒以上の周速度で回
転している金属回転体に衝突させて急冷凝固させる非晶
質金属粉の製造方法(特願昭56−103369号以下
先行出願という)を提示した。
Previously, the present applicant aimed to solve the above-mentioned problems and provide a method for easily producing amorphous metal powder from molten metal over a wide chemical composition range. Molten metal is supplied via a nozzle to the surface of a roll having a small surface layer and rotating at a circumferential speed of 2 m/sec or more, and the molten metal is divided into fine molten metal droplets, and then the molten metal is A method for producing amorphous metal powder (Japanese Patent Application No. 103369/1989 referred to as an earlier application) is presented in which molten metal droplets are collided with a metal rotating body rotating at a circumferential speed of 10 m/sec or more to rapidly solidify the amorphous metal powder. .

然しなからこの方法で得られる非晶質金属粉の粒度は2
0〜500ミクロンであり、更に微細な非晶質金属粉製
造方法の開発が望まれている。
However, the particle size of the amorphous metal powder obtained by this method is 2.
0 to 500 microns, and it is desired to develop a method for producing even finer amorphous metal powder.

本発明は上記の事情に鑑みて発明されたものであって、
前記先行出願の方法によって非晶質金属粉を得る第1工
程に、粉砕すべき非晶質金属粉材料をジェット気流中で
衝突させて粉砕する第2工程を組合わせた非晶質金属微
粉の製造方法に係る。
The present invention was invented in view of the above circumstances, and
The first step of obtaining amorphous metal powder by the method of the prior application is combined with the second step of colliding and pulverizing the amorphous metal powder material to be crushed in a jet stream. Regarding the manufacturing method.

次に本発明の第1工程について説明する。Next, the first step of the present invention will be explained.

本発明者は非晶質金属粉を得る方法について種々研究を
重ねた結果、高速回転しているロールに溶融金属を上方
から落下供給し、その落下速度よシ著しく速いロール周
速度により溶融金属を負圧にしてキャビテーションを発
生させ、溶融金属を微細な溶融金属滴に分断し、引続い
てこれを高速より溶融金属を直接に非晶質の粉末とする
ことに成功した。
As a result of various studies on methods for obtaining amorphous metal powder, the inventor of the present invention discovered that the molten metal is supplied by dropping it from above onto a roll rotating at high speed, and the molten metal is fed by dropping the molten metal from above onto a roll that is rotating at high speed. We succeeded in creating cavitation by applying negative pressure to break up the molten metal into fine molten metal droplets, and then directly converting the molten metal into amorphous powder at high speed.

上記のロールは表面が溶融金属を付着し難く、かつ瞬間
的に微粒子に分断して放出できるためには溶融金属に対
していわゆる濡れ性の小さな、換言すれば濡れ難い材料
から成るか、或いは少なくとも表面層は濡れ性の小さな
材料から成ることが必要であり、黒鉛もしくはTiN 
、 Si3N4.5iC1A7I203等のセラミック
ス製のもの、または表面にこれらの層を有するものが好
適である。
In order for the above-mentioned roll to have a surface that is difficult for molten metal to adhere to and can be instantaneously divided into fine particles and released, it must be made of a material that has so-called low wettability with respect to the molten metal, in other words, it is difficult to wet the molten metal, or at least The surface layer must be made of a material with low wettability, such as graphite or TiN.
, Si3N4.5iC1A7I203 or other ceramic materials, or those having these layers on the surface are suitable.

またロールは1個でもよく、或いは狭いロール間隔で相
対向する2個のロールでもよく、前者の場合には溶融金
属が落下方向へ回転するロール表面に接してその遠心力
の作用を効果的に受けると共に溶融金属滴が広い範囲に
飛散しないようにするため、溶融金属をロール表面の接
線方向に落下させることが好ましく、そのためにはノズ
ルを経由してロールに供給するのがよい。後者の場合に
はロール間隙近くに溶融金属を供給してやれば狭いロー
ル間隙を通過する間に、相対向して高速回転しているロ
ール表面の間で容易に負圧になってキャビテーションを
生ずると共に、両ロールの遠心力によって容易に、かつ
一層微細に分断され放出されることになる。両ロール間
隔は0.3 m以下とすればその効果は大きい。二つの
ロールは同径かつ同一周速度であれば両ロール中心を結
ぶ線に直角な方向へ放出されるので次工程の回転体へ導
入するのに便である。回転するロールの周速度は2m/
秒以下ではキャビテーションを生じ難いので、ロールの
周速度は2m/秒以上とすることが必要である。
Also, the number of rolls may be one, or two rolls facing each other with a narrow roll interval may be used. In the former case, the molten metal comes into contact with the surface of the roll rotating in the falling direction, and the action of the centrifugal force is effectively absorbed. In order to prevent the molten metal droplets from scattering over a wide area, it is preferable to allow the molten metal to fall in a tangential direction to the roll surface. For this purpose, it is preferable to supply the molten metal to the roll via a nozzle. In the latter case, if molten metal is supplied near the gap between the rolls, while it passes through the narrow gap between the rolls, it will easily become negative pressure between the surfaces of the rolls rotating at high speed facing each other, causing cavitation. Due to the centrifugal force of both rolls, it is easily and finely divided and released. The effect is great if the distance between both rolls is 0.3 m or less. If the two rolls have the same diameter and the same circumferential speed, they will be discharged in a direction perpendicular to the line connecting the centers of both rolls, making it convenient to introduce them into the rotating body for the next process. The peripheral speed of the rotating roll is 2m/
Since cavitation is difficult to occur at a speed of less than 2 m/s, the circumferential speed of the roll needs to be 2 m/s or more.

上記の如くに回転ロールによって分断された微細な溶融
金属滴は次にその下方にある回転体の外面または内面す
なわち回転面に衝突し急速に凝固冷却して非晶質粉末に
なる。このとき非晶質とするのに必要な冷却速度は金属
の化学組成によって異なるが、その臨界冷却速度は例え
ばおよそ106℃/秒 のオーダーであると考えられる
。回転ドラムの如き回転体を銅もしくは銅合金または鋼
製とし、かつ充分な熱容量を持たせて周速度を1oni
/秒以上となるように回転させておいて、これに衝突さ
せるとかなり広範囲の化学組成の溶融金属を前記臨界冷
却速度よシ大きい冷却速度で急冷させ、非晶質金属とし
て凝固させることができる。この場合の衝突面は回転ド
ラムの内面まだは外面いずれでも同様な効果が得られ、
また中空円筒体でなく円柱体でも良い。
The fine molten metal droplets separated by the rotating rolls as described above then collide with the outer or inner surface of the rotating body located below, that is, the rotating surface, and are rapidly solidified and cooled to become an amorphous powder. At this time, the cooling rate required to make the metal amorphous varies depending on the chemical composition of the metal, but the critical cooling rate is considered to be, for example, on the order of approximately 106° C./second. A rotating body such as a rotating drum is made of copper, copper alloy, or steel, and has sufficient heat capacity so that the circumferential speed is 1 oni.
If the metal is rotated at a speed of 1/2 or more and collided with it, molten metal with a wide range of chemical compositions can be rapidly cooled at a cooling rate greater than the critical cooling rate, and solidified as an amorphous metal. . In this case, the collision surface can be either the inner or outer surface of the rotating drum, and the same effect can be obtained.
Moreover, a cylindrical body may be used instead of a hollow cylindrical body.

次に添付図面を参照して本発明の実施態様について説明
する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

るつぼ1の中には溶融金属2がはいっておシ、るつぼの
底の湯口からノズル3を通してその下方に設けられたロ
ール4に溶融金属2が供給される。
Molten metal 2 enters the crucible 1 and is supplied from a sprue at the bottom of the crucible through a nozzle 3 to a roll 4 provided below.

ロール4は図示しない駆動装置によって高速回転される
ようになっており、ノズル3は水冷ジャケット5によっ
て外部から水冷して溶損しないようにしておくとよい。
The roll 4 is rotated at high speed by a drive device (not shown), and the nozzle 3 is preferably externally cooled by a water cooling jacket 5 to prevent it from melting.

ロール4は前記したように1個の場合の例を第1図に、
また2個のロール4a、4bの対よシ成る場合の例を第
2図に示しである。
As mentioned above, an example in which there is only one roll 4 is shown in Fig. 1.
FIG. 2 shows an example of a pair of rolls 4a and 4b.

ロール4の下方に回転体7が設けられており、ロール4
で分断された溶融金属滴6が回転体7に衝突して急速に
凝固冷却するようにしである。回転体7は第1〜2図ま
たは第4図7bに示すように円筒体、あるいは第3図に
示すような中央から左右対称に截頭円錐面を有する形状
の回転体7aでもよい。第1〜2図は円筒体の外周面を
使用する例を、第4図は円筒体の内周面を使用する例を
示している。
A rotating body 7 is provided below the roll 4.
The molten metal droplets 6 separated by the molten metal droplets 6 collide with the rotating body 7 and are rapidly solidified and cooled. The rotating body 7 may be a cylindrical body as shown in FIGS. 1 and 2 or 7b of FIG. 4, or a rotating body 7a having a shape having a truncated conical surface symmetrically from the center as shown in FIG. 3. 1 and 2 show an example in which the outer circumferential surface of the cylindrical body is used, and FIG. 4 shows an example in which the inner circumferential surface of the cylindrical body is used.

回転体6の下方には非晶質金属粉8を収容する容器9を
備えておく。
A container 9 containing amorphous metal powder 8 is provided below the rotating body 6.

なお、非晶質金属粉を連続的に製造するに当っては回転
体7.7aまだは7bを強制冷却しながら操業すること
が臨界冷却速度以上の冷却速度を確保するため望ましい
In the continuous production of amorphous metal powder, it is desirable to operate while forcibly cooling the rotating bodies 7.7a and 7b in order to ensure a cooling rate higher than the critical cooling rate.

この第1工程を経て得られる非晶質金属粉は20〜50
0ミクロンの大きさで厚さが薄く、かつ第5図の顕微鏡
写真に示すように極めて不規則な形状を呈しているので
微粉末に容易に粉砕することができる。
The amorphous metal powder obtained through this first step is 20 to 50%
Since it is thin with a size of 0 microns and has an extremely irregular shape as shown in the micrograph of FIG. 5, it can be easily ground into fine powder.

次に本発明の第2工程について説明する。第2工程の実
施に好適な粉砕機は第6図に示すような環流するジェッ
ト気流中に粉砕すべき材料を供給して粉砕するタイプ(
ジェットミルという)であって、数10な、、)シ数1
ooミクロン程度の材料はフィードホッパ10に投入さ
れ、ベンチュリーノズル11によって超音速に加速され
てミル12内に導かれ、ミル下部に設けられた送風管1
3を通ってグラインデインズノズル14から吐出される
圧力流体によって形成される粉砕ゾーン15内で相互衝
突、相互摩擦粉砕が行われ、数ミクロンの微粉となって
上昇通路16を上昇後、分級部17を経て排出口19か
ら数ミクロン以下の超微粉のみが系外に取出され、粗粉
粒子は圧力流体によって下降通路18を下降して被粉砕
材料と合流して循環粉砕される。
Next, the second step of the present invention will be explained. A suitable crusher for carrying out the second step is a type (as shown in Fig. 6) in which the material to be crushed is fed into a circulating jet stream.
It is called a jet mill, and the number is 10,,), and the number is 1.
Materials in the order of 0 microns are put into a feed hopper 10, accelerated to supersonic speed by a venturi nozzle 11, guided into a mill 12, and passed through a blow pipe 1 provided at the bottom of the mill.
Mutual collision and mutual friction pulverization are performed in the pulverization zone 15 formed by the pressure fluid discharged from the Grindins nozzle 14 through the Grindins nozzle 14. Only ultrafine powder of several microns or less is taken out of the system through the discharge port 19, and the coarse particles are moved down the descending passage 18 by the pressure fluid to join with the material to be pulverized and are circulated and pulverized.

なお、これらの粉砕機内の雰囲気を必要に応じて窒素、
アルゴン、ヘリウム等の不活性ガス雰囲気とすることが
できることは言うまでもない。
In addition, the atmosphere inside these crushers may be changed to nitrogen,
Needless to say, an atmosphere of an inert gas such as argon or helium can be used.

次に本発明の方法による実験例について述べる。Next, an experimental example using the method of the present invention will be described.

実験例1 ” 60Fe20P20 N ” 75’S ’8B1
71”e78SiJ OBl 2 NFe47CO7o
3Si1.B1イFe8oB13Si4C2およびFe
72P13C7CrB  の各溶湯を第2〜4図に示す
装置を使用し、石英管層のノズル3を経由して黒鉛製ロ
ール4a、4bの間隙に向けて落下供給した。
Experimental example 1 ``60Fe20P20N''75'S'8B1
71”e78SiJ OBl 2 NFe47CO7o
3Si1. B1 Fe8oB13Si4C2 and Fe
Each molten metal of 72P13C7CrB was supplied falling through the nozzle 3 of the quartz tube layer toward the gap between the graphite rolls 4a and 4b using the apparatus shown in FIGS.

ロール4a、4bは径60題で0.051111++の
間隙をおいて相対向させ、それぞれ5000rpm(周
速15.7m/秒)で回転させておいた。ロール4a。
The rolls 4a and 4b had a diameter of 60 mm, were opposed to each other with a gap of 0.051111++, and were rotated at 5000 rpm (peripheral speed 15.7 m/sec). Roll 4a.

4bを通itした溶融金属滴は高速で下向きに放出し、
銅製回転円筒体7の表面(周速度52.4m/秒)VC
衝突させて急冷して20〜500ミクロンの不規則形状
の非晶質金属粉とした。これを6に7/−の脱湿した空
気を用い送風量5Nm’/分のジェットミルで粉砕した
。得られた微粉の平均粒径は第1表に示すとおシであシ
、粒径−の最大値はおよそ10ミクロン、最小値は0.
1ミクロンであった。
The molten metal droplets passing through 4b are ejected downward at high speed,
Surface of copper rotating cylinder 7 (peripheral speed 52.4 m/sec) VC
The particles were collided and rapidly cooled to obtain an irregularly shaped amorphous metal powder of 20 to 500 microns. This was pulverized with a jet mill using dehumidified air of 6 to 7/- at an air flow rate of 5 Nm'/min. The average particle size of the obtained fine powder is shown in Table 1.The maximum particle size is approximately 10 microns, and the minimum particle size is 0.
It was 1 micron.

実験例2 Cu60Zr4イCu67”33、N167”r33、
Ni60Ti40およびPd33Zr67の各溶湯をア
ルゴン雰囲気中で第2〜4図に示す装置を使用し、ライ
ム製のノズル3を経由して黒鉛製ロール4a14bの間
隙に向けて落下供給した。ロール4a14bは径60麿
で、0.0511111の間隙をおいて相対向させ、そ
れぞれ6000 r、p、m、(周速度18.8 m7
秒)で回転させておいた。ロール4a、4b間を通過し
た溶融金属滴は高速で下向きに放出し、銅製回転円筒体
7aの表面(周速度7s、sm/秒)に衝突させ急冷し
て20〜500ミクロンの不規則な形状の非晶質金属粉
とした。これを6 kg、、/crAの窒素ガスを用い
2Nm’/分 のジェットミルで粉砕して得られた微粉
のサイズは第2表に示すとおりであった。なお粒径の最
大値はおよそ15ミクロン、最小値は0.1ミクロンで
あった。
Experimental example 2 Cu60Zr4i Cu67"33, N167"r33,
Molten metals of Ni60Ti40 and Pd33Zr67 were supplied in an argon atmosphere using the apparatus shown in FIGS. 2 to 4, dropping through lime nozzles 3 toward the gap between graphite rolls 4a14b. The rolls 4a14b have a diameter of 60 mm, are opposed to each other with a gap of 0.0511111, and are each rolled at 6000 r, p, m, (peripheral speed 18.8 m7).
It was rotated in seconds). The molten metal droplets that have passed between the rolls 4a and 4b are discharged downward at high speed, collide with the surface of the copper rotating cylinder 7a (peripheral speed 7s, sm/sec), and are rapidly cooled to form an irregular shape of 20 to 500 microns. It was made into an amorphous metal powder. This was pulverized using a jet mill at 2 Nm'/min using nitrogen gas at 6 kg/crA, and the size of the fine powder obtained was as shown in Table 2. The maximum particle size was approximately 15 microns, and the minimum particle size was 0.1 microns.

第2表 以上説明したように、本発明においては第1工程として
高速回転するロール回転面に溶融金属を落下供給し、溶
湯金属内に生ずる負圧によってキャビテーションを起さ
せて微細な溶滴に分断して遠心力によって高速で放出し
、続いて熱伝導性のよい回転体の回転面に衝突させ臨界
冷却速度以上の速度で急速に凝固冷却させるので容易に
非晶質金属粉を得ることができる。このようにして得ら
れた非晶質金属粉の粒度は20〜500ミクロンであυ
、厚さが薄くかつ不規則な形状をしているので、非晶質
金属粉は延性が大きいにもかかわらず、ジェット気流に
乗せて相互衝突や摩擦によって微粉砕することが可能で
あシ、容易に数ミクロンの超微粉とすることができるな
ど本方法の工業上の効果はきわめて大きい。
Table 2 As explained above, in the first step of the present invention, molten metal is dropped onto the rotating surface of a roll rotating at high speed, and the negative pressure generated within the molten metal causes cavitation and breaks it into fine droplets. It is released at high speed by centrifugal force, and then collided with the rotating surface of a rotating body with good thermal conductivity to rapidly solidify and cool at a speed higher than the critical cooling rate, making it easy to obtain amorphous metal powder. . The particle size of the amorphous metal powder thus obtained is 20 to 500 microns.
Although amorphous metal powder has a high ductility due to its thin thickness and irregular shape, it is possible to carry it in a jet stream and pulverize it by mutual collision and friction. The industrial effects of this method are extremely large, as it can easily be made into ultrafine powder of several microns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の第1工程の実施態様の要部を図
解的に示す一部破断立面図、第2図は同じくロール2個
の場合の実施態様を示す同様な立面図、第3図は同じく
回転体の異なる他の実施態様を示す同様な立面図、第4
図は同じく回転体の内周面を使用したその他の実施態様
を示す同様な立面図、第5図は第1工程で得られた非晶
質金属粉の写真、第6図は第2工程の実施態様の要部を
図解的に示す縦断面図である。 1・・・るつぼ、2・・・溶融金属、3・・・ノズル、
4・・・ロール、4a、4b・・・ロール対、5・・・
冷却用ジャケット、6・・・溶融金属滴、7.7a17
b・・・回転体、8・・・金属粉、9・・・容器、10
・・・フィードホッパ、11・・・ベンチュリーノズル
、12・・・ミル、13・・・送風管、14・・・グラ
インディングノズル、15・・・粉砕ゾーン、16・・
・上昇通路、17・・・分級部、18・・・下降通路 出願人代理人  弁理士 鴨志1)次 男第3図 第5図 7 第6図
FIG. 1 is a partially cutaway elevational view schematically showing the main parts of an embodiment of the first step of the method of the present invention, and FIG. 2 is a similar elevational view showing an embodiment in the case of two rolls. , FIG. 3 is a similar elevational view showing a different embodiment of the rotating body, FIG.
The figure is a similar elevational view showing another embodiment using the inner peripheral surface of the rotating body, Figure 5 is a photograph of the amorphous metal powder obtained in the first step, and Figure 6 is the second step. FIG. 2 is a longitudinal cross-sectional view schematically showing a main part of an embodiment of the invention. 1... Crucible, 2... Molten metal, 3... Nozzle,
4...Roll, 4a, 4b...Roll pair, 5...
Cooling jacket, 6... Molten metal droplets, 7.7a17
b... Rotating body, 8... Metal powder, 9... Container, 10
...Feed hopper, 11...Venturi nozzle, 12...Mill, 13...Blow pipe, 14...Grinding nozzle, 15...Crushing zone, 16...
・Ascending passage, 17... Classification department, 18... Descending passage Applicant's agent Patent attorney Kamoshi 1) Tsugumi Figure 3 Figure 5 Figure 7 Figure 6

Claims (1)

【特許請求の範囲】 溶融金属に対して濡れ性の小さな表面層を有し2m/秒
以上の周速度で回転しているロール表面に、溶融金属を
ノズルを経由して上方から供給して該溶融金属を微細な
溶融金属滴に分断したのち、引続いて該溶融金属滴を1
0m/秒以上の周速度で回転している金属回転体に衝突
させて急冷凝固させることによシ非晶質金属粉とする第
1工程と、該非晶質金属粉を環流するジェット気流中に
供給して相互衝突、相互摩擦によシ粉砕する第2工程 を行なうことを特徴とする非晶質金属微粉末の製造方法
[Claims] Molten metal is supplied from above via a nozzle to the surface of a roll that has a surface layer with low wettability to the molten metal and is rotating at a circumferential speed of 2 m/sec or more. After dividing the molten metal into fine molten metal droplets, the molten metal droplets are
A first step of forming an amorphous metal powder by colliding with a metal rotating body rotating at a circumferential speed of 0 m/sec or more and rapidly solidifying it, and a jet stream that circulates the amorphous metal powder. A method for producing fine amorphous metal powder, characterized by carrying out a second step of supplying and pulverizing by mutual collision and mutual friction.
JP3894283A 1983-03-11 1983-03-11 Preparation of amorphous metal fine powder Pending JPS59166606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3894283A JPS59166606A (en) 1983-03-11 1983-03-11 Preparation of amorphous metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3894283A JPS59166606A (en) 1983-03-11 1983-03-11 Preparation of amorphous metal fine powder

Publications (1)

Publication Number Publication Date
JPS59166606A true JPS59166606A (en) 1984-09-20

Family

ID=12539274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3894283A Pending JPS59166606A (en) 1983-03-11 1983-03-11 Preparation of amorphous metal fine powder

Country Status (1)

Country Link
JP (1) JPS59166606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754019A (en) * 1993-08-17 1995-02-28 Nippon Sozai Kk Production of powder by multistage fissure and quenching
WO2019124224A1 (en) * 2017-12-19 2019-06-27 株式会社村田製作所 Amorphous alloy particles, and method for producing amorphous alloy particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895351A (en) * 1972-03-18 1973-12-07
JPS5371642A (en) * 1976-12-08 1978-06-26 Toyota Motor Co Ltd Preparation of powder for melting and injection
JPS586907A (en) * 1981-07-03 1983-01-14 Riken Corp Manufacture of amorphous metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895351A (en) * 1972-03-18 1973-12-07
JPS5371642A (en) * 1976-12-08 1978-06-26 Toyota Motor Co Ltd Preparation of powder for melting and injection
JPS586907A (en) * 1981-07-03 1983-01-14 Riken Corp Manufacture of amorphous metallic powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754019A (en) * 1993-08-17 1995-02-28 Nippon Sozai Kk Production of powder by multistage fissure and quenching
WO2019124224A1 (en) * 2017-12-19 2019-06-27 株式会社村田製作所 Amorphous alloy particles, and method for producing amorphous alloy particles
US11401596B2 (en) 2017-12-19 2022-08-02 Murata Manufacturing Co., Ltd. Amorphous alloy particle and method for manufacturing amorphous alloy particle

Similar Documents

Publication Publication Date Title
US4592781A (en) Method for making ultrafine metal powder
US4762553A (en) Method for making rapidly solidified powder
US4670047A (en) Process for producing finely divided spherical metal powders
US4687510A (en) Method for making ultrafine metal powder
JPS58197206A (en) Production of powder of high grade metal or its alloy
JPH01263204A (en) Low oxygen content fine globular particles and production thereof by fluid energy milling and high temperature treatment
US4944797A (en) Low oxygen content fine spherical copper particles and process for producing same by fluid energy milling and high temperature processing
US4502885A (en) Method for making metal powder
WO2001081032A1 (en) Method and apparatus for producing amorphous metal
CN111570813B (en) Beryllium-aluminum alloy powder and preparation method and application thereof
JPS59166606A (en) Preparation of amorphous metal fine powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPH07102307A (en) Production of flaky powder material
Öztürk et al. Production of rapidly solidified metal powders by water cooled rotating disc atomisation
EP0134808B1 (en) Method for making ultrafine metal powder
US4279843A (en) Process for making uniform size particles
US4650130A (en) Rapidly solidified powder production system
US4783900A (en) Method of continuously producing rapidly solidified powder
Raman et al. Rapidly solidified powder produced by a new atomization process
JPH0132166B2 (en)
JPH06172817A (en) Production of quenched metal powder
JPS6184306A (en) Manufacture of metallic powder
JPS6260803A (en) Production of amorphous alloy powder
JPS586907A (en) Manufacture of amorphous metallic powder
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder