JPS62123708A - Heat treatment method for semiconductor thin film - Google Patents

Heat treatment method for semiconductor thin film

Info

Publication number
JPS62123708A
JPS62123708A JP26344785A JP26344785A JPS62123708A JP S62123708 A JPS62123708 A JP S62123708A JP 26344785 A JP26344785 A JP 26344785A JP 26344785 A JP26344785 A JP 26344785A JP S62123708 A JPS62123708 A JP S62123708A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
heat treatment
film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26344785A
Other languages
Japanese (ja)
Inventor
Hisao Hayashi
久雄 林
Takashi Noguchi
隆 野口
Takefumi Oshima
大島 健文
Taeko Hoshi
星 妙子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26344785A priority Critical patent/JPS62123708A/en
Publication of JPS62123708A publication Critical patent/JPS62123708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain the high resistance semiconductor thin film having a constant resistivity by a method wherein, after the semiconductor thin film has been brought into an amorphous state so that the density of the neutral element ions of the semiconductor thin film will have a specific value, a heat treatment is performed in the atmosphere wherein no effect is inflicted to the conductivity of the semiconductor thin film. CONSTITUTION:After a semiconductor thin film has been brought into an amorphous state by implanting neutral element ions into the semiconductor thin film, a semiconductor thin film is obtained by performing a heat treatment. At that time, the semiconductor thin film is brought into an amorphous state so that the density of the neutral element ions of the semiconductor thin film will be 5X10<19>/cm<2> or more. Then, a heat treatment is performed in the atmosphere that does not affect conductivity in the semiconductor thin film. As a result, the high resistance semiconductor thin film having constant resistivity can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は半導体薄膜の熱処理方法に関するもので、特に
T F ’I’、 (Thin Film Trans
istor)を形成するのに最適な半導体薄膜を得る方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for heat treatment of semiconductor thin films, and particularly relates to a method for heat treatment of semiconductor thin films, and in particular, T F 'I', (Thin Film Trans
.

〔発明の概要〕[Summary of the invention]

本発明は、半導体薄膜の特性を熱処理により向上させる
方法において、半導体薄膜に中性元素イオンを5 X 
I Q ”/cn!以上の濃度になるようにイオン注入
して上記半導体薄膜を非晶質化させた後、上記半導体薄
膜中で伝導に影響を与えない雰囲気中で熱処理を行うこ
とによって、TPT等を形成するのに最適な半導体薄膜
を得る方法に関するものである。
The present invention provides a method for improving the properties of a semiconductor thin film by heat treatment, in which neutral element ions are added to the semiconductor thin film by 5X
After making the semiconductor thin film amorphous by implanting ions to a concentration of I Q ”/cn! or more, TPT is The present invention relates to a method for obtaining a semiconductor thin film that is optimal for forming such as.

〔従来の技術〕[Conventional technology]

LSIの微小化に伴って、SiO□膜上等膜上績晶Si
を形成しその膜質を向上させて単結晶化させ、そこにT
PT等の素子を形成する技術の重要性が増大している。
With the miniaturization of LSI, SiO
is formed, its film quality is improved, it becomes a single crystal, and T is added thereto.
The importance of technology for forming elements such as PT is increasing.

通常TPT形成のために使用される多結晶Si (又は
非晶質Si)膜には3000人程度0厚さのものが用い
られる。多結晶Si膜形成後、イオン注入により多結晶
層中のダングリングボンドを破壊する。このダングリン
グボンドが破壊された膜をSiの場合の結晶回復温度5
50℃以上例えば600°CのN2等の雰囲気中で熱処
理することによって単結晶が膜内に成長する。
Normally, a polycrystalline Si (or amorphous Si) film used for forming TPT has a thickness of about 3,000 mm. After forming the polycrystalline Si film, dangling bonds in the polycrystalline layer are destroyed by ion implantation. The crystal recovery temperature in the case of Si is the film in which this dangling bond is destroyed.
A single crystal is grown in the film by heat treatment in an atmosphere of N2 or the like at 50° C. or higher, for example, 600° C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多結晶Siを基板表面上に付着させた後、Slをイオン
注入して多結晶Si膜を非晶質化した後、熱処理を行っ
た後再結晶かさせている。このときの熱処理温度を高温
にすると、アニール処理後の膜抵抗率が低下してしまう
(N型になる)問題があった。特に半導体薄膜の厚さが
3000Å以上の場合には、この種の影響は大きくない
が、厚さが3000Å以下になるとアニール処理の条件
が膜抵抗率に大きく影響して来る。従ってこのような膜
にTPTを作り込むと各トランジスタのvthがばらつ
くと言う問題があった。
After depositing polycrystalline Si on the surface of the substrate, ions of Sl are implanted to make the polycrystalline Si film amorphous, followed by heat treatment and recrystallization. If the heat treatment temperature at this time is set to a high temperature, there is a problem that the film resistivity after the annealing treatment decreases (the film becomes N-type). In particular, when the thickness of the semiconductor thin film is 3000 Å or more, this type of influence is not large, but when the thickness becomes 3000 Å or less, the annealing treatment conditions have a large effect on the film resistivity. Therefore, when a TPT is formed in such a film, there is a problem in that the vth of each transistor varies.

〔問題点を解決するための手段〕[Means for solving problems]

多結晶Si (非晶質Siでも可)を基板表面上に付着
させた後、その多結晶Si膜中に中性元素イオンが半導
体薄膜全面に渡って5 X 10 ′9/ cn!以上
の濃度になるようにイオン注入を行って非晶質化させた
後、上記半導体薄膜中で伝導に影響を与えなu’Ar、
 He、真空中等の雰囲気中で熱処理を行うことによっ
て一定な膜抵抗率の半導体薄膜を得た。
After depositing polycrystalline Si (or amorphous Si) on the substrate surface, neutral element ions are distributed in the polycrystalline Si film over the entire surface of the semiconductor thin film in an amount of 5 x 10'9/cn! After performing ion implantation to a concentration above and making it amorphous, u'Ar, which does not affect conduction in the semiconductor thin film,
A semiconductor thin film having a constant film resistivity was obtained by performing heat treatment in an atmosphere such as He or vacuum.

〔作 用〕[For production]

本願の発明者等が前記問題点の原因を種々検討した結果
、イオン注入を行って非晶質化させた半導体薄膜を60
0℃以上の高温に置いて熱処理を行うと炉内雰囲気中に
存在するN2又は02(酸化処理中)が半導体薄膜中に
侵入してドナーとなり膜の抵抗率を下げてしまうことが
判明した。このことは従来のように3000人の厚みの
半導体膜では問題とならなかった。従って本発明者等は
N2又は02を含まない炉内の雰囲気を採用して種々実
験を行った結果、良好な結果を得たので本願発明を提案
するに到ったものである。
As a result of various studies on the causes of the above-mentioned problems, the inventors of the present application found that a semiconductor thin film that had been made amorphous by ion implantation was
It has been found that when heat treatment is performed at a high temperature of 0° C. or higher, N2 or 02 (during oxidation treatment) present in the furnace atmosphere enters the semiconductor thin film and becomes a donor, lowering the resistivity of the film. This did not pose a problem with conventional semiconductor films having a thickness of 3,000 people. Therefore, the present inventors conducted various experiments using an atmosphere in the furnace that does not contain N2 or 02, and obtained good results, which led them to propose the present invention.

〔実施例〕〔Example〕

減圧CVD法により半導体基板上に800人の厚さに形
成した半導体Si多結晶層中にSi”を40keyで加
速して3X10”cm弓注入させて多結晶Si半導体層
を非晶質化させた後、600℃Ar雰囲気中で30時間
のアニール処理を行って結晶化を進め、高抵抗の半導体
薄膜を得た。
The polycrystalline Si semiconductor layer was made amorphous by accelerating Si'' with 40 keys and injecting it into a 3x10'' cm arch into a semiconductor Si polycrystalline layer formed to a thickness of 800 cm on a semiconductor substrate by low pressure CVD method. Thereafter, annealing treatment was performed for 30 hours in an Ar atmosphere at 600° C. to advance crystallization, and a high-resistance semiconductor thin film was obtained.

〔効 果〕〔effect〕

上記の実施例で、真空中でアニールして単結晶化した半
導体薄膜の比抵抗はl×106Ω−cmであったが、雰
囲気を真空でな〈従来のようなN2ガスにして7二−ル
した半導体薄膜の比抵抗は1×104Ω−cmにしかな
らなかった。また雰囲気を酸素にしてアニールした半導
体薄膜の比抵抗はlXl0’Ω−cmであった。これか
ら見ても本発明のアニール法により、高抵抗で抵抗率の
一定した半導体薄膜が複雑な操作を伴わずに得られるこ
とが判る。
In the above example, the specific resistance of the semiconductor thin film that was annealed in vacuum and made into a single crystal was 1 x 106 Ω-cm. The specific resistance of the semiconductor thin film obtained was only 1×10 4 Ω-cm. Further, the specific resistance of the semiconductor thin film annealed in an oxygen atmosphere was 1X10'Ω-cm. As can be seen from this, it can be seen that by the annealing method of the present invention, a semiconductor thin film with high resistance and constant resistivity can be obtained without complicated operations.

Claims (1)

【特許請求の範囲】 半導体薄膜に中性元素イオンを注入して上記半導体薄膜
を非晶質化した後熱処理を行う半導体薄膜の熱処理方法
において、 上記半導体薄膜の上記中性元素イオンの濃度が5×10
^1^9/cm^3以上となる様に上記半導体薄膜を非
晶質化した後、上記半導体薄膜中で伝導に影響を与えな
い雰囲気中で熱処理を行う半導体薄膜の熱処理方法。
[Scope of Claims] A heat treatment method for a semiconductor thin film, in which neutral element ions are implanted into a semiconductor thin film to make the semiconductor thin film amorphous, and then heat treatment is performed, wherein the concentration of the neutral element ions in the semiconductor thin film is 5. ×10
A method for heat treatment of a semiconductor thin film, which comprises making the semiconductor thin film amorphous so as to have a conductivity of ^1^9/cm^3 or more, and then heat-treating the semiconductor thin film in an atmosphere that does not affect conduction.
JP26344785A 1985-11-22 1985-11-22 Heat treatment method for semiconductor thin film Pending JPS62123708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26344785A JPS62123708A (en) 1985-11-22 1985-11-22 Heat treatment method for semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26344785A JPS62123708A (en) 1985-11-22 1985-11-22 Heat treatment method for semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS62123708A true JPS62123708A (en) 1987-06-05

Family

ID=17389635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26344785A Pending JPS62123708A (en) 1985-11-22 1985-11-22 Heat treatment method for semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS62123708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153956A (en) * 1993-08-09 1995-06-16 Gold Star Electron Co Ltd Thin film transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153956A (en) * 1993-08-09 1995-06-16 Gold Star Electron Co Ltd Thin film transistor and manufacture thereof

Similar Documents

Publication Publication Date Title
KR970060531A (en) Semiconductor device and manufacturing method thereof
JPS62123708A (en) Heat treatment method for semiconductor thin film
JPS6276772A (en) Manufacture of field effect transistor
JPS63146436A (en) Manufacture of thin film transistor
JPH03227516A (en) Manufacture of semiconductor device
JPS62124731A (en) Heat treatment method of semiconductor thin-film
JPS63122177A (en) Semiconductor device and its manufacture
JPS63119268A (en) Manufacture of semiconductor device
JP3515132B2 (en) Method for manufacturing thin film transistor
JPH05218436A (en) P channel vertical mos field-effect transistor
JPH0828509B2 (en) Method of forming active region of thin film transistor
JPS60127755A (en) Manufacture of semiconductor device
JPH01136373A (en) Manufacture of thin-film semiconductor device
JPS62287615A (en) Formation of polycrystalline silicon film
JP2554055B2 (en) Method for forming low resistance polycrystalline silicon thin film
JP3278237B2 (en) Method for manufacturing thin film transistor
JPH0526350B2 (en)
JPH0964365A (en) Manufacture of thin-film transistor
JPH01105532A (en) Manufacture of semiconductor device
JPH0336768A (en) Manufacture of semiconductor device
JPH0350873A (en) Thin-film transistor
JPH0254538A (en) Manufacture of p-channel thin film transistor
JP3070090B2 (en) Method for manufacturing semiconductor device
JPH04307741A (en) Manufacture of semiconductor device
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof