JPS62123663A - Manufacture of lithium secondary cell - Google Patents

Manufacture of lithium secondary cell

Info

Publication number
JPS62123663A
JPS62123663A JP60264493A JP26449385A JPS62123663A JP S62123663 A JPS62123663 A JP S62123663A JP 60264493 A JP60264493 A JP 60264493A JP 26449385 A JP26449385 A JP 26449385A JP S62123663 A JPS62123663 A JP S62123663A
Authority
JP
Japan
Prior art keywords
lithium
aluminum
plate
negative electrode
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60264493A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Taniguchi
谷口 康義
Atsushi Sato
淳 佐藤
Shigeru Ikenari
池成 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60264493A priority Critical patent/JPS62123663A/en
Publication of JPS62123663A publication Critical patent/JPS62123663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent lithium plates and an aluminum one from shifting on their insertion so that short-circuit does not occur caused by lithium dendrite in a charge-and-discharge cycle, by piling the lithium plates and aluminum one in advance in order of the lithium-aluminum-lithium plates and stamping them in an assigned dimension to insert them into a negative electrode can. CONSTITUTION:Two lithium plates and an aluminum one are piled on a polypropylene substrate 11 in order of a lithium plate 1a, an aluminum one 1b, another lithium one 1a, and stamped in a circle with a stamping punch 12 made of steel. Such piling and successive stamping processes make lithium and aluminum advance to be alloyed in minute amount, so that position shifting between the lithium plates 1a and the aluminum one 1b does not occur. With this unit inserted into the negative electrode can for assembling a cell, lithium and aluminum are electrochemically alloyed in existence of electrolytic solution, to form a negative electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム二次電池の製造方法に係わり、さらに
詳しくは負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a lithium secondary battery, and more particularly to improvement of a negative electrode.

〔従来の技術〕[Conventional technology]

リチウム二次電池においては、負極の充放電可逆性を向
上させるためにリチウム−アルミニウム合金を負極に用
いることが行われている(たとえば米国特許第4.00
2.495号明細書、米国特許第4゜056.885号
明細書)。
In lithium secondary batteries, a lithium-aluminum alloy is used in the negative electrode in order to improve the charge/discharge reversibility of the negative electrode (for example, as described in U.S. Pat. No. 4.00
No. 2.495, U.S. Pat. No. 4,056,885).

これは、リチウムを単独で負極に用いた場合は、電気量
密度的にはリチウム−アルミニウム合金を負極に用いる
よりも有利であるが、充電反応で電着するリチウムの形
態がデンドライト状(樹枝状)であって、このデンドラ
イト状リチウムが充放電の繰り返しにより成長して正極
、負極間を隔離するセパレータを突き破り正極に接触し
て内部短絡を起こす可能性があることと、上記電着リチ
ウムが非常に活性で表面積が大きいため電解液中の微量
の不純物と反応して電極表面で孤立して不働態化し、放
電反応に利用できなくなるなどの問題があるからである
。そして、これに対し、リチウム−アルミニウム合金を
負極に用いた場合には、電着した活性なリチウムはアル
ミニウムと速やかに合金化して平滑な結晶形態となり、
活性な電着リチウムの状態でとどまる時間が短くなって
上記問題点を解決することができるからである。
When lithium is used alone as a negative electrode, it is more advantageous in terms of charge density than when a lithium-aluminum alloy is used as a negative electrode, but the form of lithium electrodeposited in the charging reaction is dendrite-like ), this dendrite-like lithium may grow through repeated charging and discharging, break through the separator that isolates the positive and negative electrodes, come into contact with the positive electrode, and cause an internal short circuit. This is because, because it is active and has a large surface area, it reacts with minute amounts of impurities in the electrolyte, becoming isolated on the electrode surface and becoming passivated, making it unusable for discharge reactions. On the other hand, when a lithium-aluminum alloy is used as the negative electrode, the electrodeposited active lithium quickly alloys with aluminum and forms a smooth crystal.
This is because the time that lithium remains in an active electrodeposited state becomes shorter, and the above-mentioned problems can be solved.

そして、そのリチウムとアルミニウムとの合金化にあた
っては、リチウムとアルミニウムとを板状で重ね合わせ
電解液の存在下で電気化学的に合金化する方法も見出さ
れ、かつ上記電気化学的合金化を電池内で行う場合には
、リチウム板とアルミニウム板とを一枚ずつ重ね合わせ
るよりもリチウム板がアルミニウム板の両側に配置する
、つまり、リチウム板−アルミニウム板−リチウム板め
順に三層に積み重ねる方が、合金化による体積増加に基
づく内部短絡の発生や電池総高不良の発生を防止するこ
とができ、充放電特性の良好なリチウム二次電池が得ら
れることも見出されている(特願昭60−50168号
)。
In order to alloy lithium and aluminum, a method was also discovered in which lithium and aluminum were layered in a plate shape and alloyed electrochemically in the presence of an electrolyte. When performing this in a battery, rather than stacking the lithium plate and aluminum plate one by one, the lithium plate is placed on both sides of the aluminum plate, that is, the lithium plate is stacked in three layers in the order of lithium plate - aluminum plate - lithium plate. However, it has also been found that it is possible to prevent the occurrence of internal short circuits and defects in overall battery height due to the increase in volume due to alloying, and that it is possible to obtain a lithium secondary battery with good charge and discharge characteristics (patent application). No. 1986-50168).

これは、リチウムとアルミニウムとを電池内で電解液の
存在下に電気化学的に合金化する場合、アルミニウム量
が多いとアルミニウムが残って分極が大きくなるおそれ
があるためリチウム板をセパレーク側に配置する必要が
あるが、合金化前にリチウム板が配置していた部分が合
金化による形状変化により部分的な体積増加を引き起こ
し、その中央部が最も変形を受けやすいセパレーク側に
膨れ出して、セパレータを押圧し、さらには正極の中央
部を押圧して正極缶を変形させて、短絡の発生や電池総
高不良の発生を引き起こすおそれがあるのに対し、リチ
ウム板をアルミニウム板の両側に配置して、アルミニウ
ム板の両側から合金化を進行させると体積増加が一方に
片寄るのが抑制され、前述した内部短絡の発生や電池総
高不良の発生が防止できるからである。
This is because when lithium and aluminum are electrochemically alloyed in the presence of an electrolyte in a battery, if there is a large amount of aluminum, aluminum may remain and polarization may increase, so the lithium plate is placed on the separate lake side. However, the part where the lithium plate was placed before alloying causes a partial volume increase due to the shape change due to alloying, and the center part bulges toward the separator lake side where it is most susceptible to deformation, causing the separator In contrast, placing the lithium plate on both sides of the aluminum plate can deform the cathode can by pressing the center of the positive electrode, causing a short circuit or a defect in the overall height of the battery. This is because, by proceeding alloying from both sides of the aluminum plate, the increase in volume is prevented from being biased to one side, and the occurrence of internal short circuits and defects in overall battery height as described above can be prevented.

しかしながら、これまでは、電池作製にあたり、上記リ
チウム板、アルミニウム板、リチウム板をそれぞれ別々
に所定の寸法に打抜き、それらを一枚ずつ上記の順で負
極缶内に挿入していたため、第3図に例示するように、
挿入時にリチウム板1aとアルミニウム板1bとのズレ
が生じ、その結果、未合金化のリチウムが残り、それが
充放電サイクルでデンドライト成長を引き起こし、正極
と接触して短絡するという問題があった。
However, until now, when manufacturing a battery, the lithium plate, aluminum plate, and lithium plate were each separately punched out to predetermined dimensions and inserted one by one into the negative electrode can in the above order. As illustrated in
There was a problem in that the lithium plate 1a and the aluminum plate 1b were misaligned during insertion, and as a result, unalloyed lithium remained, which caused dendrite growth during charge/discharge cycles and came into contact with the positive electrode, resulting in a short circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は従来のリチウム二次電池が持っていたリチウ
ム板やアルミニウム板の挿入ズレに基づき充放電サイク
ル中に短絡するという問題点を解決し、充放電サイクル
寿命に対する信頼性の高いリチウム二次電池を提供する
ことを目的とする。
This invention solves the problem of short circuits during charge/discharge cycles due to insertion misalignment of lithium plates or aluminum plates, which conventional lithium secondary batteries had, and provides lithium secondary batteries with high reliability in terms of charge/discharge cycle life. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、リチウム板とアルミニウム板とをあらかじめ
リチウム板−アルミニウム板−リチウム板の順に積み重
ね、これを所定の寸法に打抜いて負極缶に挿入すること
により、リチウム板やアルミニウム板の挿入ズレを防止
し、リチウムのデンドライトによる充放電サイクル中の
短絡発生を防止したものである。
In the present invention, a lithium plate and an aluminum plate are stacked in advance in the order of lithium plate - aluminum plate - lithium plate, and then punched out to a predetermined size and inserted into a negative electrode can, thereby preventing insertion misalignment of the lithium plate or aluminum plate. This prevents short circuits from occurring during charge/discharge cycles due to lithium dendrites.

すなわち、リチウム板とアルミニウム板とを重ね合わせ
ておくと、微量ではあるがリチウムとアルミニウムとの
合金化が進行する。そこで、リチウム板とアルミニウム
板とを負極缶内に挿入するのに適したリチウム板、アル
ミニウム板、リチウム板の三層に重ね合わせ、この状態
で所望の形状に打抜くと、打抜き時のリチウムの粘着や
前述のようなリチウムとアルミニウムとの微量合金化に
より、リチウム板とアルミニウム板との位置ズレが生じ
な(なり、負極缶への挿入時のリチウム板とアルミニウ
ム板とのズレが生じなくなるのである。
That is, when a lithium plate and an aluminum plate are overlapped, alloying of lithium and aluminum progresses, albeit in a small amount. Therefore, if a lithium plate and an aluminum plate are stacked in three layers (a lithium plate, an aluminum plate, and a lithium plate) that are suitable for inserting into a negative electrode can, and then punched into a desired shape in this state, the lithium plate at the time of punching is Due to adhesion and the micro-alloying of lithium and aluminum as described above, there is no misalignment between the lithium plate and the aluminum plate (this prevents misalignment between the lithium plate and the aluminum plate when inserted into the negative electrode can). be.

そして、本発明において、負極を形成するためにリチウ
ムと合金化させるアルミニウムは、インジウム、ガリウ
ム、ビスマスなどの合金元素を少量含有するアルミニウ
ムであってもよい。
In the present invention, the aluminum alloyed with lithium to form the negative electrode may be aluminum containing a small amount of alloying elements such as indium, gallium, and bismuth.

〔実施例〕〔Example〕

厚さ0.12mmのリチウム板2枚と厚さ0.3mmの
アルミニウム板とを第1図に示すように、ポリプロピレ
ン製の基板11上に一方のリチウム板1a、アルミニウ
ム板1b、他方のリチウム板1aの順に積み重ね、鋼製
の打抜きポンチ12で直径7mmの円形に打抜いた。な
お、使用されたアルミニウム板1bはH材の略称で市販
されている硬質アルミニウム板である。
As shown in FIG. 1, two lithium plates with a thickness of 0.12 mm and an aluminum plate with a thickness of 0.3 mm are placed on a polypropylene substrate 11, one lithium plate 1a, an aluminum plate 1b, and the other lithium plate. 1a, and punched out a circle with a diameter of 7 mm using a steel punch 12. The aluminum plate 1b used is a hard aluminum plate commercially available under the abbreviation of H material.

上記のような重ね合わせおよびそれに続く打抜きにより
、リチウムとアルミニウムとの微量合金化が進行して、
リチウム板1a、 laとアルミニウム板1bとの位置
ズレが生じなくなった。これを負極缶内に挿入し、以下
に示すようにして電池組立を行い、第2図に示すような
構造で、直径11.6mm、高さ2.0mmの扁平形リ
チウム二次電池を組立て、リチウムとアルミニウムとを
電解液の存在下で電気化学的に合金化させて負極を形成
した。
Due to the above-described stacking and subsequent punching, a small amount of alloying between lithium and aluminum progresses,
Misalignment between the lithium plates 1a and 1a and the aluminum plate 1b no longer occurs. This was inserted into the negative electrode can, and the battery was assembled as shown below. A flat lithium secondary battery with a diameter of 11.6 mm and a height of 2.0 mm was assembled as shown in Figure 2. The negative electrode was formed by electrochemically alloying lithium and aluminum in the presence of an electrolyte.

負極缶2の周辺折り返し部にポリプロピレン製のガスケ
ット3を嵌合し、負極缶2を第2図に示す状態とは上下
を反転させた状態に配置し、この状態の負極缶2の内部
に前記のように直径7mmに打抜きリチウムとアルミニ
ウムとの微量合金化によりリチウム板1a、1aとアル
ミニウム@lbとの位置ズレをなくしたリチウム板1a
、アルミニウム板1b、リチウム板1aの3層積層体を
挿入し、一方のリチウム板18部分を負極缶2の内面に
あらかじめスポット溶接しておいたステンレス鋼網から
なる負極集電体4に圧着した後、その上に微孔性ポリプ
ロピレンフィルムとポリプロピレン不織布トカらなるセ
パレーク群5を載置し、ついで4−メチル−1,3−ジ
オキソランと1.2−ジメトキシエタンとの混合溶媒に
LiPF6を1.0モル/l溶解した電解液を注入し、
上記のリチウムとアルミニウムとが電解液の存在下で電
気化学的に合金化して負極1が形成されるようにし、つ
ぎにその上に、二硫化チタン(Ti32)を活物質とし
バインダーとしてポリテトラフルオロエチレンを用いた
正極合剤を加圧成形し、一方の面に正極側の集電体7と
してステンレス鋼網を配設した集電体付きの正極6を載
置し、その上から正極缶8を嵌合して正極缶8の開口縁
を内方に締め付けて封口し電池組立を行った。
A polypropylene gasket 3 is fitted to the peripheral folded part of the negative electrode can 2, and the negative electrode can 2 is placed upside down from the state shown in FIG. Lithium plate 1a that is punched to a diameter of 7 mm and eliminates misalignment between lithium plate 1a and aluminum @lb by micro-alloying lithium and aluminum.
, a three-layer laminate consisting of an aluminum plate 1b and a lithium plate 1a was inserted, and one lithium plate 18 portion was crimped to a negative electrode current collector 4 made of a stainless steel mesh that had been spot-welded to the inner surface of the negative electrode can 2 in advance. After that, a separate lake group 5 made of a microporous polypropylene film and a polypropylene nonwoven fabric was placed on top of the film, and then LiPF6 was added to a mixed solvent of 4-methyl-1,3-dioxolane and 1,2-dimethoxyethane for 1.5 hours. Inject 0 mol/l dissolved electrolyte,
The above lithium and aluminum are electrochemically alloyed in the presence of an electrolytic solution to form the negative electrode 1, and then titanium disulfide (Ti32) is used as an active material and polytetrafluorocarbon as a binder. A positive electrode mixture using ethylene is pressure-molded, a positive electrode 6 with a current collector provided with a stainless steel mesh as a current collector 7 on the positive electrode side is placed on one side, and a positive electrode can 8 is placed on top of it. were fitted, and the opening edge of the positive electrode can 8 was tightened inward to seal it, and the battery was assembled.

比較のため、従来法にしたがい、厚さ0.12mmのリ
チウム板、厚さ0.3闘のアルミニウム板、厚さ0.1
2mmのリチウム板をそれぞれ一枚ずつ別々に直径7m
mに打抜き、それらをリチウム板、アルミニウム板、リ
チウム板の順に一枚ずつ負極缶内に挿入して電池組立を
行った。
For comparison, according to the conventional method, a 0.12 mm thick lithium plate, a 0.3 mm thick aluminum plate, and a 0.1 mm thick aluminum plate were prepared.
One 2mm lithium plate each with a diameter of 7m.
A battery was assembled by punching out a lithium plate, then an aluminum plate, and then inserting the lithium plate one by one into a negative electrode can.

〔発明の効果〕〔Effect of the invention〕

上記のような本発明の方法と従来法とにより、電池をそ
れぞれ10個ずつ製造し、充電電流0.5mAで1時間
充電し、放電電流0.5mAで1時間放電する充放電試
験を行い、放電電圧が1.5V以下になるまでの充放電
サイクル数を調べた結果を第1表に示す。
Ten batteries each were manufactured using the method of the present invention and the conventional method as described above, and a charge/discharge test was conducted by charging them at a charging current of 0.5 mA for 1 hour and discharging them at a discharging current of 0.5 mA for 1 hour. Table 1 shows the results of investigating the number of charge/discharge cycles until the discharge voltage became 1.5V or less.

第   1   表 第1表に示すように、本発明の方法による電池は充放電
サイクル数が大きく、かつ最小値から最大値までの範囲
が狭く、充放電サイクル特性が安定していた。これに対
して、従来法で製造された電池は試験した10個の電池
のうち2((Iがリチウム板やアルミニウム板の挿入ズ
レに基づいて充放電試験中に短絡を起こし、充放電サイ
クルを500回繰り返した時点で電圧が出なくなり、そ
のため平均値も小さくなった。
Table 1 As shown in Table 1, the battery produced by the method of the present invention had a large number of charge/discharge cycles, a narrow range from the minimum value to the maximum value, and stable charge/discharge cycle characteristics. On the other hand, out of 10 batteries manufactured using the conventional method, 2 ((I) caused a short circuit during the charge/discharge test due to misalignment of the lithium plate or aluminum plate, resulting in a short circuit during the charge/discharge cycle. After 500 repetitions, no voltage was produced, and the average value also became smaller.

以上説明したように、本発明では、リチウム板、アルミ
ニウム板をあらかじめリチウム板−アルミニウム板−リ
チウム板の順に重ね合わせ、その状態で所定の寸法に打
抜いて負極缶に挿入することにより、充放電サイクル寿
命に対する信頼性の高いリチウム二次電池を提供するこ
とができた。
As explained above, in the present invention, a lithium plate and an aluminum plate are stacked in advance in the order of lithium plate, aluminum plate, and lithium plate, and in this state, the punch is punched out to a predetermined size and inserted into the negative electrode can, thereby allowing charging and discharging. It was possible to provide a lithium secondary battery with high reliability in terms of cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明においてリチウム板、アルミニウム板を
リチウム板−アルミニウム板−リチウム板の順に重ね合
わせて打抜く状態を示す断面図であり、第2図は本発明
に係るリチウム二次電池の一例を示す断面図である。第
3図は従来のリチウム二次電池を例示する断面図で、リ
チウム板とアルミニウム板とが位置ズレを起こしている
状態を示す。 1・・・負極、 1a・・・リチウム板、1b・・・ア
ルミニウム板、 2・・・負極缶、12・・・打抜きポ
ンチ 第  1  図 第  2  図 1・・・負極 la・・・リチウム板   第  3  図1b・・・
アルミニウム板 5 6 7  b
FIG. 1 is a sectional view showing a state in which a lithium plate and an aluminum plate are stacked and punched in the order of lithium plate - aluminum plate - lithium plate in the present invention, and FIG. 2 is an example of a lithium secondary battery according to the present invention. FIG. FIG. 3 is a cross-sectional view illustrating a conventional lithium secondary battery, showing a state in which a lithium plate and an aluminum plate are misaligned. DESCRIPTION OF SYMBOLS 1... Negative electrode, 1a... Lithium plate, 1b... Aluminum plate, 2... Negative electrode can, 12... Punch No. 1 Figure 2 Figure 1... Negative electrode la... Lithium plate 3rd Figure 1b...
Aluminum plate 5 6 7 b

Claims (1)

【特許請求の範囲】[Claims] (1)リチウムとアルミニウムとを電池内で電解液の存
在下に電気化学的に合金化させたリチウム−アルミニウ
ム合金を負極に用いるリチウム二次電池の製造にあたり
、リチウム板とアルミニウム板とをあらかじめリチウム
板−アルミニウム板−リチウム板の順に重ね合わせ、こ
れを所定の寸法に打抜き、負極缶に挿入することを特徴
とするリチウム二次電池の製造方法。
(1) When manufacturing a lithium secondary battery that uses a lithium-aluminum alloy, which is made by electrochemically alloying lithium and aluminum in the presence of an electrolyte in the battery, as a negative electrode, a lithium plate and an aluminum plate are pre-coated with lithium. A method for manufacturing a lithium secondary battery, which comprises stacking a plate, an aluminum plate, and a lithium plate in this order, punching out the same into a predetermined size, and inserting the plate into a negative electrode can.
JP60264493A 1985-11-25 1985-11-25 Manufacture of lithium secondary cell Pending JPS62123663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264493A JPS62123663A (en) 1985-11-25 1985-11-25 Manufacture of lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264493A JPS62123663A (en) 1985-11-25 1985-11-25 Manufacture of lithium secondary cell

Publications (1)

Publication Number Publication Date
JPS62123663A true JPS62123663A (en) 1987-06-04

Family

ID=17404001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264493A Pending JPS62123663A (en) 1985-11-25 1985-11-25 Manufacture of lithium secondary cell

Country Status (1)

Country Link
JP (1) JPS62123663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202851A (en) * 1987-02-17 1988-08-22 Fuji Elelctrochem Co Ltd Manufacture of negative electrode for nonaqueous electrolyte secondary battery
FR2615328A1 (en) * 1987-05-12 1988-11-18 Bridgestone Corp ELECTRIC CELL AND MANUFACTURING METHOD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202851A (en) * 1987-02-17 1988-08-22 Fuji Elelctrochem Co Ltd Manufacture of negative electrode for nonaqueous electrolyte secondary battery
FR2615328A1 (en) * 1987-05-12 1988-11-18 Bridgestone Corp ELECTRIC CELL AND MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
KR100346542B1 (en) Lithium secondary battery
JPH0574463A (en) Secondary battery
JPS62123663A (en) Manufacture of lithium secondary cell
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP3701900B2 (en) Method for producing non-aqueous electrolyte battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPH0746602B2 (en) Method for manufacturing lithium organic secondary battery
JPS63181274A (en) Manufacture of lithium secondary battery
JPH07101618B2 (en) Method for manufacturing lithium secondary battery
JP2874527B2 (en) Lithium battery
JPH07320723A (en) Lithium secondary battery and manufacture thereof
JP2874529B2 (en) Lithium battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP2002175785A (en) Cylindrical secondary battery
JP2002203592A (en) Cylindrical secondary battery
JPH05290891A (en) Coin type lithium secondary cell
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JPH0434844A (en) Nonaqueous system secondary battery
JP3853343B2 (en) Non-aqueous electrolyte battery
JP2003272709A (en) Wound cylindrical battery
JPS62123651A (en) Lithium secondary battery
JP2003132866A (en) Safety valve for battery
JP3197658B2 (en) Non-aqueous secondary battery
JPS61208749A (en) Lithium organic secondary battery