JPS63202851A - Manufacture of negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Info

Publication number
JPS63202851A
JPS63202851A JP62033943A JP3394387A JPS63202851A JP S63202851 A JPS63202851 A JP S63202851A JP 62033943 A JP62033943 A JP 62033943A JP 3394387 A JP3394387 A JP 3394387A JP S63202851 A JPS63202851 A JP S63202851A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
sheet
plate
terminal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62033943A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hino
日野 義久
Hiroyuki Takayanagi
博之 高柳
Michie Yoshioka
吾恵 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62033943A priority Critical patent/JPS63202851A/en
Publication of JPS63202851A publication Critical patent/JPS63202851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To remarkably reduce the man-hour, to make mass production possible, and to prevent the dislocation of a lithium plate and metal plates by blanking a lithium plate and metal plates easily capable of alloying with lithium in one process. CONSTITUTION:An aluminium sheet 1, a lithium sheet 2, and an aluminium sheet 3 are pressed with a roller 7 to obtain a laminated sheet 8. The laminated sheet 8 is blanked in a disk with a punch 9 and a die 10, and a blanked laminate 14 is placed on the inside bottom of a negative terminal plate 12. The negative terminal plate 12 with the laminate 14 is placed on a hot plate 18, and a compression plate 19 is placed on the laminate 14 for hot-pressing. An aluminium layer 15, a lithium layer 16, and an aluminium layer 17 which form the laminate 14 are heat-pressed to form a lithium-aluminium alloy layer. The alloy layer obtained is used as a negative electrode 20.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、リチウムを負極活物質とする非水電解液二
次電池に用いる負極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a negative electrode used in a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material.

〈従来の技術〉 リチウムを負極活物質とする非水電解液二次電池では、
二硫化チタンTtS2や三酸化モリブデンM OO3に
代表される層状@造を有する化合物を正極活物質とし、
また一般に、多孔性の集電体を負極と負極端子板内底面
との間、あるいは正極と正極缶内底面との間にそれぞれ
配した@造が採られている。
<Conventional technology> In non-aqueous electrolyte secondary batteries that use lithium as the negative electrode active material,
A compound having a layered structure represented by titanium disulfide TtS2 and molybdenum trioxide MOO3 is used as a positive electrode active material,
Generally, a @ structure is adopted in which a porous current collector is disposed between the negative electrode and the inner bottom surface of the negative electrode terminal plate, or between the positive electrode and the inner bottom surface of the positive electrode can.

この種の電池では、放電により負極から非水電解゛液中
に溶出して生じたリチウムイオンが充電時には初期形状
に析出せず負極表面に樹枝状に電析し、これが脱落して
充放電不能になったり、またこの樹枝状の電析リチウム
が生長してセパレータを貫通し正極に達して内部短絡を
起こすことから、充放電サイクルに伴う性能低下が大き
く、実用上十分な電池寿命が1qられないという不都合
がある。
In this type of battery, lithium ions, which are generated by elution from the negative electrode into the non-aqueous electrolyte during discharge, do not precipitate in the initial shape during charging but are deposited in a dendritic form on the negative electrode surface, and these fall off, making charging and discharging impossible. In addition, this dendritic electrodeposited lithium grows, penetrates the separator, reaches the positive electrode, and causes an internal short circuit, resulting in a significant drop in performance during charge/discharge cycles, and the battery life is shortened to 1q, which is sufficient for practical use. There is an inconvenience that there is no such thing.

上記の樹枝状のリチウムの析出を可及的に抑制して電池
寿命を改善するため、リチウムをこれと合金化し易い1
種または2種以上の金属と合金化させて負極に用いるこ
とが提案されている。この例としてはりチウム−アルミ
ニウム合金負極、リチウム−マグネシウム合金負極など
が知られていおり、リチウム−アルミニウム合金負極の
場合について述べれば、充電時にはリチウムが負極の基
体となるアルミニウムと合金を形成するように電析する
ようになり、これによってリチウムの樹枝状生長が抑制
ないし阻止される。
In order to suppress the above-mentioned dendritic lithium precipitation as much as possible and improve battery life, lithium can be easily alloyed with this.
It has been proposed to alloy it with one or more metals and use it for a negative electrode. Examples of this are lithium-aluminum alloy negative electrodes and lithium-magnesium alloy negative electrodes.In the case of lithium-aluminum alloy negative electrodes, during charging, lithium forms an alloy with aluminum, which is the base of the negative electrode. The dendritic growth of lithium is thereby suppressed or prevented.

このようなリチウム合金からなる負極を形成する方法と
しては、従来より、この種のりチウム合金粉末を電極形
状に加圧成形して負極端子板内に充填せしめる方法、あ
るいは予め負極端子板内にアルミニウム箔やアルミニウ
ム板などを圧着あるいはスポット溶接などしておき、そ
の後にリチウムを電着して合金化する方法などが知られ
ている。
Conventionally, methods for forming a negative electrode made of such a lithium alloy include a method in which this type of lithium alloy powder is pressure-formed into an electrode shape and filled into the negative electrode terminal plate, or a method in which aluminum is pre-filled in the negative electrode terminal plate. Known methods include crimping or spot welding foil or aluminum plates, and then electrodepositing lithium to form an alloy.

ところが、上記のリチウム合金粉末を用いる方法では、
負極の機械的強度が不足して充放電中に脱落しあるいは
容易に崩壊し易い、活物質充填密度が低いといった欠点
がある。またリチウムを電着して合金化する方法の場合
、製造に際して長時間の充電工程を要するので作業性が
悪く、製造工程の煩雑化は免れない。
However, in the above method using lithium alloy powder,
The disadvantages include that the negative electrode lacks mechanical strength and easily falls off or collapses during charging and discharging, and that the active material packing density is low. Furthermore, in the case of a method in which lithium is electrodeposited and alloyed, a long charging process is required during production, resulting in poor workability and complication of the production process.

そこで本出願人は、負極缶内に例えばリチウム板とアル
ミニウム板とを順次積重し、これらを負極缶内で熱圧着
(ホットプレス)によって合金化することで、上記の欠
点なしにリチウム合金負極の製造を行なう方法を特願昭
60−220898号として提案した。また、この方法
において多孔性の負極集電体を用いる場合、負極缶の内
底面にこの負極集電体をスポット溶接などで予め固着し
ておき、その上からリチウム板並びにアルミニウム板を
順次積重して熱圧着するなどして構成される。そしてこ
の方法に依れば、かなり簡便な工程で、機械的強度並び
に充放電における保形性の優れた負極を製造することが
できた。
Therefore, the present applicant has developed a lithium alloy negative electrode by stacking, for example, a lithium plate and an aluminum plate one after another inside the negative electrode can, and alloying them by thermocompression bonding (hot pressing) within the negative electrode can. A method for manufacturing this was proposed in Japanese Patent Application No. 60-220898. In addition, when using a porous negative electrode current collector in this method, this negative electrode current collector is fixed in advance to the inner bottom surface of the negative electrode can by spot welding, etc., and lithium plates and aluminum plates are sequentially stacked on top of it. It is constructed by heat-compression bonding. According to this method, it was possible to produce a negative electrode with excellent mechanical strength and shape retention during charging and discharging through a fairly simple process.

〈発明が解決Lノようとする問題点〉 しかしながら、上記の製造方法では、リチウム板とアル
ミニウム板とを個々に打ち扱き、これらを負極缶内で重
ね合せて用いる方法を採っていたことから、まだまだ工
程数が多くて作業の煩雑化が十分に解消されず、量産性
を十分高めることができないという問題がある。また、
リチウム板とアルミニウム板とを負極缶内に重ね合せる
際、偏心などによる位置ずれが起り易く、この位置ずれ
に伴い負極周縁部にリチウムが合金化されずに残存する
個所が生じることから、この部分におけるリチウムの樹
枝状の電析は防げず、これが電池性能劣化のI乗置とな
り、また残存したリチウムが熱圧着金型に付着するので
作業性の低下を招く等の問題がある。
<Problems to be Solved by the Invention> However, in the above manufacturing method, the lithium plate and the aluminum plate were handled individually and used by stacking them in the negative electrode can. There is still a problem that the number of steps is large, the complexity of the work cannot be sufficiently resolved, and mass productivity cannot be sufficiently increased. Also,
When stacking a lithium plate and an aluminum plate in a negative electrode can, misalignment is likely to occur due to eccentricity, and as a result of this misalignment, lithium remains unalloyed at the periphery of the negative electrode. It is not possible to prevent dendritic electrodeposition of lithium, which leads to deterioration of battery performance, and the remaining lithium adheres to the thermocompression mold, resulting in a decrease in workability.

く問題点を解決するための手段〉 この発明の非水電解液電池の製造方法は、リチウムシー
トと、リチウムと合金化可能な金属シートとを積重後に
一体に打ら1友いて所定寸法の積重体を得、この積重体
を負極端子板の内底面に載置し、次いで熱圧着により合
金化して、負極端子板内底面にリチウム合金層からなる
負極を形成することを要旨とする。
Means for Solving the Problems> The method for manufacturing a non-aqueous electrolyte battery of the present invention is to stack a lithium sheet and a metal sheet that can be alloyed with lithium and then press them together into one piece with a predetermined size. The gist is to obtain a stack, place this stack on the inner bottom surface of a negative electrode terminal plate, and then alloy it by thermocompression bonding to form a negative electrode made of a lithium alloy layer on the inner bottom surface of the negative electrode terminal plate.

〈作 用〉 上記手段を採ることで、リチウム板並びにリチウムと合
金化し易い金属板の打ち扱きを1工程でしかも連続して
行なえるので、工数の大幅な低減化が図れて量産性が向
上し、また、前)ホした如き位置ずれが生じることはな
くなる。
<Function> By employing the above method, handling of lithium plates and metal plates that are easily alloyed with lithium can be carried out in one process and continuously, thereby significantly reducing the number of man-hours and improving mass productivity. , Also, the positional deviation as described in (previous) E will no longer occur.

〈実施例〉 次に、この発明の実施例を第1図(A)〜(C)により
説明する。
<Example> Next, an example of the present invention will be described with reference to FIGS. 1(A) to 1(C).

第1図(A)のように、厚さがそれぞれ15μm、0.
1mm及び0.2mmのアルミニウムシート1、リチウ
ムシート2及びアルミニウムシート3を圧着ローラ7に
より500KMCfの条件でサンドイッチ状に圧着して
積重シート8を得、次いでこの積車シート8を打ら抜き
治具9,10によって円板状に打ち扱くと共に、この打
ち俊きにより1qた積重体14を、予めその内底面に集
電体としてステンレスネット13をスポット溶接したカ
ップ状の負極端子板12の内底面上に載置した。その後
、この負極端子板12を、その内底面に積重体14を載
置したまま第1図(B)のように熱板18の上に載せ、
また加圧板19を積重体14の上部に位置させ、140
℃、1.5 ton/cfの条件で5分間ホットプレス
し、積重体14を構成するアルミニウム層15、リチウ
ム層16並びにアルミニウム謂17を熱圧着により合金
化してリチウム−アルミニウム合金層とした。そして、
このリチウム−アルミニウム合金層を負極として用いて
、次の要領で2016型のリチウム二次電池を作った。
As shown in FIG. 1(A), the thicknesses are 15 μm and 0.0 μm, respectively.
Aluminum sheet 1, lithium sheet 2, and aluminum sheet 3 of 1 mm and 0.2 mm are pressed in a sandwich shape using a pressure roller 7 at 500 KMCf to obtain a stacked sheet 8, and then this stacked sheet 8 is punched and cured. The stacked body 14, which has been pounded into a disk shape by the tools 9 and 10, is made into a cup-shaped negative electrode terminal plate 12 with a stainless steel net 13 spot-welded as a current collector on the inner bottom surface of the stacked body 14. It was placed on the inner bottom surface. Thereafter, this negative electrode terminal plate 12 is placed on the hot plate 18 as shown in FIG. 1(B) with the stacked body 14 placed on the inner bottom surface thereof.
In addition, the pressure plate 19 is located on the upper part of the stack 14,
C. and 1.5 ton/cf for 5 minutes, and the aluminum layer 15, lithium layer 16, and so-called aluminum 17 constituting the stack 14 were alloyed by thermocompression bonding to form a lithium-aluminum alloy layer. and,
Using this lithium-aluminum alloy layer as a negative electrode, a 2016 type lithium secondary battery was produced in the following manner.

即ち、第1図(C)に示す通り、ステンレス製の正極缶
22の内底面に、ステンレスネット23からなる集電体
をスポット溶接し、次いで二硫化チタンを活物質とする
正極合剤24を載置し、またこの正極合剤上面にポリプ
ロピレン不織布製のセパレータ21を介して上記のリチ
ウム−アルミニウム合金負極20を固着した負極端子板
13を積重し、更に正極缶周縁と負極端子板周縁との間
にポリプロピレン製の環状ガスケット25を配し、正極
缶開口部をクリンプした。
That is, as shown in FIG. 1(C), a current collector made of stainless steel net 23 is spot-welded to the inner bottom surface of a positive electrode can 22 made of stainless steel, and then a positive electrode mixture 24 containing titanium disulfide as an active material is welded. The negative electrode terminal plate 13 to which the above lithium-aluminum alloy negative electrode 20 is fixed is stacked on the upper surface of this positive electrode mixture via a separator 21 made of polypropylene nonwoven fabric, and further the positive electrode can periphery and the negative electrode terminal plate periphery are stacked. A polypropylene annular gasket 25 was placed between them, and the opening of the positive electrode can was crimped.

尚、以上はリチウムシートの両面にそれぞれアルミニウ
ムシートを積重する例について示したが、リチウムシー
トの上面あるいは下面のいずれか一方にのみアルミニウ
ムシートを積重するようにしてもよいことは言うまでも
ない。また、リチウムシートの両面に合金化し易い金属
シートを積重する場合にも、例えばリチウムシートの上
面にはアルミニウムシートを、下面にはマグネシウムシ
ートを積重し、上記と同様の方法によってリチウム−ア
ルミニウムーマグネシウム合金負極を作るようにしても
よいことは勿論である。更に、実施例ではこれらシート
を積重後に圧着しているが、圧着を行なうことなく、積
重後直ちに一体に打ち扱くようにしてもよい。
Although the example above has been shown in which aluminum sheets are stacked on both sides of the lithium sheet, it goes without saying that the aluminum sheets may be stacked only on either the top or bottom surface of the lithium sheet. Also, when stacking metal sheets that are easy to alloy on both sides of a lithium sheet, for example, stack an aluminum sheet on the top surface of the lithium sheet and a magnesium sheet on the bottom surface, and use the same method as above to stack the lithium-aluminum sheet. Of course, a Mu-magnesium alloy negative electrode may be made. Further, in the embodiment, these sheets are crimped after being stacked, but they may be handled as one body immediately after being stacked without being crimped.

〈発明の効果〉 以上のように構成されるこの発明の製造方法によれば、
リチウム板並びにリチウムと合金化し易い金属板の打ら
扱きを1工程で連続して行なえ、工数の低減化及び量産
性の向上が図れることは勿論、リチウム板と上記金属板
との位置ずれがなくなり、この種の位置ずれに起因する
電池放電性能の劣化などを防ぐことができるという効果
を奏し、その工業上の利用価値は大きい。
<Effects of the Invention> According to the manufacturing method of the present invention configured as described above,
The lithium plate and the metal plate that is easily alloyed with lithium can be hammered and handled continuously in one process, which not only reduces man-hours and improves mass production, but also eliminates misalignment between the lithium plate and the metal plate. , it has the effect of being able to prevent deterioration of battery discharge performance caused by this type of positional shift, and has great industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)はこの発明の実施例の方法の工程
の説明図である。 1.3・・・アルミニウムシート、2・・・リチウムシ
ート、7・・・圧着ローラ、12・・・負極端子板、2
0・・・リチウム−アルミニウム合金負極、22・・・
正極缶。
FIGS. 1(A) to 1(C) are explanatory diagrams of steps of a method according to an embodiment of the present invention. 1.3... Aluminum sheet, 2... Lithium sheet, 7... Pressure roller, 12... Negative terminal plate, 2
0... Lithium-aluminum alloy negative electrode, 22...
Positive electrode can.

Claims (1)

【特許請求の範囲】 1、リチウムシートと、リチウムと合金化可能な金属シ
ートとを積重後に一体に打ち抜いて所定寸法の積重体を
得、この積重体を負極端子板の内底面に載置し、次いで
熱圧着により合金化して、負極端子板内底面にリチウム
合金層からなる負極を形成することを特徴とする非水電
解液二次電池用負極の製造方法。 2、前記リチウムシートと前記金属シートとを積重後加
圧により圧着し、その後にこれらを一体に打ち抜いてな
ることを特徴とする特許請求の範囲第1項記載の製造方
法。 3、前記負極端子板として、内底面に多孔性の集電体を
固着したものを用い、この集電体の上から前記積重体を
負極端子板内底面に載置してなることを特徴とする特許
請求の範囲第1項または第2項記載の製造方法。 4、リチウムシートの両面にそれぞれ金属シートを積重
することを特徴とする特許請求の範囲第1項、第2項ま
たは第3項記載の製造方法。
[Claims] 1. After stacking a lithium sheet and a metal sheet that can be alloyed with lithium, punch them together to obtain a stack of predetermined dimensions, and place this stack on the inner bottom surface of the negative terminal plate. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising: then alloying by thermocompression bonding to form a negative electrode made of a lithium alloy layer on the inner bottom surface of a negative electrode terminal plate. 2. The manufacturing method according to claim 1, wherein the lithium sheet and the metal sheet are stacked and bonded together by pressure, and then punched out as one piece. 3. The negative electrode terminal plate is characterized by using a porous current collector fixed to the inner bottom surface, and placing the stacked body on the inner bottom surface of the negative electrode terminal plate from above the current collector. A manufacturing method according to claim 1 or 2. 4. The manufacturing method according to claim 1, 2, or 3, characterized in that metal sheets are stacked on both sides of the lithium sheet.
JP62033943A 1987-02-17 1987-02-17 Manufacture of negative electrode for nonaqueous electrolyte secondary battery Pending JPS63202851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033943A JPS63202851A (en) 1987-02-17 1987-02-17 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033943A JPS63202851A (en) 1987-02-17 1987-02-17 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS63202851A true JPS63202851A (en) 1988-08-22

Family

ID=12400589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033943A Pending JPS63202851A (en) 1987-02-17 1987-02-17 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS63202851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215044A (en) * 1989-02-15 1990-08-28 Sanyo Electric Co Ltd Manufacture of lithium alloy plate and device therefor
JPH0632362A (en) * 1992-05-11 1994-02-08 Emerson Electric Co Safety releief device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981743A (en) * 1975-06-06 1976-09-21 Esb Incorporated Method of preparing a lithium-aluminum electrode
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode
JPS62123663A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Manufacture of lithium secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981743A (en) * 1975-06-06 1976-09-21 Esb Incorporated Method of preparing a lithium-aluminum electrode
JPS5375434A (en) * 1976-12-15 1978-07-04 Exxon Research Engineering Co Method of manufacturing lithiummaluminum alloy electrode
JPS62123663A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Manufacture of lithium secondary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215044A (en) * 1989-02-15 1990-08-28 Sanyo Electric Co Ltd Manufacture of lithium alloy plate and device therefor
JPH0632362A (en) * 1992-05-11 1994-02-08 Emerson Electric Co Safety releief device

Similar Documents

Publication Publication Date Title
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP2002270148A (en) Manufacturing method of cylinder sealing type lithium secondary battery and lithium secondary battery
JPS63202851A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP3178064B2 (en) Manufacturing method of electrode plate for lead-acid battery
CN112753121B (en) All-solid battery
JP2002170531A (en) Tubular secondary battery
JPS62119877A (en) Manufacture of negative electrode for secondary cell of nonaqueous electrolytic solution
JPS6334591B2 (en)
JP3264339B2 (en) Method of manufacturing lithium battery
JPS62103968A (en) Nonaqueous electrolyte secondary cell
JPH0821425B2 (en) Method for manufacturing flat lithium secondary battery
JPS62226562A (en) Nonaqueous electrolyte secondary battery
JPS62123663A (en) Manufacture of lithium secondary cell
JPS63181274A (en) Manufacture of lithium secondary battery
US8535824B1 (en) Electrochemical device having electrode in communication with clad tab
JPS63105476A (en) Manufacture of lithium secondary battery
JPH03182059A (en) Secondary battery with non-aqueous electrolytic solution
JP2661407B2 (en) Cathode plate for lead-acid battery and method of manufacturing cathode plate for lead-acid battery
JPS599863A (en) Manufacture of electrode for solid electrolyte battery
JPH04328276A (en) Manufacture of lithium alloy negative electrode for nonaqueous electrolyte secondary battery
JPH046120Y2 (en)
JPS61281475A (en) Manufacture of chargeable electrochemical device
JPH04179067A (en) Manufacture of coin type li secondary battery
CN117497965A (en) Method for mounting current collecting disc of full-tab battery