JPH0746602B2 - Method for manufacturing lithium organic secondary battery - Google Patents

Method for manufacturing lithium organic secondary battery

Info

Publication number
JPH0746602B2
JPH0746602B2 JP60050168A JP5016885A JPH0746602B2 JP H0746602 B2 JPH0746602 B2 JP H0746602B2 JP 60050168 A JP60050168 A JP 60050168A JP 5016885 A JP5016885 A JP 5016885A JP H0746602 B2 JPH0746602 B2 JP H0746602B2
Authority
JP
Japan
Prior art keywords
lithium
aluminum
plate
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60050168A
Other languages
Japanese (ja)
Other versions
JPS61208748A (en
Inventor
一三 由光
耕三 梶田
俊勝 真辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP60050168A priority Critical patent/JPH0746602B2/en
Publication of JPS61208748A publication Critical patent/JPS61208748A/en
Publication of JPH0746602B2 publication Critical patent/JPH0746602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリチウム有機二次電池の製造方法に関する。The present invention relates to a method for manufacturing a lithium organic secondary battery.

〔従来の技術〕[Conventional technology]

従来、リチウム有機二次電池の負極には金属リチウムが
単体で用いられていたが、充電時の析出リチウムが非常
に活性で電解液と反応したり、あるいは析出リチウムの
デンドライト成長のため内部短絡を起こすなどの問題が
あった。その改良として、リチウム合金を負極に用いる
ことが提案されている。たとえば特開昭52-5423号公
報、特開昭59-130074号公報、特開昭59-163755号公報な
どに上記提案がなされているが、それらの公報に示され
るものは主としてリチウム合金の材料や合金組成に関す
るものである。
Conventionally, metallic lithium was used alone for the negative electrode of a lithium organic secondary battery, but the deposited lithium during charging is very active and reacts with the electrolytic solution, or an internal short circuit occurs due to dendrite growth of the deposited lithium. There was a problem such as waking up. As an improvement, it has been proposed to use a lithium alloy for the negative electrode. For example, the above-mentioned proposals have been made in JP-A-52-5423, JP-A-59-130074, JP-A-59-163755, etc., but those disclosed in these publications are mainly lithium alloy materials. And alloy composition.

そこで、本発明者らは、リチウム合金をリチウム二次電
池の負極として使用する際にリチウム板とアルミニウム
板とを重ね合わせて電池に組み込み、電解液の存在下で
電気化学的合金化を行う方法を検討し、冶金学合金化に
よる方法よりも容易な方法でリチウム有機二次電池を得
てきた(たとえば特願昭59-195337号)。
Therefore, the present inventors have proposed a method of stacking a lithium plate and an aluminum plate in a battery when the lithium alloy is used as a negative electrode of a lithium secondary battery, incorporating the lithium plate into the battery, and performing electrochemical alloying in the presence of an electrolytic solution. And obtained a lithium organic secondary battery by an easier method than the method by metallurgy alloying (for example, Japanese Patent Application No. 59-195337).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記のようにアルミニウム板にリチウム
板を片側から圧着して負極缶に挿入し、電解液を入れる
という方法では、負極が厚くなった場合、リチウムとア
ルミニウムとの電気化学的合金化による体積増加の影響
が大きく現れて、負極が第3図に示すような状態から第
4図に示すような状態に変化し、セパレータ4を押圧し
て短絡を引き起こす原因となり、また正極缶8を変形さ
せて電池総高不良が発生するなどの問題がある。
However, as described above, when the lithium plate is pressure-bonded to the aluminum plate from one side and inserted into the negative electrode can, and the electrolytic solution is added, when the negative electrode becomes thick, the volume due to electrochemical alloying of lithium and aluminum is increased. The effect of the increase greatly appears, and the state of the negative electrode changes from the state shown in FIG. 3 to the state shown in FIG. 4, causing the short circuit by pressing the separator 4 and deforming the positive electrode can 8. Therefore, there is a problem that the total height of the battery is defective.

これを詳細に説明すると、リチウム板とアルミニウム板
とを重ね合わせて電池内で電気化学的反応により合金化
させる場合、通常、アルミニウム板3b1を負極缶1側、
リチウム板3aをセパレータ4側に配置する。これはアル
ミニウム板3b1をセパレータ4側に配置すると、もしア
ルミニウムとリチウムとの電気化学的合金化が完全に進
行せず、アルミニウムが残った場合(リチウムの使用割
合が約48原子%以上ではリチウムとアルミニウムとの合
金化が完全に進行して、アルミニウムが残らないが、リ
チウムの使用割合が少なくなって、アルミニウムの使用
割合が約52原子%を超えるとアルミニウムは完全には合
金化せず、アルミニウムの一部が残るようになる)、こ
のアルミニウム板3b1を介して電池反応が進行するの
で、分極が高くなるからである。そこで、上述のように
アルミニウム板3b1を負極缶1側、リチウム板3aをセパ
レータ4側に配置して、電解液を注入するとリチウム板
3a近くのアルミニウムがリチウムと合金化してリチウム
−アルミニウム合金層3cが形成され、この部分の体積増
加が大きく、リチウム−アルミニウム合金層3cの中央部
がセパレータ4側に膨れ出していく。そのため前記のよ
うな負極3によるセパレータ4の押圧、正極缶8の変形
が生じて短絡の発生や電池総高不良の発生が生じるので
ある。
Explaining this in detail, when a lithium plate and an aluminum plate are superposed and alloyed by an electrochemical reaction in the battery, usually, the aluminum plate 3b 1 is placed on the negative electrode can 1 side,
The lithium plate 3a is placed on the separator 4 side. This is because when the aluminum plate 3b 1 is placed on the side of the separator 4, if the electrochemical alloying of aluminum and lithium does not proceed completely and aluminum remains (when the proportion of lithium used is about 48 atomic% or more, And aluminum is completely alloyed, aluminum does not remain, but when the usage rate of lithium decreases and the usage rate of aluminum exceeds about 52 atom%, aluminum does not completely alloy, This is because a part of the aluminum will remain), and the cell reaction proceeds through the aluminum plate 3b 1 , so that the polarization becomes high. Therefore, as described above, the aluminum plate 3b 1 is arranged on the side of the negative electrode can 1 and the lithium plate 3a is arranged on the side of the separator 4, and when the electrolyte is injected, the lithium plate
Aluminum near 3a is alloyed with lithium to form a lithium-aluminum alloy layer 3c, and the volume of this portion increases greatly, and the central portion of the lithium-aluminum alloy layer 3c bulges toward the separator 4 side. Therefore, the pressing of the separator 4 by the negative electrode 3 and the deformation of the positive electrode can 8 occur as described above, so that a short circuit occurs and a total battery height defect occurs.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上述した問題点を解決するもので、リチウ
ム板と、アルミニウム板と、リチウム板とを、リチウム
板とアルミニウム板との間に電解液を介在させつつ、積
み重ね、電解液の存在下でリチウムとアルミニウムとを
電気化学的に合金化させて負極を作製することにより、
合金化による体積増加が一方に片寄るのを防止して、合
金化による体積増加に基づく内部短絡の発生や電池の総
高変化を防止しつつ、リチウムとアルミニウムとの電気
化学的合金化を速やかに進行させて負極を速やかに作製
するようにしたものである。
This invention solves the above-mentioned problems, and stacks a lithium plate, an aluminum plate, and a lithium plate while interposing an electrolytic solution between the lithium plate and the aluminum plate, and in the presence of the electrolytic solution. By electrochemically alloying lithium and aluminum with to produce a negative electrode,
Prevents the volume increase due to alloying from shifting to one side, and prevents the internal short circuit and the total height change of the battery due to the volume increase due to alloying, while rapidly electrochemically alloying lithium and aluminum. It is made to proceed so that the negative electrode is promptly produced.

すなわち、上記のようにアルミニウム板の両側にリチウ
ム板が配置していると、リチウムとアルミニウムとの合
金化がアルミニウム板の両側から進行するので、体積増
加が一方に片寄るのが抑制されるようになる。また、リ
チウム板とアルミニウム板との間に電解液が介在するこ
とによって、リチウム板とアルミニウム板との電気化学
的合金化が速やかに進行するようになり、負極の作製が
速くなる。
That is, when the lithium plates are arranged on both sides of the aluminum plate as described above, alloying of lithium and aluminum proceeds from both sides of the aluminum plate, so that the volume increase is prevented from deviating to one side. Become. In addition, since the electrolytic solution is interposed between the lithium plate and the aluminum plate, electrochemical alloying of the lithium plate and the aluminum plate will proceed rapidly, and the production of the negative electrode will be accelerated.

アルミニウム板とを積み重ねるにあたっては、その間に
電解液を介在させる。これは電解液を介在させると両者
の電気化学的合金化反応が速やかに進行するからであ
る。そして、そのように電解液を介在させるのを容易に
する手段として、アルミニウム板のリチウム板との接触
面を研摩などにより荒らしておくことが好ましい。これ
はリチウム板の方を荒らすとリチウムが柔らかいため、
せっかく荒らした部分が取扱中に消滅し、所望する目的
が達成できなくなるが、アルミニウムの方はリチウムに
比べて硬く、荒らした部分が残りやすいからである。
When stacking the aluminum plates, an electrolytic solution is interposed therebetween. This is because the electrochemical alloying reaction of both proceeds rapidly when an electrolytic solution is interposed. Then, as a means for facilitating the interposition of the electrolytic solution, it is preferable to roughen the contact surface of the aluminum plate with the lithium plate by polishing or the like. This is because lithium is soft when the lithium plate is roughened,
This is because the roughened portion disappears during handling and the desired purpose cannot be achieved, but aluminum is harder than lithium and the roughened portion is likely to remain.

リチウムと、アルミニウムとの使用割合は、後者の種類
によっても若干異なるが、通常、リチウムが原子%で全
体中の30〜58%にするのが好ましい。これはリチウムの
使用割合が前記範囲より多くなると充放電サイクルの充
電時に分極しない、つまり、局部的な内部短絡(Soft s
horting)が発生するようになり、またリチウムの使用
割合が前記範囲より少なくなると三層構造の中央に合金
化しないアルミニウムの層が厚く残り、電池特性、特に
充放電特性において、負極缶側のリチウム−アルミニウ
ム合金中のリチウムが放電に使用できない状態になる
か、あるいはたとえ使用できても分極が大になるからで
ある。そして、このリチウムと、アルミニウムとの使用
割合の管理は、通常リチウム板およびアルミニウム板と
の厚みを管理することによって行われる。
The proportion of lithium and aluminum used varies slightly depending on the type of the latter, but it is usually preferable that the proportion of lithium is 30 to 58% of the total lithium in atomic%. This is because when the usage rate of lithium exceeds the above range, it does not polarize during charging in the charge / discharge cycle, that is, a local internal short circuit (Soft s
horting), and when the proportion of lithium used is less than the above range, a layer of unalloyed aluminum remains thick in the center of the three-layer structure, and in the battery characteristics, especially the charge / discharge characteristics, lithium on the negative electrode can side This is because the lithium in the aluminum alloy becomes unusable for discharge, or even if it can be used, the polarization becomes large. The control of the usage ratio of lithium and aluminum is usually performed by controlling the thickness of the lithium plate and the aluminum plate.

なお、リチウムと、アルミニウムとの電解液の存在下で
の電気化学的合金化は、通常、電池内で行われるが、電
池外で合金化を行い、それを電池内に充填するようにし
てもよい。
Incidentally, the electrochemical alloying of lithium and aluminum in the presence of the electrolytic solution is usually performed in the battery, but even if the alloying is performed outside the battery and it is filled in the battery. Good.

本発明において、正極活物質は二次電池の正極活物質と
して使用可能なものであればいずれも用いる用い得る
が、たとえば二硫化チタン(TiS2)、二硫化モリブデン
(MoS2)、三硫化モリブデン(MoS3)、二硫化鉄(Fe
S2)、硫化ジルコニウム(ZrS2)、二硫化ニオブ(Nb
S2)、三硫化リンニッケル(NiPS3)、バナジウムセレ
ナイド(VSe2)などの遷移金属のカルコゲン化物が二次
電池特性が優れていることから好ましい。特に二硫化チ
タンは層状構造を有し、その中でのリチウムの拡散定数
が非常に大きいことから、好適に用いられる。
In the present invention, any positive electrode active material may be used as long as it can be used as a positive electrode active material of a secondary battery. For example, titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), molybdenum trisulfide is used. (MoS 3 ), iron disulfide (Fe
S 2 ), zirconium sulfide (ZrS 2 ), niobium disulfide (Nb
S 2), trisulfide phosphorous nickel (NiPS 3), preferable from the chalcogenide of a transition metal such as vanadium selenide (VSe 2) has excellent secondary battery characteristics. In particular, titanium disulfide has a layered structure and has a very large diffusion constant of lithium therein, and is therefore preferably used.

電解液としては、この種の電池に通常用いられるリチウ
ムイオン伝導性の有機電解質溶液、たとえば1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、プロピレンカ
ーボネート、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソランなどの単独または
2種以上の混合溶媒に、たとえばLiClO4、LiPF6、LiB
F4、LiB(C6H5)4などの電解質を1種または2種以上溶解
した有機電解質溶液が用いられる。また上記有機電解質
溶液中にはLiPF6などの安定性に欠ける電解質の分解を
抑制するためにヘキサメチルホスホリックトリアミドな
どの安定剤を含有させてもよい。
As the electrolytic solution, a lithium ion conductive organic electrolyte solution usually used for batteries of this type, for example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyl Tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane and the like alone or in a mixed solvent of two or more kinds, for example LiClO 4 , LiPF 6 , LiB
An organic electrolyte solution in which one or more electrolytes such as F 4 and LiB (C 6 H 5 ) 4 are dissolved is used. Further, the organic electrolyte solution may contain a stabilizer such as hexamethylphosphoric triamide in order to suppress decomposition of the electrolyte such as LiPF 6 which lacks stability.

〔実施例〕〔Example〕

つぎに、実施例をあげて本発明をさらに詳細に説明す
る。
Next, the present invention will be described in more detail with reference to examples.

第1図は本発明のリチウム有機二次電池の一例を示すも
ので、図中、1は負極缶であり、この負極缶1はステン
レス鋼製で表面をニッケルメッキしたものである。2は
負極缶1の内面にスポット溶接されたステンレス鋼製の
集電網である。3は負極であり、負極3はリチウム板3a
と、アルミニウム板3bと、リチウム板3aとを、リチウム
板3aとアルミニウム板3bとの間に電解液を介在させつ
つ、積み重ねて電池に組み込み、電解液の存在下で電気
化学的に合金化させたものであるが、図面では理解しや
すいように合金化が進行する前の状態で示している。
FIG. 1 shows an example of the lithium organic secondary battery of the present invention. In the figure, 1 is a negative electrode can, and this negative electrode can 1 is made of stainless steel and has a surface plated with nickel. Reference numeral 2 denotes a stainless steel collector net spot-welded to the inner surface of the negative electrode can 1. 3 is a negative electrode, and the negative electrode 3 is a lithium plate 3a
The aluminum plate 3b and the lithium plate 3a are stacked and assembled in a battery while interposing the electrolytic solution between the lithium plate 3a and the aluminum plate 3b, and electrochemically alloyed in the presence of the electrolytic solution. However, in the drawing, it is shown in a state before alloying progresses for easy understanding.

4はセパレータで、このセパレータ4は微孔性ポリプロ
ピレンフィルムよりなり、5は電解液吸収体であって、
ポリプロピレン不織布よりなるものである。6は二硫化
チタンを活物質とする合剤をペレット状に加圧成形して
なる正極で、7はステンレス鋼製の集電網であり、8は
ステンレス鋼製で表面にニッケルメッキが施された正極
缶で、9はポリプロピレン製の環状ガスケットである。
そして、この電池の電解液には4−メチル−1,3−ジオ
キソラン66.6容量%、1,2−ジメトキシエタン28.2容量
%およびヘキサメチルホスホリックトリアミド5.2容量
%からなる混合溶媒にLiPF6を1モル/l溶解した有機電
解質溶液が用いられている。なお、電池組立にあたり、
アルミニウム板3bの表面は研摩して粗面にされている。
4 is a separator, this separator 4 is a microporous polypropylene film, 5 is an electrolyte solution absorber,
It is made of polypropylene non-woven fabric. Reference numeral 6 is a positive electrode formed by pressure-molding a mixture containing titanium disulfide as an active material into pellets, 7 is a stainless steel collector net, and 8 is stainless steel and the surface is nickel-plated. A positive electrode can 9 is an annular gasket made of polypropylene.
Then, in the electrolyte of this battery, 1 LiPF 6 was added to a mixed solvent consisting of 66.6% by volume of 4-methyl-1,3-dioxolane, 28.2% by volume of 1,2-dimethoxyethane and 5.2% by volume of hexamethylphosphoric triamide. A mol / l dissolved organic electrolyte solution is used. In addition, when assembling the battery,
The surface of the aluminum plate 3b is polished to a rough surface.

実施例1 負極材料として、厚さ0.12mmのリチウム板2枚と、厚さ
0.25mmのアルミニウム板とを用意した。リチウムとアル
ミニウムとの使用割合は原子比で42.5:57.5である。ア
ルミニウム板の表面はフィニシングテープ(Finishing
Tape、商品名)、タイプ(Type)WA4000によって研摩し
て表面を荒らしておいた。
Example 1 As a negative electrode material, two lithium plates having a thickness of 0.12 mm and a thickness of
A 0.25 mm aluminum plate was prepared. The atomic ratio of lithium to aluminum is 42.5: 57.5. The surface of the aluminum plate has a finishing tape (Finishing
The surface was roughened by polishing with Tape (trade name), Type WA4000.

つぎに、負極缶にリチウム板を圧着し、電解液の一部を
注入し、ついでその上にアルミニウム板を積み重ね、さ
らに電解液を注入し、その上にリチウム板を積み重ね、
ついでセパレータ、電解液吸収体を重ねて、さらに電解
液を注入した。ついでその上に正極を載置し、正極缶を
嵌合し、以後常法により第1図に示すようなリチウム有
機二次電池を製造した。
Next, a lithium plate was pressure-bonded to the negative electrode can, a part of the electrolytic solution was injected, then an aluminum plate was stacked on it, and then the electrolytic solution was injected, and a lithium plate was stacked on it.
Next, the separator and the electrolyte solution absorber were overlaid, and the electrolyte solution was further injected. Then, the positive electrode was placed thereon, the positive electrode can was fitted, and thereafter, a lithium organic secondary battery as shown in FIG. 1 was manufactured by a conventional method.

比較例1 負極材料として厚さ0.25mmのアルミニウム板と厚さ0.24
mmのリチウム板を用い、負極缶側にアルミニウム板を、
セパレータ側にリチウム板を配置して負極を作製したほ
かは実施例1と同様にしてリチウム有機二次電池を製造
した。リチウムとアルミニウムの使用割合は実施例1の
場合と同様に原子比で42.5:57.5である。
Comparative Example 1 As a negative electrode material, an aluminum plate having a thickness of 0.25 mm and a thickness of 0.24
Using a lithium plate of mm, an aluminum plate on the negative electrode can side,
A lithium organic secondary battery was produced in the same manner as in Example 1 except that a lithium plate was placed on the separator side to produce a negative electrode. The ratio of lithium to aluminum used is 42.5: 57.5 in atomic ratio as in the case of Example 1.

上記実施例1の電池および比較例1の電池の組立後の電
池総高の平均値(測定対象電池個数は各電池とも100個
ずつ)と内部短絡発生率を調べた結果を第1表に示す。
各電池とも設計総高は1.93±0.06mmである。
Table 1 shows the results of examining the average value of the total cell height after assembly of the battery of Example 1 and the battery of Comparative Example 1 (the number of batteries to be measured is 100 for each battery) and the internal short-circuit occurrence rate. .
The total design height of each battery is 1.93 ± 0.06 mm.

また、実施例1の電池および比較例1の電池を放電電流
2.5mA/cm2、充電電流2.5mA/cm2で放電1.5V〜充電2.5Vの
電圧範囲で充放電させた際のサイクル数と充放電比(各
サイクルの充電電気量/各サイクルの放電電気量の比、
この値が1になるのが理想であり、1より大きいと内部
短絡をしている可能性がある)の関係を第2図に示す。
In addition, the discharge current of the battery of Example 1 and the battery of Comparative Example 1
2.5mA / cm 2 , charging current 2.5mA / cm 2 discharge cycle 1.5V ~ charge 2.5V cycle charge and discharge cycle ratio and charge / discharge ratio (charge amount of each cycle / discharge electricity of each cycle) Quantity ratio,
It is ideal that this value be 1, and if it is larger than 1, there is a possibility of internal short circuit).

第1表に示すように、実施例1の電池は比較例1の電池
に比べて電池総高が低く、組立後の内部短絡発生率も少
ない。また第2図に示すように、実施例1の電池はいず
れも充放電比が1に近いが比例例1の電池は充放電比が
大きい。これは内部短絡が発生しているためであると考
えられる。
As shown in Table 1, the battery of Example 1 has a lower total battery height than the battery of Comparative Example 1, and the occurrence rate of internal short circuit after assembly is low. Further, as shown in FIG. 2, the batteries of Example 1 all have a charge / discharge ratio close to 1, but the battery of Proportional Example 1 has a large charge / discharge ratio. This is probably because an internal short circuit has occurred.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、組立後の内部短
絡の発生や電池総高不良の発生が少なく、充放電特性の
優れたリチウム有機二次電池が提供される。
As described above, according to the present invention, a lithium organic secondary battery having excellent charge / discharge characteristics, which is less likely to cause an internal short circuit after assembly and cause a total battery height defect, is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るリチウム有機二次電池の一例を示
す断面図で、第2図は本発明の実施例1の電池と比較例
1の電池のサイクル数と充放電比との関係を示す図であ
る。第3〜4図は従来のリチウム有機二次電池を示す断
面図で、第3図はリチウムとアルミニウムとが電気化学
的合金化を起こす前の状態を示し、第4図はリチウムと
アルミニウムの一部とが電気化学的合金化を起こした状
態を示す。 3……負極、3a……リチウム板、3b……アルミニウム
板、4……セパレータ、6……正極
FIG. 1 is a cross-sectional view showing an example of the lithium organic secondary battery according to the present invention, and FIG. 2 shows the relationship between the cycle number and the charge / discharge ratio of the battery of Example 1 of the present invention and the battery of Comparative Example 1. FIG. 3 to 4 are sectional views showing a conventional lithium organic secondary battery, FIG. 3 shows a state before lithium and aluminum electrochemically alloy, and FIG. 4 shows one of lithium and aluminum. The parts and parts indicate a state where electrochemical alloying has occurred. 3 ... Negative electrode, 3a ... Lithium plate, 3b ... Aluminum plate, 4 ... Separator, 6 ... Positive electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム板と、アルミニウム板と、リチウ
ム板とを、リチウム板とアルミニウム板との間に電解液
を介在させつつ、積み重ね、電解液の存在下でリチウム
とアルミニウムとを電気化学的に合金化させて負極を作
製することを特徴とするリチウム有機二次電池の製造方
法。
1. A lithium plate, an aluminum plate, and a lithium plate are stacked while an electrolytic solution is interposed between the lithium plate and the aluminum plate, and lithium and aluminum are electrochemically mixed in the presence of the electrolytic solution. A method for manufacturing a lithium organic secondary battery, which comprises alloying the above with a negative electrode.
JP60050168A 1985-03-12 1985-03-12 Method for manufacturing lithium organic secondary battery Expired - Lifetime JPH0746602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050168A JPH0746602B2 (en) 1985-03-12 1985-03-12 Method for manufacturing lithium organic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050168A JPH0746602B2 (en) 1985-03-12 1985-03-12 Method for manufacturing lithium organic secondary battery

Publications (2)

Publication Number Publication Date
JPS61208748A JPS61208748A (en) 1986-09-17
JPH0746602B2 true JPH0746602B2 (en) 1995-05-17

Family

ID=12851668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050168A Expired - Lifetime JPH0746602B2 (en) 1985-03-12 1985-03-12 Method for manufacturing lithium organic secondary battery

Country Status (1)

Country Link
JP (1) JPH0746602B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119171A (en) * 1986-11-07 1988-05-23 Sanyo Electric Co Ltd Nonaqueous type secondary battery
JPS63181274A (en) * 1987-01-22 1988-07-26 Hitachi Maxell Ltd Manufacture of lithium secondary battery
JPS63224150A (en) * 1987-03-11 1988-09-19 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2771579B2 (en) * 1989-02-15 1998-07-02 三洋電機株式会社 Manufacturing method of lithium alloy plate
JP2771580B2 (en) * 1989-02-15 1998-07-02 三洋電機株式会社 Manufacturing method of lithium alloy plate
JP2022088261A (en) * 2020-12-02 2022-06-14 住友化学株式会社 Metal negative electrode, lithium secondary battery, battery system, and metal negative electrode manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056885A (en) * 1976-12-15 1977-11-08 Exxon Research & Engineering Co. Method of preparing lithium-aluminum alloy electrodes
JPS59146157A (en) * 1983-02-07 1984-08-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JPS61208748A (en) 1986-09-17

Similar Documents

Publication Publication Date Title
US6551747B1 (en) Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH07114124B2 (en) Non-aqueous electrolyte secondary battery
CN107437609B (en) Rechargeable electrochemical lithium ion battery cell
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH0746602B2 (en) Method for manufacturing lithium organic secondary battery
JPH0665044B2 (en) Lithium organic primary battery
JPH0425676B2 (en)
JP3349362B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS62139276A (en) Lithium secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPH0719594B2 (en) Lithium organic secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPS60170172A (en) Rechargeable electrochemical device
JP3311550B2 (en) Lithium secondary battery
JPH0588506B2 (en)
JP2771580B2 (en) Manufacturing method of lithium alloy plate
JPS62123651A (en) Lithium secondary battery
JPH0434844A (en) Nonaqueous system secondary battery
JPH06231755A (en) Button type lithium organic secondary battery and its manufacture
JPS62150657A (en) Secondary cell
JPS6174258A (en) Lithium organic secondary battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JPH03272571A (en) Manufacture of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term