JPS62113802A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS62113802A
JPS62113802A JP25405285A JP25405285A JPS62113802A JP S62113802 A JPS62113802 A JP S62113802A JP 25405285 A JP25405285 A JP 25405285A JP 25405285 A JP25405285 A JP 25405285A JP S62113802 A JPS62113802 A JP S62113802A
Authority
JP
Japan
Prior art keywords
turbine blade
hardened layer
front edge
blade
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25405285A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
泰宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25405285A priority Critical patent/JPS62113802A/en
Publication of JPS62113802A publication Critical patent/JPS62113802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve antierosion property, by furnishing a hardened layer, which is flame-quenched after thermal spraying the powder composed of Ni, Cr, Fe, Si, and B, at least at the front edge of the top of a turbine blade made of a titanium type alloy. CONSTITUTION:At least at the front edge of the top of a turbine blade 1, which is made of a titanium type alloy and formed by a mechanical process or a precision forging, a powder consisting of 10-25% of Cr, 1-8% of Fe, 1-5% of B, 1-2% of Co, and the remaining % of Ni, of a specific meshes, is thermal sprayed by a plasma spraying, for example, in a thickness more than about 120mum. To increase the density of the sprayed layer, it is preheated at 100-1,200 deg.C for 1-30min by a gas burner or the like to form a hardened layer 2 at the front edge of the blade top. Therefore, the antierosion property of the front edge of the blade top can be improved by forming such a hardened layer 2, and the service life can be extended.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はチタン系合金からなるタービン動翼の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in turbine rotor blades made of titanium-based alloys.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、発電効率の改善等にともない蒸気タービンの低圧
側では長大なタービン翼が必要となり、材料に要求され
る特性はより苛酷となっている。
In recent years, as power generation efficiency has improved, longer turbine blades have become necessary on the low-pressure side of steam turbines, and the properties required of materials have become more severe.

従来、蒸気タービン翼材料としては12Cr鋼が用いら
れていたが、12Cr鋼では上記の制約条件下では強度
不足が生じ、かつロータへの負荷が過大となり、今後の
大型化へは適用が困難であった。
Conventionally, 12Cr steel has been used as a material for steam turbine blades, but 12Cr steel lacks strength under the above-mentioned constraint conditions, and the load on the rotor becomes excessive, making it difficult to apply to future larger scale applications. there were.

この様な点から比強度(強度/比重)の大きいチタン合
金の翼材料への適用が進んでいる。つまり、チタン合金
の強度は従来の12Cr鋼と同程度であり、さらに、比
強度が高いため翼の回転による遠心力が低減され、ロー
タへの過負荷の問題も除かれる。このように、チタン合
金は今後の翼の長大化にともない実用上有効なものであ
る。
For these reasons, titanium alloys with high specific strength (strength/specific gravity) are increasingly being applied to blade materials. In other words, the strength of the titanium alloy is comparable to that of conventional 12Cr steel, and furthermore, its high specific strength reduces the centrifugal force caused by the rotation of the blades, eliminating the problem of overload on the rotor. In this way, titanium alloys will be practically effective as blades become longer in the future.

一方、低圧部では、作動時の蒸気流中に含まれる凝縮水
滴の高速衝突によるエロージョン損耗が著しいため、従
来の12Cr鋼をタービン翼材として用いた場合は耐エ
ロージヨン性の優れたステライト合金等をエロージョン
シールドとして翼先端前縁部にロウ付または溶接等を施
し保護している。
On the other hand, in the low-pressure section, erosion wear is significant due to high-speed collisions of condensed water droplets contained in the steam flow during operation, so when conventional 12Cr steel is used as the turbine blade material, a material such as stellite alloy with excellent erosion resistance is used. The leading edge of the wing tip is protected by brazing or welding as an erosion shield.

しかし、上記チタン系合金をタービン翼材として用い、
そのエロージョンシールド材としてステライトを用いた
場合、ロウ付では接合部の強度が不足し、溶接ではその
接合部は溶接脆化が生じ易く、いずれも使用上問題があ
る。
However, when the above titanium alloy is used as a turbine blade material,
When Stellite is used as the erosion shielding material, the strength of the joint is insufficient when brazed, and the joint tends to become brittle when welded, both of which pose problems in use.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、チタン合金
からなるタービン翼の少なくとも翼先端前縁部に硬化層
を設け、優れた耐エロージヨン性を有するタービン翼を
提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a turbine blade made of a titanium alloy with a hardened layer on at least the leading edge of the blade tip, and which has excellent erosion resistance. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、機械加工あるいは精
密鍛造したチタン系合金からなるタービン翼の翼先端前
縁部に、N i、 Cr、l:6. Si、Bからなる
粉末を溶射した後火炎焼入れにより形成した硬化層を設
けたことを特徴とする。
In order to achieve the above object, the present invention provides Ni, Cr, l:6. It is characterized by providing a hardened layer formed by flame quenching after spraying powder made of Si and B.

〔発明の実施例〕 図は本発明のタービン翼の一例を基す斜視図であって、
チタン系合金からなるタービン翼1の翼先端前縁部に後
述する硬化層2が形成されている。
[Embodiment of the Invention] The figure is a perspective view based on an example of a turbine blade of the present invention,
A hardened layer 2, which will be described later, is formed on the leading edge of the blade tip of a turbine blade 1 made of a titanium-based alloy.

すなわち、チタン系合金からなり、機械加工あるいは精
密鍛造によって形成されたタービンm1の少なくとも翼
先端前縁部に、例えばプラズマ溶射により一270メツ
シュ以下のCr10〜25%、Fe1〜8%、S11〜
8%、81〜5%、Co、1〜2.0%、残りNiから
なる粉末を120μm以上の厚さに真空中でプラズマ溶
射し、その溶射後、溶射層の緻密性を増すため、500
〜600℃に予熱を行なった後、ガスバーナ等で100
0〜1200℃で1〜30分加熱を行なうことによって
、当該部に硬化層2が形成されている。なお、上記加工
時には、タービン翼は翼先端前縁部以外は水中に没せし
めておき、翼先端前縁部以外に熱が加わることが防止さ
れる。
That is, at least the leading edge of the blade tip of the turbine m1, which is made of a titanium alloy and formed by machining or precision forging, is coated with 10 to 25% Cr, 1 to 8% Fe, and S11 to 1270 mesh or less by plasma spraying, for example.
A powder consisting of 8%, 81-5%, Co, 1-2.0%, and the remainder Ni was plasma sprayed in a vacuum to a thickness of 120 μm or more, and after the spraying, 500 μm was applied to increase the density of the sprayed layer.
After preheating to ~600℃, heat to 100℃ using a gas burner, etc.
By heating at 0 to 1200° C. for 1 to 30 minutes, a hardened layer 2 is formed in the portion. Note that during the above processing, the turbine blade is submerged in water except for the leading edge of the blade tip, thereby preventing heat from being applied to areas other than the leading edge of the blade tip.

第1表は、上述のようにして製造されたタービン翼のキ
ャビテーション・エロージョン試験の結果を比較例とあ
わせて示したものである。
Table 1 shows the results of cavitation erosion tests on the turbine blades manufactured as described above, together with comparative examples.

第  1  表 なお、キャビテーション・エロージョン試験は、学振法
(学術振興会97委員会で設定)の磁歪振動型キャビテ
ーション・エロージョン試験装置を使用し、試験条件は
振動周波数6.5KHz、振動振幅100μm、試験液
純水、液温24±1℃、試験時間180分とした。
Table 1 Note that the cavitation/erosion test uses a magnetostrictive vibration type cavitation/erosion test device of the JSPS Act (set by the 97th Committee of the Japan Society for the Promotion of Science), and the test conditions are: vibration frequency 6.5 KHz, vibration amplitude 100 μm, The test liquid was pure water, the liquid temperature was 24±1°C, and the test time was 180 minutes.

この第1表からも明らかなように、本発明においては従
来の焼鈍、溶体化一時効処理を行なった比較例に比し優
れた耐エロージヨン性を有し、特に溶射後溶融処理する
ことにより耐エロージヨン性は優れたものとなる。
As is clear from Table 1, the present invention has superior erosion resistance compared to the comparative example in which conventional annealing and solution treatment were performed, and in particular, it has excellent erosion resistance by melting treatment after thermal spraying. The erosion property is excellent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においてはチタン系合金か
らなるタービン翼の少なくとも翼先端前縁部に、Ni、
Cr、Si、Fe、B系の粉末を溶射した後火炎焼入れ
により形成した硬化層を設けたので、その硬化層により
当該部の耐エロージヨン性を一段と向上せしめることが
でき、耐エロージヨン性に優れたタービン翼を得ること
ができ、寿命の長期化を図ることができる。
As explained above, in the present invention, Ni, Ni,
A hardened layer formed by flame quenching after thermal spraying Cr, Si, Fe, and B-based powder is provided, so the hardened layer can further improve the erosion resistance of the area, resulting in excellent erosion resistance. Turbine blades can be obtained and their lifespan can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のタービン翼の一実施例を示す斜視図である
。 1・・・タービン翼、2・・・硬化層。
The figure is a perspective view showing one embodiment of a turbine blade of the present invention. 1... Turbine blade, 2... Hardened layer.

Claims (1)

【特許請求の範囲】 1、チタン系合金からなるタービン翼の少なくとも翼先
端前縁部に、Ni、Cr、Fe、Si、Bからなる粉末
を溶射した後火炎焼入れにより形成した硬化層を設けた
ことを特徴とする、タービン翼。 2、粉末は120μm以上の厚さに真空中でプラズマ溶
射されることを特徴とする、特許請求の範囲第1項記載
のタービン翼。
[Claims] 1. A hardened layer formed by flame quenching after spraying a powder made of Ni, Cr, Fe, Si, and B is provided on at least the leading edge of the blade tip of a turbine blade made of a titanium-based alloy. A turbine blade characterized by: 2. The turbine blade according to claim 1, wherein the powder is plasma sprayed in vacuum to a thickness of 120 μm or more.
JP25405285A 1985-11-13 1985-11-13 Turbine blade Pending JPS62113802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25405285A JPS62113802A (en) 1985-11-13 1985-11-13 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25405285A JPS62113802A (en) 1985-11-13 1985-11-13 Turbine blade

Publications (1)

Publication Number Publication Date
JPS62113802A true JPS62113802A (en) 1987-05-25

Family

ID=17259561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25405285A Pending JPS62113802A (en) 1985-11-13 1985-11-13 Turbine blade

Country Status (1)

Country Link
JP (1) JPS62113802A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209645A (en) * 1988-05-06 1993-05-11 Hitachi, Ltd. Ceramics-coated heat resisting alloy member
US5366345A (en) * 1990-12-19 1994-11-22 Asea Brown Boveri Ltd. Turbine blade of a basic titanium alloy and method of manufacturing it
US6004102A (en) * 1995-12-09 1999-12-21 Abb Patent Gmbh Turbine blade for use in the wet steam region of penultimate and ultimate stages of turbines
JP2003027206A (en) * 2001-07-12 2003-01-29 Mitsubishi Heavy Ind Ltd Method for formation of erosion preventive film
JP2014532112A (en) * 2011-08-10 2014-12-04 スネクマ Method for producing a protective reinforcement for the leading edge of a blade
US9021696B2 (en) 2009-04-23 2015-05-05 MTU Aero Engines AG Method for producing a plating of a vane tip and correspondingly produced vanes and gas turbines

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209645A (en) * 1988-05-06 1993-05-11 Hitachi, Ltd. Ceramics-coated heat resisting alloy member
US5366345A (en) * 1990-12-19 1994-11-22 Asea Brown Boveri Ltd. Turbine blade of a basic titanium alloy and method of manufacturing it
US6004102A (en) * 1995-12-09 1999-12-21 Abb Patent Gmbh Turbine blade for use in the wet steam region of penultimate and ultimate stages of turbines
JP2003027206A (en) * 2001-07-12 2003-01-29 Mitsubishi Heavy Ind Ltd Method for formation of erosion preventive film
JP4703901B2 (en) * 2001-07-12 2011-06-15 三菱重工コンプレッサ株式会社 How to make erosion prevention coating
US9021696B2 (en) 2009-04-23 2015-05-05 MTU Aero Engines AG Method for producing a plating of a vane tip and correspondingly produced vanes and gas turbines
JP2014532112A (en) * 2011-08-10 2014-12-04 スネクマ Method for producing a protective reinforcement for the leading edge of a blade
US9664201B2 (en) 2011-08-10 2017-05-30 Snecma Method of making protective reinforcement for the leading edge of a blade

Similar Documents

Publication Publication Date Title
US5622638A (en) Method for forming an environmentally resistant blade tip
Henderson et al. Nickel based superalloy welding practices for industrial gas turbine applications
KR100474467B1 (en) Nickel Brazing Material
CN102021559B (en) Cobalt-based alloy powder for laser cladding of steam turbine last-stage blade
EP1643011A1 (en) Erosion and wear resistant protective structures for turbine components
US6489583B1 (en) Shimmed electron beam welding process
US5182080A (en) Advanced high-temperature brazing alloys
KR20080113229A (en) Welding additive material, use of the welding additive material, welding methods and component
CN100505476C (en) Electric power generator, steam turbine rotor spindle repaired by laser and repairing method thereof
CN102352508A (en) Iron-based alloy powder for laser cladding of TRT (Blast Furnace Top Pressure Recovery Turbine Unit) parts
US20100176119A1 (en) Methods for improving braze joints utilizing gold/copper/nickel brazing alloys
JP2015078686A (en) Erosion shield, method of fabricating shield, and method of fabricating article having shield
Mattheij Role of brazing in repair of superalloy components–advantages and limitations
CN110592592A (en) Laser cladding high-temperature protective coating surface polishing and purifying method based on pulsed electron beam technology
EP3395494A1 (en) Treated turbine diaphragm and method for treating a turbine diaphragm
Kalinina et al. Hardening of leading edges of turbine blades by electrospark alloying
JPS62113802A (en) Turbine blade
JP2001107833A (en) Hydraulic machine and its manufacturing device
JP2005179782A (en) High temperature alloy, and article made and repaired therewith
US10828701B2 (en) Near-net shape shield and fabrication processes
JPS62165506A (en) Turbine blade
JPS59180004A (en) Moving blade of steam turbine
CN106903453B (en) Alloy, welded article and welding method
JPS62113801A (en) Turbine blade
JPH06287770A (en) Method for treating surface of turbine moving blade