JPS62113801A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS62113801A
JPS62113801A JP25405185A JP25405185A JPS62113801A JP S62113801 A JPS62113801 A JP S62113801A JP 25405185 A JP25405185 A JP 25405185A JP 25405185 A JP25405185 A JP 25405185A JP S62113801 A JPS62113801 A JP S62113801A
Authority
JP
Japan
Prior art keywords
quenching
turbine blade
blade
front edge
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25405185A
Other languages
Japanese (ja)
Inventor
Kazuaki Ikeda
池田 一昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25405185A priority Critical patent/JPS62113801A/en
Publication of JPS62113801A publication Critical patent/JPS62113801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve antierosion property and extend the service life, by furnishing a hardened layer given an aging treatment after a double quenching at least at the front edge of the top of a turbine blade which is made of a titanium type alloy. CONSTITUTION:At least the front edge of the top of a turbine blade 1, which is made of a titanium type alloy and formed by a mechanical process or a precision forging, is heated at 900-1,200 deg.C for about 5-30min by a gas burner, for example, and just after that, it is water-quenched and furthermore heated at the temperature 50-150 deg.C lower than the temperature of the quenching, and then, the water-quenching is repeated again. By applying an aging treatment at about 400-650 deg.C for around 1-8hr, after the quenching is completed, a hardened layer 2 of a high strength and a high toughness is formed at the front edge of the top of blade. Therefore, microparticles of crystals are formed and the antierosion property is improved, as well as coarse crystalline particles are prevented from generation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はチタン系合金からなるタービン動翼の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in turbine rotor blades made of titanium-based alloys.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、発電効率の改善等にともない蒸気タービンの低圧
側では長大なタービン翼が必要となり、材料に要求され
る特性はより苛酷となっている。
In recent years, as power generation efficiency has improved, longer turbine blades have become necessary on the low-pressure side of steam turbines, and the properties required of materials have become more severe.

従来、蒸気タービン翼材料としては12Cr鋼が用いら
、れていたが、12Crlでは上記のai(I約条件下
では強度不足が生じ、かつロータへの負荷が過大となり
、今後の大型化へは適用が困難であった。
Conventionally, 12Cr steel has been used as a material for steam turbine blades, but 12Cr lacks strength under the above conditions of AI (approximately I), and the load on the rotor becomes excessive. It was difficult to apply.

この様な点から比強度(強度/比重)の大きいチタン合
金の翼材料への適用が進んでいる。つまり、チタン合金
の強度は従来の12Cr鋼と同程度であり、さらに、比
強度が高いため翼の回転による遠心力が低減され、ロー
タへの過負荷の問題も除かれる。このように、チタン合
金は今後の岡の長大化にともない実用上有効なものであ
る。
For these reasons, titanium alloys with high specific strength (strength/specific gravity) are increasingly being applied to blade materials. In other words, the strength of the titanium alloy is comparable to that of conventional 12Cr steel, and furthermore, its high specific strength reduces the centrifugal force caused by the rotation of the blades, eliminating the problem of overload on the rotor. In this way, titanium alloys will be of practical use as the length of the walls increases in the future.

一方、低圧部では、作動時の蒸気流中に含まれる凝縮水
滴の高速衝突によるエロージョン損耗が著しいため、従
来の12Cr鋼をタービン翼材として用いた場合は耐エ
ロージヨン性の優れたステライト合金等をエロージョン
シールドとして翼先端前縁部にロウ付または溶接等を施
し保護している。
On the other hand, in the low-pressure section, erosion wear is significant due to high-speed collisions of condensed water droplets contained in the steam flow during operation, so when conventional 12Cr steel is used as the turbine blade material, a material such as stellite alloy with excellent erosion resistance is used. The leading edge of the wing tip is protected by brazing or welding as an erosion shield.

しかし、上記チタン系合金をタービン響材として用い、
そのエローシコンシールド材としてステライトを用いた
場合、ロウ付では接合部の強度が不足し、溶接ではその
接合部は溶接脆化が生じ易く、いずれも使用上問題があ
る。
However, when the above titanium alloy is used as a turbine acoustic material,
When Stellite is used as the Erosicon shielding material, the strength of the joint is insufficient when brazed, and the joint tends to become brittle when welded, both of which pose problems in use.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、チタン合金
からなるタービン翼の少なくとも翼先端前縁部に硬化層
を設け、優れた耐エロージヨン性を有するタービン翼を
提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a turbine blade made of a titanium alloy with a hardened layer on at least the leading edge of the blade tip, and which has excellent erosion resistance. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、機械加工あるいは精
密鍛造したチタン系合金からなるタービン翼の翼先端前
縁部に、2段焼入れを行なった後時効処理を施すことに
より形成した硬化層を設けたことを特徴とする。
In order to achieve the above object, the present invention provides a hardened layer formed by performing two-stage quenching and then aging treatment on the leading edge of the blade tip of a turbine blade made of a titanium-based alloy that is machined or precision forged. It is characterized by:

〔発明の実施例〕[Embodiments of the invention]

図は本発明のタービン翼の一例を示す斜視図であって、
チタン系合金からなるタービン翼1の翼先端前縁部に後
述する硬化層2が形成されている。
The figure is a perspective view showing an example of a turbine blade of the present invention,
A hardened layer 2, which will be described later, is formed on the leading edge of the blade tip of a turbine blade 1 made of a titanium-based alloy.

すなわち、機械加工あるいは精密鍛造によって形成した
、チタン系合金から成るタービン翼1の少なくとも翼先
端前縁部を、例えばガスバーナ等により900〜120
0℃で5〜30分加熱した後、直ちに水焼入れを行ない
、さらに前記焼入れ温度より約50〜150℃低い温度
で5〜30分加熱した後、水焼入れを再度行なう。この
場合、タービン翼の翼先端前縁部具外は水中に没してお
き、翼先端前縁部具外に熱が加わることを防止する。こ
のようにして焼入れ終了後、400〜650℃において
1〜8時間の時効処理を行なうことにより、上記翼先端
前縁部に強度ならびに靭性が大きな硬化層2が形成され
ている。
That is, at least the leading edge of the blade tip of the turbine blade 1 made of a titanium-based alloy, which is formed by machining or precision forging, is heated to 900 to 120 degrees by using a gas burner or the like.
After heating at 0° C. for 5 to 30 minutes, water quenching is immediately performed, and after further heating at a temperature about 50 to 150° C. lower than the quenching temperature for 5 to 30 minutes, water quenching is performed again. In this case, the outside of the leading edge of the blade tip of the turbine blade is submerged in water to prevent heat from being applied to the outside of the leading edge of the blade tip. After the quenching is completed, an aging treatment is performed for 1 to 8 hours at 400 to 650°C, thereby forming a hardened layer 2 with high strength and toughness at the leading edge of the blade tip.

しかして、上記2回の水焼入れによって、結晶粒の粗大
化が防止されるとともに、従来の溶体化一時効処理材に
比べその結晶粒がざらに細粒化され、翼先端前縁部の強
度等が向上され耐エロージヨン性が向上せしめられる。
The two water quenching steps described above prevent the crystal grains from becoming coarser, and also make the crystal grains more fine-grained than in conventional solution-temporarily treated materials, thereby increasing the strength of the leading edge of the blade tip. etc., and the erosion resistance is improved.

第1表は、上述のようにして製造されたタービン翼のキ
ャビテーション・エロージョン試験の結果を比較例とあ
わせて示したものである。
Table 1 shows the results of cavitation erosion tests on the turbine blades manufactured as described above, together with comparative examples.

第  1  表 なお、キャビテーション・エロージョン試験としては、
学振法〈学術振興会97委員会で設定)の磁歪振動型キ
ャビテーション・エロージョン試験装置を用い、試験条
件は撮動周波数6.5KH2、振動振幅100μm1試
験液純水、液温24°±1℃、試験時間180分とした
Table 1 In addition, as cavitation erosion test,
A magnetostrictive vibration type cavitation/erosion test device according to the Japan Society for the Promotion of Science (set by the Japan Society for the Promotion of Science 97 Committee) was used, and the test conditions were: imaging frequency 6.5 KH2, vibration amplitude 100 μm, 1 test liquid pure water, and liquid temperature 24° ± 1°C. , the test time was 180 minutes.

この第1表からも明らかなように、本発明においては従
来の焼鈍、溶体化一時効処理を行なった比較例1〜3に
比し優れた耐エロージヨン性を有する。
As is clear from Table 1, the present invention has superior erosion resistance compared to Comparative Examples 1 to 3, which were subjected to conventional annealing and solution treatment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においてはチタン系合金か
らなるタービン翼の少なくとも翼先端前縁部に、2段焼
入れを行なった後時効処理を施した硬化層を形成したの
で、当該部の耐エロージヨン性を一段と向上せしめるこ
とができ、耐エロージヨン性に優れたタービン翼を得る
ことができ、寿命の長期化を図ることができる。
As explained above, in the present invention, a hardened layer is formed on at least the leading edge of the blade tip of a turbine blade made of a titanium-based alloy by performing two-stage quenching and then undergoing an aging treatment. Therefore, it is possible to obtain a turbine blade with excellent erosion resistance, and to prolong the life of the turbine blade.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明のタービン翼の一実施例を示す斜視図であ
る。 1・・・タービン翼、2・・・硬化層。
The drawing is a perspective view showing one embodiment of the turbine blade of the present invention. 1... Turbine blade, 2... Hardened layer.

Claims (1)

【特許請求の範囲】[Claims] チタン系合金からなるタービン翼の少なくとも翼先端前
縁部に、2段焼入れを行なった後時効処理を施すことに
より形成した硬化層を設けたことを特徴とする、タービ
ン翼。
1. A turbine blade comprising a hardened layer formed by performing two-stage hardening and then aging treatment on at least the leading edge of the blade tip of the turbine blade made of a titanium-based alloy.
JP25405185A 1985-11-13 1985-11-13 Turbine blade Pending JPS62113801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25405185A JPS62113801A (en) 1985-11-13 1985-11-13 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25405185A JPS62113801A (en) 1985-11-13 1985-11-13 Turbine blade

Publications (1)

Publication Number Publication Date
JPS62113801A true JPS62113801A (en) 1987-05-25

Family

ID=17259547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25405185A Pending JPS62113801A (en) 1985-11-13 1985-11-13 Turbine blade

Country Status (1)

Country Link
JP (1) JPS62113801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007093A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Turbine rotor blade
JP2017222912A (en) * 2016-06-16 2017-12-21 富士電機株式会社 Manufacturing method of steam turbine blade
CN107775542A (en) * 2017-11-13 2018-03-09 江苏飞腾铸造机械有限公司 A kind of thermal spraying shot blast machine blade and its assembly method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007093A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Turbine rotor blade
JP2017222912A (en) * 2016-06-16 2017-12-21 富士電機株式会社 Manufacturing method of steam turbine blade
CN107775542A (en) * 2017-11-13 2018-03-09 江苏飞腾铸造机械有限公司 A kind of thermal spraying shot blast machine blade and its assembly method

Similar Documents

Publication Publication Date Title
Dhakal et al. Laser shock peening as post welding treatment technique
EP3421622B1 (en) Solid-state welding of coarse grain powder metallurgy nickel-based superalloys
CN1187157C (en) Welding superalloy articles
US5584662A (en) Laser shock peening for gas turbine engine vane repair
EP0470868B1 (en) Forge joining repair technique
US4907947A (en) Heat treatment for dual alloy turbine wheels
US5431752A (en) Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
JPS58110661A (en) Heat resistant steel
KR20030047767A (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
CN1238150C (en) Active compound gradient separation diffusion welding method for titanium aluminium base alloy and steel
JP3355586B2 (en) Structural component and method of making the structural component
JPH01202389A (en) Manufacture of steam turbine long blade
JP6039355B2 (en) Titanium aluminide construction method and product having titanium aluminide surface
JPS62113801A (en) Turbine blade
JPS62113802A (en) Turbine blade
Zhan et al. A study of microstructures and mechanical properties of laser welded joint in GH3030 alloy
Greenfield et al. Welding of an advanced high strength titanium alloy
JPS62167866A (en) Turbing blade
JPS62165506A (en) Turbine blade
JP3210398B2 (en) Repair method of bucket
JPH01182505A (en) Manufacture of turbine blade
JPS62165508A (en) Turbine blade
JPS62165509A (en) Turbine blade
JPS62165510A (en) Turbine blade
US20040089646A1 (en) Friction processing weld preparation