JP4703901B2 - How to make erosion prevention coating - Google Patents

How to make erosion prevention coating Download PDF

Info

Publication number
JP4703901B2
JP4703901B2 JP2001212109A JP2001212109A JP4703901B2 JP 4703901 B2 JP4703901 B2 JP 4703901B2 JP 2001212109 A JP2001212109 A JP 2001212109A JP 2001212109 A JP2001212109 A JP 2001212109A JP 4703901 B2 JP4703901 B2 JP 4703901B2
Authority
JP
Japan
Prior art keywords
stellite
erosion
film
annealing
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001212109A
Other languages
Japanese (ja)
Other versions
JP2003027206A (en
Inventor
寿男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Compressor Corp
Priority to JP2001212109A priority Critical patent/JP4703901B2/en
Publication of JP2003027206A publication Critical patent/JP2003027206A/en
Application granted granted Critical
Publication of JP4703901B2 publication Critical patent/JP4703901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タービンロータの動翼の蒸気入口側の表面あるいは蒸気タービンの主蒸気加減弁の蒸気入口部の表面におけるエロージョンを防止するための皮膜の作成方法に関し、特に、エロージョン防止皮膜を低温で作成することにより、動翼部の疲労限度を低下させることなく、また密着性等の品質確保を容易にするための新規な改良に関する。
【0002】
【従来の技術】
図5は、従来の蒸気タービンの動翼を概略的に示す構成図である。
図6は、従来の蒸気タービンの動翼の要部を拡大して示す構成図である。
図7は、図6におけるC−C断面を概略的に示す断面図である。
図5に示すように、タービンロータ2の回りには複数の動翼1A〜1Gが植設されており、これら複数段の動翼1A〜1Gに主蒸気加減弁3を通じて矢印で示す蒸気gをあてることによってタービンロータ2を回転させ、この回転動力を発電機や圧縮機等の運転に利用している。
【0003】
図6および図7に示すように、蒸気gは矢印のように流れることにより動翼1を介してタービンロータ2を回転させる。
このように、主蒸気加減弁3を通じて導入される高温・高圧の蒸気gは、高圧段側の動翼1A〜1Dを経て低圧段側の動翼1E〜1Gへと流入する。このとき、低圧段側ではエロージョンが発生し易い低温・低圧の蒸気g’となる。
そこで従来は、主として低圧段の動翼1E〜1Gの蒸気入口側の表面1aに、ステライト板1bを銀ろうで貼り付け、エロージョンを防止する方法が一般に行なわれていた。
【0004】
【発明が解決しようとする課題】
従来の装置は以上のように構成されていたため、次のような課題が存在していた。すなわち、銀ろう付けは高温下で行われるため、動翼母材(ステンレス鋼)の疲労限度が大幅(1/2〜1/3)に低下してしまうため設計上の制約が生じ、また、動翼1A〜1Gのプロファイル形状が複雑なため、低圧側の動翼1E〜1Gにおけるステライト板の密着性等の品質確保が難しいなどといった課題があった。
【0005】
本発明は、以上のような課題を解決するためになされたもので、特に、動翼母材の疲労限度が大幅に低下しない温度範囲の低温でステライト皮膜を形成することにより、動翼母材の疲労限度を低下させることなく、また密着性等の品質確保を容易にするためのエロージョン防止皮膜の作成方法を提供することを目的とする。
【0006】
本発明のエロージョン防止皮膜の作成方法は、タービンロータの動翼の蒸気入口側の表面に切欠部を形成する工程と、前記切欠部にステライト材を溶射する工程と焼鈍する工程とを備え、前記動翼の前記蒸気入口側の表面にステライト皮膜を形成するエロージョン防止皮膜の作成方法であって、前記溶射工程は20A以下の低電流を使用し、溶射時の過大入熱を防止するPTA(Plasma Transferred Arc)法を用いてステライト材で前記切欠部を埋める工程であり、前記焼鈍工程は前記動翼を550〜6500Cで1時間焼鈍する工程である構成である。また、本発明の他の形態に係るエロージョン防止皮膜の作成方法は、蒸気タービンの主蒸気加減弁の蒸気入口部の表面に切欠部を形成する工程と、前記切欠部にステライト材を溶射する工程と焼鈍する工程とを備え、前記主蒸気加減弁の蒸気入口部の表面にステライト皮膜を形成するエロージョン防止皮膜の作成方法であって、前記溶射工程は20A以下の低電流を使用し、溶射時の過大入熱を防止するPTA(Plasma Transferred Arc)法を用いてステライト材で前記切欠部を埋める工程であり、前記焼鈍工程は前記主蒸気加減弁を550〜6500Cで1時間焼鈍する工程である構成である。
【0007】
【発明の実施の形態】
以下、図面と共に本発明によるエロージョン防止皮膜の作成方法の好適な実施の形態について詳細に説明する。
なお、従来装置と同一または同等部分には同一符号を付し、その説明を省略する。
【0008】
実施の形態1.
図1は、本発明のエロージョン防止皮膜の作成方法により工作される動翼1の要部を概略的に示す構成図である。
本発明のエロージョン防止皮膜の作成方法では、図示するように、低圧段側の動翼1E〜1Gの蒸気入口側の表面1aにステライト材を溶射することによりエロージョン防止皮膜としてのステライト皮膜を形成するものである。溶射は、例えばPTA(Plasma Transferred Arc)等の方法で行う。
このような溶射によるステライト皮膜1dの形成は、主としてエロージョンが発生し易い低圧段、例えば図5に示す動翼1E、1F、1Gを対象として行うものである。
【0009】
図2は、本発明のエロージョン防止皮膜の作成方法によるステライト皮膜の作成工程を段階的に示す概念図である。
まず、図2(a)に示すように、対象とする低圧段の動翼1E〜1Gの蒸気入口側の表面1aに、所定深さの切欠部1cを形成する。次に図2(b)に示すように、この切欠部1cに対して、溶射ノズル4よりステライト材を吹き付けるが、動翼母材の疲労限度が大幅に低下しない程度(従来のように1/2〜1/3のように大幅に低下しない程度)の温度範囲で行うべく、この溶射には20A以下の低電流を使用するPTA法を用いる。さらに動翼を550〜6500Cの温度で約1時間程度焼鈍し、空冷した後にステライト材を吹き付けた部分の表面を研磨して仕上げればステライト皮膜1dが完成する。
【0010】
上述のように、本発明のエロージョン防止皮膜の作成方法によれば、エロージョンが発生し易い低圧段の動翼1E〜1Gの蒸気入口側の表面1aに、低電流を使用してステライト材を溶射し、その後焼鈍してステライト皮膜1dを形成するため、従来のように銀ろう付けによる高温下でステライト板1bが熱影響を受けることがなく、動翼母材の硬度は通常の硬度が確保できて疲労限度の低下が生じにくい。また、溶射による変形はほとんど起こらず、応力腐食割れの恐れもない。従来のようにステライト板1bを貼り付けていた場合に比べて低コストとなるなどの有利な効果があり、良質で経済的なエロージョン防止皮膜としてのステライト皮膜1dを作成することができる。
【0011】
なお、図1に示すタービンロータ2では、説明の便宜上、動翼1A〜1Dを高圧段とし、動翼1E〜1Gを低圧段として分けて説明したが、タービンロータ2の構成によって高圧段と低圧段の範囲は異なるものであり、ここでは複数段ある動翼1A〜1Gのうちの低圧段のものにステライト皮膜を形成する場合について説明したに過ぎない。従って、必要な場合には全ての動翼1A〜1Gに本発明の作成方法によりステライト皮膜を施しても良い。
【0012】
また、ここではPTA法を用いて溶射工程を行う場合について説明したが、この溶射工程は、動翼母材の疲労限度が大幅に低下しない程度(従来のように1/2〜1/3のように大幅に低下しない程度)の温度範囲で行う工程であって、動翼母材があまり熱影響を受けない方法であれば、他の方法でも良い。
【0013】
実施の形態2.
本発明の実施の形態2に係るエロージョン防止皮膜の作成方法は、蒸気タービンの主蒸気加減弁3の蒸気入口部の表面3cにステライト皮膜3dを作成するものである。
図3は、本発明の実施の形態2に係るエロージョン防止皮膜の作成方法によりステライト皮膜を形成する主蒸気加減弁の蒸気入口部の構成を概略的に示す側面図である。
図4は、図3に示す主蒸気加減弁の蒸気入口部のB−B断面を概略的に示す断面図である。
【0014】
図3及び図4に示すように、主蒸気加減弁3(図5参照)の弁体3aが係合する弁座3bの蒸気入口周りの表面3cに、実施の形態1の場合と同様にステライト材を20Aの低電流で溶射した後、溶射部周りを550〜6500Cの温度で約1時間程度焼鈍し、空冷した後仕上げ研磨してステライト皮膜3dを完成させる。
【0015】
このように本発明のエロージョン防止皮膜の作成方法を用れば、弁座母材の疲労限度を大幅に低下させることなく(従来のように1/2〜1/3のように大幅に低下させることなく)、蒸気タービンの主蒸気加減弁3の弁体3aが係合する弁座3bの蒸気入口周りの表面3cにエロージョン防止効果の高いステライト皮膜3dを低コストで作成することができる。
【0016】
【発明の効果】
本発明のエロージョン防止皮膜の作成方法によれば、溶射工程は動翼母材の疲労限度が大幅に低下しない温度範囲で行う工程であり、前記焼鈍工程は前記動翼を550〜6500Cで約1時間焼鈍する工程であるので、従来のように銀ろう付けによる高温下で熱影響を受けることがなく、動翼母材の硬度は通常の硬度が確保できて疲労限度の低下が生じにくく、溶射による変形はほとんど起こらず、応力腐食割れの恐れのない低コストエロージョン防止皮膜を作成することができる。
また、本発明の他の形態に係るエロージョン防止皮膜の作成方法によれば、溶射工程は弁座母材の疲労限度が大幅に低下しない温度範囲で行う工程であり、前記焼鈍工程は前記主蒸気加減弁を550〜6500Cで約1時間焼鈍する工程であるので、弁座母材の疲労限度を大幅に低下させることなく、蒸気タービンの主蒸気加減弁の弁体が係合する弁座の蒸気入口周りの表面にエロージョン防止効果の高いステライト皮膜を低コストで作成することができる。
【図面の簡単な説明】
【図1】本発明のエロージョン防止皮膜の作成方法により工作される動翼1の要部を概略的に示す構成図である。
【図2】本発明のエロージョン防止皮膜の作成方法によるステライト皮膜の作成工程を段階的に示す概念図である。
【図3】本発明の実施の形態2に係るエロージョン防止皮膜の作成方法によりステライト皮膜を形成する主蒸気加減弁の蒸気入口部の構成を概略的に示す側面図である。
【図4】図3に示す主蒸気加減弁の蒸気入口部のB−B断面を概略的に示す断面図である。
【図5】従来の蒸気タービンの動翼を概略的に示す構成図である。
【図6】従来の蒸気タービンの動翼の要部を拡大して示す構成図である。
【図7】図6におけるC−C断面を概略的に示す断面図である。
【符号の説明】
1A〜1G 動翼
1a 蒸気入口側の表面
1c 切欠部
1d ステライト皮膜
2 タービンロータ
3 主蒸気加減弁
3a 弁体
3b 弁座
3c 蒸気入口周りの表面
3d ステライト皮膜
4 溶射ノズル
g、g’ 蒸気
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of forming a coating for preventing erosion on the surface of a turbine rotor blade on the steam inlet side or the surface of a steam inlet of a main steam control valve of a steam turbine. The present invention relates to a novel improvement for facilitating ensuring quality such as adhesion without lowering the fatigue limit of the moving blade portion.
[0002]
[Prior art]
FIG. 5 is a configuration diagram schematically showing a moving blade of a conventional steam turbine.
FIG. 6 is a configuration diagram illustrating an enlarged main part of a moving blade of a conventional steam turbine.
FIG. 7 is a cross-sectional view schematically showing a CC cross section in FIG. 6.
As shown in FIG. 5, a plurality of moving blades 1 </ b> A to 1 </ b> G are implanted around the turbine rotor 2, and steam g indicated by an arrow passes through the main steam control valve 3 to the plurality of moving blades 1 </ b> A to 1 </ b> G. The turbine rotor 2 is rotated by being applied, and this rotational power is used for the operation of a generator, a compressor, and the like.
[0003]
As shown in FIGS. 6 and 7, the steam g flows as indicated by an arrow, thereby rotating the turbine rotor 2 via the moving blade 1.
As described above, the high-temperature / high-pressure steam g introduced through the main steam control valve 3 flows into the low-pressure stage-side moving blades 1E-1G through the high-pressure stage-side moving blades 1A-1D. At this time, the low-pressure stage side becomes a low-temperature / low-pressure steam g ′ in which erosion easily occurs.
Therefore, conventionally, a method of preventing erosion by sticking a stellite plate 1b with silver brazing to the surface 1a on the steam inlet side of the low-pressure stage blades 1E to 1G has been generally performed.
[0004]
[Problems to be solved by the invention]
Since the conventional apparatus is configured as described above, the following problems exist. In other words, since silver brazing is performed at a high temperature, the fatigue limit of the rotor blade base material (stainless steel) is greatly reduced (1/2 to 1/3), resulting in design restrictions, Since the profile shapes of the moving blades 1A to 1G are complicated, there is a problem that it is difficult to ensure quality such as adhesion of the stellite plate in the moving blades 1E to 1G on the low pressure side.
[0005]
The present invention has been made to solve the above-described problems, and in particular, by forming a stellite film at a low temperature in a temperature range in which the fatigue limit of the rotor blade base material is not significantly reduced, It is an object of the present invention to provide a method for producing an erosion-preventing coating for facilitating ensuring quality such as adhesion without lowering the fatigue limit.
[0006]
The method for producing an erosion-preventing film of the present invention comprises a step of forming a notch on the steam inlet side surface of a rotor blade of a turbine rotor, a step of spraying a stellite material on the notch, and a step of annealing. A method for producing an erosion-preventing film for forming a stellite film on a surface of a moving blade on a steam inlet side, wherein the thermal spraying process uses a low current of 20 A or less and prevents excessive heat input during thermal spraying. Transferred Arc) method is a step of filling the notch with stellite material with said annealing step is a construction is a step of annealing 1 hour the blades at 550 to 650 0 C. Further, the method for creating an erosion prevention film according to another embodiment of the present invention includes a step of forming a notch on the surface of the steam inlet of the main steam control valve of the steam turbine, and a step of spraying a stellite material on the notch. and a step of annealing a, to a method of making an erosion prevention film for forming a stellite film on the surface of the steam inlet portion of the main steam control valve, wherein the spray process uses the following low current 20A, during spraying Is a step of filling the notch with a stellite material using a PTA (Plasma Transferred Arc) method for preventing excessive heat input , and the annealing step is a step of annealing the main steam control valve at 550 to 650 0 C for 1 hour. It is the composition which is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a method for producing an erosion-preventing film according to the present invention will be described in detail with reference to the drawings.
In addition, the same code | symbol is attached | subjected to the same or equivalent part as a conventional apparatus, and the description is abbreviate | omitted.
[0008]
Embodiment 1 FIG.
FIG. 1 is a configuration diagram schematically showing a main part of a moving blade 1 machined by the method for producing an erosion-preventing film of the present invention.
In the method for producing an erosion-preventing film of the present invention, as shown in the figure, a stellite film is formed as a erosion-preventing film by spraying a stellite material on the surface 1a on the steam inlet side of the low-pressure stage rotor blades 1E to 1G. Is. The thermal spraying is performed by a method such as PTA (Plasma Transferred Arc).
The formation of the stellite coating 1d by such thermal spraying is performed mainly for the low pressure stage where erosion is likely to occur, for example, the moving blades 1E, 1F, and 1G shown in FIG.
[0009]
FIG. 2 is a conceptual diagram showing step-by-step the stellite film forming process by the erosion-preventing film forming method of the present invention.
First, as shown in FIG. 2A, a notch 1c having a predetermined depth is formed on the surface 1a on the steam inlet side of the target low-pressure stage blades 1E to 1G. Next, as shown in FIG. 2 (b), a stellite material is sprayed from the thermal spray nozzle 4 to the notch 1c, but the fatigue limit of the rotor blade base material is not significantly reduced (as in the conventional case 1 / PTA method using a low current of 20 A or less is used for this thermal spraying so that the thermal spraying is performed in a temperature range in which the temperature does not drop significantly as 2 to 1/3. Further, if the rotor blade is annealed at a temperature of 550 to 650 0 C for about 1 hour, air-cooled and then the surface of the portion sprayed with the stellite material is polished and finished, the stellite film 1d is completed.
[0010]
As described above, according to the method for creating an erosion-preventing film of the present invention, a stellite material is sprayed on the surface 1a on the steam inlet side of the low-pressure stage moving blades 1E to 1G where erosion is likely to occur using a low current. Then, since the stellite film 1d is formed by annealing, the stellite plate 1b is not affected by heat at a high temperature by silver brazing as in the prior art, and the hardness of the rotor blade base material can be ensured to be normal. The fatigue limit is less likely to occur. Further, deformation due to thermal spraying hardly occurs and there is no fear of stress corrosion cracking. Compared to the case where the stellite plate 1b is pasted as in the prior art, there is an advantageous effect such as low cost, and the stellite film 1d as a high-quality and economical erosion-preventing film can be produced.
[0011]
In the turbine rotor 2 shown in FIG. 1, for convenience of explanation, the rotor blades 1 </ b> A to 1 </ b> D are described as high-pressure stages and the rotor blades 1 </ b> E to 1 </ b> G are separately described as low-pressure stages. The range of the stages is different, and here, only the case where the stellite film is formed on the low-pressure stage of the plurality of moving blades 1A to 1G is described. Therefore, if necessary, all the moving blades 1A to 1G may be provided with a stellite film by the production method of the present invention.
[0012]
In addition, although the case where the thermal spraying process is performed using the PTA method has been described here, the thermal spraying process is performed to such an extent that the fatigue limit of the rotor blade base material is not significantly reduced (1/2 to 1/3 as in the prior art). Other methods may be used as long as the method is performed in a temperature range that does not significantly decrease the temperature of the moving blade base material so that it is not affected by heat.
[0013]
Embodiment 2. FIG.
The method for creating an erosion-preventing film according to Embodiment 2 of the present invention is to create a stellite film 3d on the surface 3c of the steam inlet portion of the main steam control valve 3 of the steam turbine.
FIG. 3 is a side view schematically showing a configuration of a steam inlet portion of a main steam control valve that forms a stellite film by the method for creating an erosion-preventing film according to Embodiment 2 of the present invention.
4 is a cross-sectional view schematically showing a BB cross section of the steam inlet portion of the main steam control valve shown in FIG. 3.
[0014]
As shown in FIGS. 3 and 4, the surface 3c around the steam inlet of the valve seat 3b with which the valve body 3a of the main steam control valve 3 (see FIG. 5) engages is stellite as in the first embodiment. After the material is sprayed at a low current of 20 A, the periphery of the sprayed portion is annealed at a temperature of 550 to 650 0 C for about 1 hour, air cooled, and then finish-polished to complete the stellite film 3d.
[0015]
Thus, if the method for producing an erosion-preventing film of the present invention is used, the fatigue limit of the valve seat base material is not significantly reduced (as in the conventional case, it is greatly reduced to 1/2 to 1/3). In other words, the stellite film 3d having a high erosion prevention effect can be formed at a low cost on the surface 3c around the steam inlet of the valve seat 3b with which the valve body 3a of the main steam control valve 3 of the steam turbine is engaged.
[0016]
【The invention's effect】
According to the method for producing an erosion-preventing film of the present invention, the thermal spraying process is a process performed in a temperature range where the fatigue limit of the rotor blade base material is not significantly reduced, and the annealing process is performed at 550 to 650 0 C. Because it is a process of annealing for about 1 hour, it is not affected by heat at high temperatures due to silver brazing as in the past, and the hardness of the rotor blade base metal can ensure the normal hardness, and the fatigue limit is unlikely to decrease. Thus, deformation due to thermal spraying hardly occurs, and a low-cost erosion-preventing film that does not cause stress corrosion cracking can be produced.
Further, according to the method for creating an erosion-preventing film according to another embodiment of the present invention, the thermal spraying process is a process performed in a temperature range in which the fatigue limit of the valve seat base material is not significantly reduced, and the annealing process is the main steam. Since the adjusting valve is a step of annealing at 550 to 650 0 C for about 1 hour, the valve seat with which the valve body of the main steam control valve of the steam turbine is engaged without significantly reducing the fatigue limit of the valve seat base material. A stellite film having a high erosion-preventing effect can be produced at a low cost on the surface around the steam inlet.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a main part of a moving blade 1 machined by a method for producing an erosion prevention film of the present invention.
FIG. 2 is a conceptual diagram showing step by step a stellite film creation process by the erosion prevention film creation method of the present invention.
FIG. 3 is a side view schematically showing a configuration of a steam inlet portion of a main steam control valve for forming a stellite film by a method for creating an erosion prevention film according to Embodiment 2 of the present invention.
4 is a cross-sectional view schematically showing a BB cross section of a steam inlet portion of the main steam control valve shown in FIG. 3;
FIG. 5 is a configuration diagram schematically showing a moving blade of a conventional steam turbine.
FIG. 6 is an enlarged configuration diagram showing a main part of a moving blade of a conventional steam turbine.
7 is a cross-sectional view schematically showing a CC cross section in FIG. 6;
[Explanation of symbols]
1A to 1G Rotor blade 1a Steam inlet side surface 1c Notch 1d Stellite coating 2 Turbine rotor 3 Main steam control valve 3a Valve body 3b Valve seat 3c Surface around steam inlet 3d Stellite coating 4 Thermal spray nozzles g, g 'steam

Claims (2)

タービンロータの動翼の蒸気入口側の表面に切欠部を形成する工程と、前記切欠部にステライト材を溶射する工程と焼鈍する工程とを備え、前記動翼の前記蒸気入口側の表面にステライト皮膜を形成するエロージョン防止皮膜の作成方法であって、
前記溶射工程は20A以下の低電流を使用し、溶射時の過大入熱を防止するPTA(Plasma Transferred Arc)法を用いてステライト材で前記切欠部を埋める工程であり、
前記焼鈍工程は前記動翼を550〜6500Cで1時間焼鈍する工程であることを特徴とするエロージョン防止皮膜の作成方法。
A step of forming a notch portion on the steam inlet side surface of the rotor blade of the turbine rotor, a step of spraying a stellite material on the notch portion and a step of annealing, and a step of forming a stellite on the surface of the rotor blade on the steam inlet side. A method for creating an erosion-preventing film that forms a film,
The thermal spraying step is a step of filling the notch with a stellite material using a PTA (Plasma Transferred Arc) method using a low current of 20 A or less and preventing excessive heat input during thermal spraying ,
The method for producing an erosion-preventing film, wherein the annealing step is a step of annealing the blade at 550 to 650 0 C for 1 hour.
蒸気タービンの主蒸気加減弁の蒸気入口部の表面に切欠部を形成する工程と、前記切欠部にステライト材を溶射する工程と焼鈍する工程とを備え、前記主蒸気加減弁の蒸気入口部の表面にステライト皮膜を形成するエロージョン防止皮膜の作成方法であって、
前記溶射工程は20A以下の低電流を使用し、溶射時の過大入熱を防止するPTA(Plasma Transferred Arc)法を用いてステライト材で前記切欠部を埋める工程であり、
前記焼鈍工程は前記主蒸気加減弁を550〜6500Cで1時間焼鈍する工程であることを特徴とするエロージョン防止皮膜の作成方法。
A step of forming a notch on the surface of the steam inlet of the main steam control valve of the steam turbine, a step of spraying a stellite material to the notch, and a step of annealing, comprising the step of forming the steam inlet of the main steam control valve A method of creating an erosion-preventing film that forms a stellite film on the surface,
The thermal spraying step is a step of filling the notch with a stellite material using a PTA (Plasma Transferred Arc) method using a low current of 20 A or less and preventing excessive heat input during thermal spraying ,
The method for producing an erosion-preventing film, wherein the annealing step is a step of annealing the main steam control valve at 550 to 650 0 C for 1 hour.
JP2001212109A 2001-07-12 2001-07-12 How to make erosion prevention coating Expired - Lifetime JP4703901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212109A JP4703901B2 (en) 2001-07-12 2001-07-12 How to make erosion prevention coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212109A JP4703901B2 (en) 2001-07-12 2001-07-12 How to make erosion prevention coating

Publications (2)

Publication Number Publication Date
JP2003027206A JP2003027206A (en) 2003-01-29
JP4703901B2 true JP4703901B2 (en) 2011-06-15

Family

ID=19047318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212109A Expired - Lifetime JP4703901B2 (en) 2001-07-12 2001-07-12 How to make erosion prevention coating

Country Status (1)

Country Link
JP (1) JP4703901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244495B2 (en) 2008-08-06 2013-07-24 三菱重工業株式会社 Parts for rotating machinery
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445637A (en) * 1977-07-05 1979-04-11 Union Carbide Corp Method of forming hard wearrresistant coating and coating product using same
JPS62113802A (en) * 1985-11-13 1987-05-25 Toshiba Corp Turbine blade
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
JPH01198460A (en) * 1988-02-03 1989-08-10 Tocalo Co Ltd Manufacture of conductor roll
JPH02236265A (en) * 1989-03-09 1990-09-19 Nippon Steel Corp Formation of erosion resistant coating layer of turbine vane
JPH06145943A (en) * 1992-11-05 1994-05-27 Toshiba Corp Erosion resistant and wear resistant surface treatment
JPH0867957A (en) * 1994-08-29 1996-03-12 Nippon Steel Corp Non-migration type plasma spraying cladding method
JP2001107833A (en) * 1999-10-08 2001-04-17 Toshiba Corp Hydraulic machine and its manufacturing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445637A (en) * 1977-07-05 1979-04-11 Union Carbide Corp Method of forming hard wearrresistant coating and coating product using same
JPS62113802A (en) * 1985-11-13 1987-05-25 Toshiba Corp Turbine blade
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
JPH01198460A (en) * 1988-02-03 1989-08-10 Tocalo Co Ltd Manufacture of conductor roll
JPH02236265A (en) * 1989-03-09 1990-09-19 Nippon Steel Corp Formation of erosion resistant coating layer of turbine vane
JPH06145943A (en) * 1992-11-05 1994-05-27 Toshiba Corp Erosion resistant and wear resistant surface treatment
JPH0867957A (en) * 1994-08-29 1996-03-12 Nippon Steel Corp Non-migration type plasma spraying cladding method
JP2001107833A (en) * 1999-10-08 2001-04-17 Toshiba Corp Hydraulic machine and its manufacturing device

Also Published As

Publication number Publication date
JP2003027206A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US11059093B2 (en) Additively manufactured core for use in casting an internal cooling circuit of a gas turbine engine component
US7182581B2 (en) Layer system
US20160010469A1 (en) Hybrid manufacturing for rotors
US7237595B2 (en) Casting mold
JP2006177363A (en) Repairing method of gas turbine blade tip without recoating repaired blade tip
JP2005231024A (en) Method of repairing component member or aerofoil subjected to sulfuration
CN104689958A (en) Coating methods and a coated substrate
US7182580B2 (en) Layer system, and process for producing a layer system
EP3132873A1 (en) Additive manufacturing method of a turbine component
US20190076930A1 (en) Method for manufacturing an abradable plate and repairing a turbine shroud
JPH04231182A (en) Repairing method for turbine
US10843271B2 (en) Method for manufacturing a turbine shroud for a turbomachine
JP4703901B2 (en) How to make erosion prevention coating
EP3475531B1 (en) Method for repairing a gas turbine airfoil trailing edge
JP2008038896A (en) Gas turbine engine blade, fabricating method of article of metal material, and manufacturing method of covered component
JP5391616B2 (en) Preform brazing material, method of repairing low-pressure turbine component with sintered preform brazing material, and repaired low-pressure turbine component
US10654137B2 (en) Repair of worn component surfaces
CN107552785A (en) A kind of 3D printing, heat treatment integral processing method
CN107150185A (en) Brazing composition, method for welding and brazed products
JP3876168B2 (en) Abradable coating and manufacturing method thereof
JP2022529145A (en) Turbine casing components and their repair methods
US7249412B2 (en) Method for repairing a damaged blade of a Blisk
JP2017190688A (en) Turbine member, axial flow turbine and method for manufacturing turbine member
CN115287427A (en) Preparation method of Fe-Ni-Co-based high-temperature alloy GH907 alloy bar
WO2018066392A1 (en) Method for producing turbine vane

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061010

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4703901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term