JPS62105628A - High-tenacity coated cemented carbide and manufacture thereof - Google Patents

High-tenacity coated cemented carbide and manufacture thereof

Info

Publication number
JPS62105628A
JPS62105628A JP24543385A JP24543385A JPS62105628A JP S62105628 A JPS62105628 A JP S62105628A JP 24543385 A JP24543385 A JP 24543385A JP 24543385 A JP24543385 A JP 24543385A JP S62105628 A JPS62105628 A JP S62105628A
Authority
JP
Japan
Prior art keywords
cemented carbide
intermediate layer
binder phase
phase
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24543385A
Other languages
Japanese (ja)
Other versions
JPH0363949B2 (en
Inventor
泰朗 谷口
恒 佐々木
植木 光生
小堀 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP24543385A priority Critical patent/JPS62105628A/en
Publication of JPS62105628A publication Critical patent/JPS62105628A/en
Publication of JPH0363949B2 publication Critical patent/JPH0363949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削工具及び耐摩耗工具などの工具部品とし
て用いられる高靭性被覆超硬合金及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-toughness coated cemented carbide used as tool parts such as cutting tools and wear-resistant tools, and a method for manufacturing the same.

(従来の技術) 被覆超硬合金は、超硬合金の表面に形成させる硬質な外
層により耐摩耗性が大幅に向上するが、外層が超硬合金
に比して脆弱でであるために、超硬合金の破壊応力より
もはるかに低い応力で外層自体にき裂が生じ、この外層
に発生したき裂が超硬合金の内部にまで容易に進展して
被覆超硬合金を欠損させるという問題がある。また、外
層の形成方法として一般に行なわれている化学蒸着法(
cVD法)又は物理蒸着法(PVD法)の内、特にcV
D法は、900℃〜1100℃の高温で処理されるため
に、その冷却過程において、超硬合金と外層との熱膨張
率の差によって外層の中にき裂が生じ、このき裂に、超
硬合金の破壊応力よりもはるかに低い応力が加わると超
硬合金の内部にき裂が進展して被覆超硬合金を欠損させ
るという問題がある。
(Prior art) Coated cemented carbide greatly improves wear resistance due to the hard outer layer formed on the surface of the cemented carbide, but since the outer layer is more brittle than cemented carbide, The problem is that cracks occur in the outer layer itself at a stress that is much lower than the fracture stress of the hard metal, and the cracks that occur in the outer layer easily propagate to the inside of the cemented carbide, causing damage to the coated cemented carbide. be. In addition, the chemical vapor deposition method (
cVD method) or physical vapor deposition method (PVD method), especially cV
In method D, since the process is carried out at a high temperature of 900°C to 1100°C, cracks occur in the outer layer due to the difference in thermal expansion coefficient between the cemented carbide and the outer layer during the cooling process. If a stress that is much lower than the fracture stress of the cemented carbide is applied, cracks will propagate inside the cemented carbide, causing damage to the coated cemented carbide.

これらの問題を解決するために、超硬合金と外層との間
に中間層を介在させてなる被覆超硬合金の提案が種々行
なわれている。これらの中間層の内1代表的なものとし
て、同様な構成で開示されているのに特開昭54−87
719号公報及び日本金属学会誌45.(1981)、
95 (鉛末ら)があり、他の構成で開示されているの
に特開昭53−131909号公報がある。
In order to solve these problems, various proposals have been made for coated cemented carbide in which an intermediate layer is interposed between the cemented carbide and the outer layer. One representative of these intermediate layers is disclosed in Japanese Patent Application Laid-open No. 54-87, although it has a similar structure.
Publication No. 719 and Journal of the Japan Institute of Metals 45. (1981),
No. 95 (Lead Dust et al.), and JP-A-53-131909 discloses another structure.

(発明が解決しようとする問題点) 特開昭54−87719号公報などに開示の被覆超硬合
金は、WC相、立方晶系化合物相及びCo相の3相から
なる超硬合金と外層との間にWC相とCo相の2相から
なる中間層を介在させたもので、同時に、中間層中のC
O相は超硬合金中のCO相よりも富化しているものであ
る。しかしながら、このような中間層を設けた場合、耐
欠損性は改善されるものの、摩耗の進行と共に、あるい
は外層が屑離して超硬合金の表面が1部でも露出してし
まうと、中間層内に立方晶系化合物相が存在しないため
に、耐酸化抵抗が低くなるのと、被削材の切粉への炭素
の拡散流出が激しくなって、摩耗が急速に進行し、被覆
超硬合金の寿命を短くするという問題がある。
(Problems to be Solved by the Invention) The coated cemented carbide disclosed in JP-A-54-87719 etc. consists of a cemented carbide consisting of three phases: a WC phase, a cubic compound phase, and a Co phase, and an outer layer. An intermediate layer consisting of two phases, WC phase and Co phase, is interposed between the two phases, and at the same time, carbon in the intermediate layer
The O phase is more enriched than the CO phase in the cemented carbide. However, when such an intermediate layer is provided, although fracture resistance is improved, as wear progresses or if the outer layer flakes off and even a part of the cemented carbide surface is exposed, the inner layer may deteriorate. Since there is no cubic compound phase in the coated cemented carbide, the oxidation resistance is low, and the diffusion and outflow of carbon into the chips of the work material becomes intense, leading to rapid wear and damage to the coated cemented carbide. There is a problem of shortening the lifespan.

特開昭53−131909号公報に開示の被覆超硬合金
は、超硬合金と外層との間に、靭性に富み、しかも超硬
合金側に向かって硬さが連続的に増加する硬さ勾配をも
った中間層を介在させてな。
The coated cemented carbide disclosed in JP-A-53-131909 has a hardness gradient between the cemented carbide and the outer layer that is rich in toughness and that hardness continuously increases toward the cemented carbide side. Interpose a middle class with

るものである、ここで記載されている中間層とは、具体
的にどのような組織的構造になっているのか確認してみ
ると、同公報に、中間層は、■超硬合金の表面に結合相
をメッキした後加熱する方法、■超硬合金中の結合相を
その表面部にしみ出させる方法又は■超硬合金を液相が
発生する温度以上に加熱して、その表面に炭素を浸入さ
せる方法によって作成されている。この中間層を更に、
同公報の実施例で確認してみると■又は■によって作成
される中間層は、新たに加えた結合相となる金属又は超
硬合金中の結合相が移動して多く存在することによって
靭性に富み、しかもそれによって連続的な硬さ勾配を有
しているものである。
When we looked at the specific structural structure of the intermediate layer described here, the same publication states that the intermediate layer is: 1. A method in which the bonding phase in the cemented carbide is plated and then heated; 2. A method in which the bonding phase in the cemented carbide is oozed out onto the surface; It is created by a method of infiltrating. Furthermore, this middle layer
When confirmed with the examples in the same publication, the intermediate layer created by ■ or ■ has poor toughness due to the movement and presence of a large amount of the newly added binder phase in the metal or cemented carbide. It has a continuous hardness gradient.

しかしながら、■及び■による中間層は、外層側の中間
層表面に結合相の金属のみの層が形成されているために
耐摩耗性及び耐塑性変形性が低下するという問題がある
。また、■及び■による中間層は、浸炭雰囲気中で加熱
して作成する方法であるために、その調整が困難である
のと、中間層中に遊離カーボンを生じさせているために
外層との耐剥離性を低下させるという問題がある。
However, the intermediate layers according to (1) and (2) have a problem in that wear resistance and plastic deformation resistance are reduced because a layer containing only the metal of the binder phase is formed on the surface of the intermediate layer on the outer layer side. In addition, the intermediate layer according to ■ and ■ is created by heating in a carburizing atmosphere, so it is difficult to adjust it, and because free carbon is generated in the intermediate layer, there is a difference between the intermediate layer and the outer layer. There is a problem in that peeling resistance is reduced.

本発明は、上述のような問題点を解決したもので、具体
的には、超硬合金と外層との間に遊離カーボンの存在な
く、炭化タングステン相、立方晶系化合物相及び結合相
の3相構造からなり、しかも超硬合金よりも結合相の富
化してなる中間層を介在させることによって靭性、耐摩
耗性、耐塑性変形性及び耐剥離性にすぐれる被覆超硬合
金の提供を目的とするものである。
The present invention solves the above-mentioned problems, and specifically, there is no free carbon between the cemented carbide and the outer layer, and the three phases of the tungsten carbide phase, the cubic compound phase, and the binder phase are formed. The purpose of the present invention is to provide a coated cemented carbide that has excellent toughness, wear resistance, plastic deformation resistance, and peeling resistance by interposing an intermediate layer that has a phase structure and has a binder phase richer than that of cemented carbide. That is.

(問題点を解決するための手段) 本発明者らは、被覆超硬合金の靭性を高めるためには超
硬合金と外層との間に結合相を富化した中間層を介在さ
せることが効果的であるということを確認し2次いで、
その中間層がどのような構成になっているときが被覆超
硬合金の靭性及びその他の諸特性を最適にできるかにつ
いて鋭意研究した結果、本発明を完成するに至ったもの
である。
(Means for Solving the Problems) The present inventors have found that it is effective to interpose an intermediate layer enriched with a binder phase between the cemented carbide and the outer layer in order to increase the toughness of the coated cemented carbide. After confirming that the target is correct,
As a result of extensive research into what kind of structure the intermediate layer should have in order to optimize the toughness and other properties of the coated cemented carbide, the present invention was completed.

すなわち、本発明の高靭性被覆超硬合金は、炭化タング
ステン相と、周期律表4a、5a、6a族金属の炭化物
、窒化物及びこれらの相互固溶体の中の少なくとも1種
でなる立方晶系化合物相と、Fe、Ni、Goの中の少
なくとも1種でなる結合相とからなる超硬合金の表面に
、この超硬合金よりも結合相の富化してなる中間層と、
この中間層の表面に単層もしくは多重層の外層を形成し
てなる被覆超硬合金において、下記(a)。
That is, the high-toughness coated cemented carbide of the present invention comprises a tungsten carbide phase and a cubic compound consisting of at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table. and a binder phase made of at least one of Fe, Ni, and Go;
In the coated cemented carbide formed by forming a single layer or a multilayer outer layer on the surface of this intermediate layer, the following (a) is provided.

(b)及び(e)を具備していることを特徴とするもの
である。
It is characterized by comprising (b) and (e).

(a)  前記中間層は、前記炭化タングステン相と前
記立方晶系化合物相と前記結合相とからなる5μm以上
〜40IJ、m以下の層厚を有していること。
(a) The intermediate layer includes the tungsten carbide phase, the cubic compound phase, and the binder phase and has a layer thickness of 5 μm or more and 40 IJ.m or less.

(b)  該中間層中の結合相の量は、前記外層に接す
る中間層面で最大となり、前記超硬合金に接する中間層
面で最小となるように連続的に減少し、かつ最大の結合
相量が前記超硬合金の結合相量の120%以上〜500
%以下であり、最小の結合相量が前記超硬合金の結合相
量と同等であること。
(b) The amount of the binder phase in the intermediate layer is maximum on the surface of the intermediate layer in contact with the outer layer and continuously decreases to be minimum on the surface of the intermediate layer in contact with the cemented carbide, and the amount of binder phase is the maximum. is 120% or more of the binder phase amount of the cemented carbide to 500%
% or less, and the minimum binder phase amount is equivalent to the binder phase amount of the cemented carbide.

(c)  前記外層は、前記中間層に隣接する外層が窒
化チタン、炭窒化チタン、窒酸化チタン又は炭窒酸化チ
タンであること。
(c) The outer layer adjacent to the intermediate layer is made of titanium nitride, titanium carbonitride, titanium nitride, or titanium carbonitoxide.

この本発明の高靭性被覆超硬合金における超硬合金は、
炭化タングステン相としてのWCと立方晶系化合物相と
しての、例えば、 (Ti 、W)C,(Ti 、Ta、W)C。
The cemented carbide in the high toughness coated cemented carbide of the present invention is
WC as tungsten carbide phase and cubic compound phase, for example (Ti,W)C, (Ti,Ta,W)C.

(Ti 、 Ta 、 Nb 、W) C。(Ti, Ta, Nb, W)C.

(Ti 、W)(c、N)。(Ti, W) (c, N).

(Ti、Ta、W)(c,N)などの少なくとも1種と
結合相としてのFe、Ni、Coの少なくとも1種から
なるものである。
It consists of at least one kind of (Ti, Ta, W) (c, N), etc., and at least one kind of Fe, Ni, Co as a bonding phase.

中間層は、超硬合金に含有しているのと同じ炭化タング
ステン相と立方晶系化合物相と結合相とからなるので超
硬合金との密着性を高めており、中間層中に存在する立
方晶系化合物相は、外層が一部摩耗して中間層を露出さ
せた場合でも耐酸化性にすぐれるのと、被削材などの相
手材への炭素の拡散流出を生じ難くして、耐摩耗性の急
速な低下を防止させているものである。この中間層中の
結合相量は、外層に接する中間層の面が最大の結合相量
で、この最大の結合相量が超硬合金中の結合相量の12
0%未満になると耐欠損性に対する効果が低く、500
%を超えて多くなると耐塑性変形性に対する効果が低い
ために、中間層中の最大の結合相量を超硬合金中の結合
相量の120%以上〜500%以下と定めたものである
。また。
The intermediate layer is composed of the same tungsten carbide phase, cubic compound phase, and binder phase that are contained in the cemented carbide, so it improves adhesion to the cemented carbide, and the The crystalline compound phase has excellent oxidation resistance even when the outer layer is partially worn away and the intermediate layer is exposed, and it also makes it difficult for carbon to diffuse out into the other material such as the workpiece, making it highly resistant. This prevents a rapid decline in abrasion properties. The amount of binder phase in this intermediate layer is the maximum amount of binder phase on the surface of the intermediate layer that is in contact with the outer layer, and this maximum amount of binder phase is 12 times the amount of binder phase in the cemented carbide.
When it is less than 0%, the effect on fracture resistance is low, and 500%
%, the effect on plastic deformation resistance is low. Therefore, the maximum binder phase amount in the intermediate layer is set to be 120% or more and 500% or less of the binder phase amount in the cemented carbide. Also.

中間層の厚みは、5gm未満では外層に生ずるき裂の進
展を抑止できなくて耐欠損性が低くなり。
If the thickness of the intermediate layer is less than 5 gm, the propagation of cracks occurring in the outer layer cannot be suppressed, resulting in low fracture resistance.

40μmを超えて厚くなると耐塑性変形性が低下するこ
とから5ルm以上〜to終m以下と定めたものである。
If the thickness exceeds 40 μm, the plastic deformation resistance decreases, so the thickness is set at 5 m or more and to end m or less.

外層は、中間層に隣接する外層が窒化チタン。The outer layer adjacent to the middle layer is titanium nitride.

炭窒化チタン、窒酸化チタン又は炭窒酸化チタンの中の
1種からなるもので、具体的には、窒化チタン、炭窒化
チタン、窒酸化チタン又は炭窒酸化チタンの中の1種か
らなる単層もしくは窒化チタン、炭窒化チタン、窒酸化
チタン又は炭窒酸化チミンの中の1種からなる外層とこ
の外層の表面に周期律表4a、5a、6a族金属の炭化
物、窒化物、酸化物、ホウ化物、硫化物又はこれらの相
互固溶体並びに酸化アルミニウム、窒化アルミニウム、
酸窒化アルミニウム、窒化ケイ素、炭化ケイ稟、立方晶
窒化ホウ素又はダイヤモンドの中の1種以上の外層とか
らなる多!!にすることもできる、このように、中間層
に隣接する外層を窒化チタン、炭窒化チタン、窒酸化チ
タン又は炭窒酸化チタンの中の1種にすると、中間層中
の結合相が外層中へ拡散侵入するのを抑制でさるもので
ある。このために、中間層内に結合相の流出による孔が
生じなく緻密で靭性の高い中間層になっているものであ
る。
It is made of one of titanium carbonitride, titanium nitride, or titanium carbonitoxide. Specifically, it is made of one of titanium nitride, titanium carbonitride, titanium nitride, or titanium carbonitoxide. A layer or an outer layer consisting of one of titanium nitride, titanium carbonitride, titanium nitoxide, or thymine carbonitoxide, and on the surface of this outer layer, carbides, nitrides, and oxides of metals from groups 4a, 5a, and 6a of the periodic table, Borides, sulfides or their mutual solid solutions as well as aluminum oxide, aluminum nitride,
An outer layer of one or more of aluminum oxynitride, silicon nitride, silicon carbide, cubic boron nitride or diamond! ! In this way, when the outer layer adjacent to the intermediate layer is made of one of titanium nitride, titanium carbonitride, titanium nitride, or titanium carbonitoxide, the binder phase in the intermediate layer flows into the outer layer. This is to suppress the spread and invasion. For this reason, no pores are formed in the intermediate layer due to the outflow of the binder phase, resulting in a dense and highly tough intermediate layer.

本発明の高靭性被覆超硬合金の製造方法は、炭化タング
ステン相と、周期律表4a、5a、Ba族金属の炭化物
、窒化物及びこれらの相互固溶体の中の少なくとも1種
でなる立方晶系化合物相と、Fe、Ni、Coの中の少
なくとも1種でなる結合相とからなる超硬合金を真空又
はガス雰囲気中で処理して、前記超硬合金の表面に該超
硬合金よりも結合相の富化してなる中間層と、該中間層
の表面にCVD法又はPVD法によって単層又は多重層
の外層とを形成させる被覆超硬合金の製造方法において
、前記中間層は前記超硬合金を該超硬合金に含有する結
合相の固液共存温度域に保持しながら該超硬合金の表面
を脱炭させることによって生成させることを特徴゛とす
るものである。
The method for producing a high-toughness coated cemented carbide of the present invention comprises a cubic crystal system consisting of a tungsten carbide phase and at least one of carbides, nitrides, and mutual solid solutions of metals in groups 4a and 5a of the periodic table, Ba metals, and mutual solid solutions thereof. A cemented carbide consisting of a compound phase and a binder phase made of at least one of Fe, Ni, and Co is treated in a vacuum or gas atmosphere to bond the surface of the cemented carbide better than the cemented carbide. A method for producing a coated cemented carbide comprising forming an intermediate layer enriched with a phase and a single layer or multilayer outer layer on the surface of the intermediate layer by a CVD method or a PVD method, wherein the intermediate layer is made of the cemented carbide. It is characterized in that it is produced by decarburizing the surface of the cemented carbide while maintaining the solid-liquid coexistence temperature range of the binder phase contained in the cemented carbide.

本発明の高靭性被覆超硬合金の製造方法における超硬合
金は、市販の超硬合金を用いることもできるが、超硬合
金の表面に中間層を生成するには、超硬合金中の含有炭
素量が大きく影響することから含有炭素量を調整した超
硬合金を用いるのが好ましい。
A commercially available cemented carbide may be used as the cemented carbide in the method for producing a high-toughness coated cemented carbide of the present invention, but in order to form an intermediate layer on the surface of the cemented carbide, it is necessary to Since the amount of carbon has a large effect, it is preferable to use a cemented carbide whose carbon content is adjusted.

超硬合金の表面に中間層を生成する場合は、超硬合金の
表面を必要に応じて研摩加工又は洗浄後1反応炉内にセ
ットし、次いで反応炉内を真空に保持しながら中間層に
液相が生じ、かつ超硬合金の低炭素側で固相となる結合
相の固液共存温度域、この結合相の固液共存温度域は超
硬合金の組成によって異なるが、特に1290℃〜13
60℃が好ましく、この結合相の固液共存温度域に保持
しながら炉内を、例えばH2とCO2の混合ガス、C0
2ガス、COとCO2の混合ガス、H2とCO2とCO
の混合ガス又はH2とH20の混合ガスなどの脱炭性の
ガス雰囲気にするか、又は高真空に保持すると、超硬合
金の表面ば脱炭されて中間層が生成される。このとき、
超硬合金を脱炭性雰囲気中で脱炭する時間は、超硬合金
中の含有炭素量、処理温度及び脱炭性雰囲気により異な
るが、20秒以上〜3分以下に保持するのが好ましい、
脱炭時間が長くなると脱炭量が多くなって超硬合金の表
面にη相(W3 Co3 C)のような異相が生じて好
ましくない、その他、超硬合金の表面を脱炭する方法と
しては、脱炭作用する粉末1例えば酸化アルミニウム粉
末の中に超硬合金を埋めて加熱することも回部であるが
、中間層の均−性及び作業性から高真空又はガス雰囲気
性が好ましいものである。
When producing an intermediate layer on the surface of cemented carbide, the surface of the cemented carbide is polished or cleaned as necessary, and then set in a reactor, and then the intermediate layer is formed while keeping the reactor in a vacuum. The solid-liquid coexistence temperature range of the binder phase in which a liquid phase occurs and becomes a solid phase on the low-carbon side of the cemented carbide. The solid-liquid coexistence temperature range of this binder phase varies depending on the composition of the cemented carbide, but is particularly from 1290°C to 13
The temperature is preferably 60°C, and while maintaining the solid-liquid coexistence temperature range of this bonded phase, the inside of the furnace is heated with a mixed gas of H2 and CO2, for example, CO2.
2 gases, mixed gas of CO and CO2, H2, CO2 and CO
When the cemented carbide is placed in a decarburizing gas atmosphere such as a mixed gas or a mixed gas of H2 and H20, or maintained in a high vacuum, the surface of the cemented carbide is decarburized to form an intermediate layer. At this time,
The time for decarburizing the cemented carbide in a decarburizing atmosphere varies depending on the amount of carbon contained in the cemented carbide, the treatment temperature, and the decarburizing atmosphere, but it is preferably kept at 20 seconds or more and 3 minutes or less.
As the decarburization time becomes longer, the amount of decarburization increases and a different phase such as η phase (W3 Co3 C) is generated on the surface of the cemented carbide, which is undesirable.Other methods for decarburizing the surface of the cemented carbide include Powder 1 that decarburizes 1 For example, it is possible to bury cemented carbide in aluminum oxide powder and heat it, but from the viewpoint of uniformity of the intermediate layer and workability, high vacuum or gas atmosphere is preferable. be.

中間層の表面に外層を形成する場合は、従来のCVD法
、プラズマCVD法又はイオンブレーティング、スパッ
タリングなどのPVD法によって行なうことができる。
When forming an outer layer on the surface of the intermediate layer, it can be performed by a conventional CVD method, plasma CVD method, or PVD method such as ion blasting or sputtering.

(作用) 本発明の高靭性被覆超硬合金は、超硬合金と外層との間
に介在させる中間層が脱炭性雰囲気によって生成される
靭性の高い層からなり、その中間層には、■遊離カーボ
ンが生じてなく、■結合相のみの層が生じてなく、■立
方晶系化合物相を含む3相構造からなっているために、
耐欠損性、#塑性変形性、耐摩耗性及び被覆層の耐剥離
性が著しくすぐれているものである。
(Function) In the high-toughness coated cemented carbide of the present invention, the intermediate layer interposed between the cemented carbide and the outer layer is a high-toughness layer generated by a decarburizing atmosphere, and the intermediate layer includes: Because there is no free carbon, there is no layer of only a bonded phase, and there is a three-phase structure including a cubic compound phase,
It has extremely excellent fracture resistance, plastic deformability, abrasion resistance, and peeling resistance of the coating layer.

また、その製造方法は、低温で非常に短時間の処理によ
って中間層を生成させることができるので中間層中の合
金組織の変動が殆んど生じない安定性のある方法であり
、しかも簡易に行なうことができる方法である。
In addition, the manufacturing method is a stable method in which the intermediate layer can be generated by processing at low temperatures and in a very short time, so there is almost no change in the alloy structure in the intermediate layer. This is a method that can be done.

(実施例) 実施例1 市販の平均粒径0.フルm〜3.07zmの各種出発原
料粉末を用いて、83%WC−4%T f C−1%T
iN−6%TaC−6%Co(重量%)組成に配合し、
これを常法の製法によって成形した後1400℃、50
分保持にて真空焼結した。
(Example) Example 1 Commercially available average particle size 0. Using various starting material powders of full m to 3.07 zm, 83%WC-4%T f C-1%T
iN-6% TaC-6% Co (wt%) composition,
After molding this using a conventional manufacturing method, it was heated to 1400°C and
Vacuum sintering was carried out by holding for 30 minutes.

こうして得た超硬合金をJIS規格のTNP332形状
に研摩加工した後1反応炉に設置してH2と002の混
合ガス雰囲気中、1330℃で3分間保持にて処理し中
間層を生成させ、次いで常法のCVD法によって中間層
の表面に4μm厚さのTi(c,N)層とTi(c,N
)層の表面に21Lm厚さのAl1203層からなる外
層を形成させて本発明品を得た。
After polishing the thus obtained cemented carbide into a TNP332 shape according to the JIS standard, it was placed in a reactor and treated at 1330°C for 3 minutes in a mixed gas atmosphere of H2 and 002 to form an intermediate layer. A Ti(c,N) layer with a thickness of 4 μm and a Ti(c,N) layer are deposited on the surface of the intermediate layer by a conventional CVD method.
) An outer layer consisting of an Al1203 layer having a thickness of 21 Lm was formed on the surface of the layer to obtain a product of the present invention.

比較として1.I:述の本発明品の工程の内、中間層の
生成工程として、超硬合金の表面にCOを25ルmの層
厚でメッキし、水素ガス雰囲気中、温度1430℃に3
0分間保持した後1本発明品と同様にして外層を形成さ
せることによって比較量1を得た。上述の本発明品の工
程の内、中間層の生成工程として超硬合金の表面にグラ
ファイトを塗布し、1490℃、30分間保持した後1
本発明品と同様にして外層を形成させることによって比
較量2を得た。と述の本発明品で中間層の生成工程まで
同じで、外層が中間層の表面に4uLm厚さのTiC層
とTiC層の表面に21Lm厚さのA2203層からな
る比較量3を得た。上述の本発明品の工程の内、中間層
の生成工程がH2とCO2の混合ガス雰囲気中、135
0℃で1分間保持にて処理した以外は本発明品と同様に
行なって比較量4を得た。上述の本発明品の工程の内、
中間層の生成工程を省略して超硬合金の表面に直接外層
を形成させて比較量5を得た。
For comparison, 1. I: Among the processes of the product of the present invention described above, as the intermediate layer generation process, the surface of the cemented carbide was plated with CO to a layer thickness of 25 μm, and then heated at a temperature of 1430°C for 30 minutes in a hydrogen gas atmosphere.
Comparative amount 1 was obtained by forming an outer layer in the same manner as the product of the present invention after holding for 0 minutes. In the process of producing the product of the present invention described above, graphite is applied to the surface of the cemented carbide as an intermediate layer generation process, and after holding at 1490°C for 30 minutes, 1
Comparative amount 2 was obtained by forming the outer layer in the same manner as the product of the present invention. Comparison amount 3 was obtained using the product of the present invention as described above, with the same steps up to the formation of the intermediate layer, and the outer layer consisted of a TiC layer with a thickness of 4 μLm on the surface of the intermediate layer and an A2203 layer with a thickness of 21 Lm on the surface of the TiC layer. Among the above-mentioned processes for the product of the present invention, the intermediate layer generation process is performed in a mixed gas atmosphere of H2 and CO2.
Comparative amount 4 was obtained in the same manner as the product of the present invention except that the treatment was held at 0° C. for 1 minute. Among the steps of the above-mentioned product of the present invention,
Comparative amount 5 was obtained by omitting the step of forming the intermediate layer and directly forming the outer layer on the surface of the cemented carbide.

こうして得た本発明品と比較量1〜5の中間層をX線マ
イクロアナライザーにて調べ、その結果を第1表に示し
た。
The intermediate layers of the products of the present invention and comparative amounts 1 to 5 thus obtained were examined using an X-ray microanalyzer, and the results are shown in Table 1.

以下 余白 以上の本発明品と比較量1〜5を用いて、下記に示す条
件で外周旋削による切削試験を行ない、その結果を第2
表に示した。
Using the products of the present invention and comparative amounts 1 to 5 above the margins below, a cutting test was conducted by outer circumferential turning under the conditions shown below, and the results were summarized in the second section.
Shown in the table.

(A)耐欠損性試験 被削材  548C(HB250)等間隔4本スロット
入 切削速度 100  層l鳳iII+ 切込み量 1.51■ 送り速度 0 、30  am/revmm油  なし
く乾式切削) (B)耐塑性変形性試験 被削材  SN0M439 (HB280)切削速度 
150  m /win 切込み量 1.5 腸麿 送り速度 0.4  mm1rev 切削時間 3  sin 切削油  なしく乾式切削) 第    2    表 実施例2 実施例1で作製した本発明品と比較量3と比較量4を用
いて、下記に示す切削条件により耐摩耗試験を行ない、
その結果を第3表に示した。
(A) Fracture resistance test workpiece material 548C (HB250) 4 slots equally spaced Cutting speed 100 layers 1 tori iII+ Depth of cut 1.51 Feed rate 0, 30 am/revmm Dry cutting without oil) (B) Plastic deformation resistance test work material SN0M439 (HB280) Cutting speed
150 m/win Depth of cut 1.5 Cutting speed 0.4 mm1rev Cutting time 3 sin Dry cutting without cutting oil) Table 2 Example 2 Comparative amount 3 and comparative amount of the present invention product prepared in Example 1 4, a wear resistance test was conducted under the cutting conditions shown below.
The results are shown in Table 3.

(c)耐摩耗試験 被削材  548C(HB255) 切削速度 180  m /sin 切込み、1 1.5 −膳 送り速度 0.30 履■/rev 切削油  なしく乾式切削) 以下余白 (発明の効果) 以上の結果1本発明の高靭性被覆超硬合金は、外層自体
の有する耐摩耗性及び耐食性は勿論のこと、中間層の存
在により耐塑性変形性の低下を生ずることなく、耐欠損
性及び耐剥離性を著しく高めることができたもので、そ
の製造方法も簡易な方法であることから工業化が容易で
ある。このことから、従来の被覆超硬合金の用途範囲で
ある旋削用切削工具やメカニカルシール、ノズル、バル
ブ、ゲージなどの耐摩耗工具の他に、更に耐衝撃性を必
要とするような切削工具、例えばフライス用切削工具、
ドリル、リーマ、エンドミルなトノ回転用切削工具にも
利用できる産業上有用な被覆超硬合金及びその製造方法
である。
(c) Wear resistance test workpiece material 548C (HB255) Cutting speed 180 m/sin Depth of cut, 1 1.5 - Feeding speed 0.30 mm/rev Dry cutting without cutting oil) Below margins (effects of the invention) Results 1 The high toughness coated cemented carbide of the present invention not only has the wear resistance and corrosion resistance of the outer layer itself, but also has good chipping resistance and corrosion resistance due to the presence of the intermediate layer, without deteriorating the plastic deformation resistance. It is possible to significantly improve the releasability, and since the manufacturing method is simple, it is easy to industrialize. For this reason, in addition to wear-resistant tools such as turning cutting tools, mechanical seals, nozzles, valves, and gauges, which are the range of applications for conventional coated cemented carbide, cutting tools that require even more impact resistance, For example, cutting tools for milling,
This is an industrially useful coated cemented carbide that can be used for cutting tools such as drills, reamers, and end mills, and a method for producing the same.

特許出願人 東芝タンガロイ株式会社 手  続  補  正  書 (自発)昭和61年 6
月kt日
Patent applicant: Toshiba Tungaloy Co., Ltd. Procedural amendment (voluntary) June 1988
month kt day

Claims (3)

【特許請求の範囲】[Claims] (1)炭化タングステン相と、周期律表4a、5a、6
a族金属の炭化物、窒化物及びこれらの相互固溶体の中
の少なくとも1種でなる立方晶系化合物相と、Fe、N
i、Coの中の少なくとも1種でなる結合相とからなる
超硬合金の表面に、該超硬合金よりも結合相の富化して
なる中間層と、該中間層の表面に単層もしくは多重層の
外層を形成してなる被覆超硬合金において、下記(a)
、(b)及び(c)を具備していることを特徴とする高
靭性被覆超硬合金。 (a)前記中間層は、前記炭化タングステン相と前記立
方晶系化合物相と前記結合相とからなる5μm以上〜4
0μm以下の層厚を有していること。 (b)該中間層中の結合相の量は、前記外層に接する中
間層面で最大となり、前記超硬合金に接する中間層面で
最小となるように連続的に減少し、かつ最大の結合相量
が前記超硬合金の結合相量の120%以上〜500%以
下であり、最小の結合相量が前記超硬合金の結合相量と
同等であること。 (c)前記外層は、前記中間層に隣接する外層が窒化チ
タン、炭窒化チタン、窒酸化チタン又は炭窒酸化チタン
であること。
(1) Tungsten carbide phase and periodic table 4a, 5a, 6
A cubic compound phase consisting of at least one of carbides, nitrides, and mutual solid solutions of group a metals, and Fe, N
i, a binder phase made of at least one of Co, an intermediate layer having a binder phase richer than that of the cemented carbide, and a single layer or multi-layer on the surface of the intermediate layer. In the coated cemented carbide formed by forming the outer layer of the multilayer, the following (a)
, (b) and (c). (a) The intermediate layer is composed of the tungsten carbide phase, the cubic compound phase, and the binder phase and has a thickness of 5 μm or more to 4 μm.
It must have a layer thickness of 0 μm or less. (b) The amount of the binder phase in the intermediate layer is maximum on the surface of the intermediate layer in contact with the outer layer, and continuously decreases so as to be minimum on the surface of the intermediate layer in contact with the cemented carbide, and the amount of the binder phase is the maximum. is from 120% to 500% of the binder phase amount of the cemented carbide, and the minimum binder phase amount is equivalent to the binder phase amount of the cemented carbide. (c) The outer layer adjacent to the intermediate layer is made of titanium nitride, titanium carbonitride, titanium nitride, or titanium carbonitoxide.
(2)炭化タングステンと、周期律表4a、5a、6a
族金属の炭化物、窒化物及びこれらの相互固溶体の中の
少なくとも1種でなる立方晶系化合物相と、Fe、Ni
、Coの中の少なくとも1種でなる結合相とからなる超
硬合金を真空又はガス雰囲気中で処理して、前記超硬合
金の表面に該超硬合金よりも結合相の富化してなる中間
層と、該中間層の表面に化学蒸着法又は物理蒸着法によ
って単層もしくは多重層の外層とを形成させる被覆超硬
合金の製造方法において、前記中間層は、超硬合金を該
超硬合金に含有する結合相の固液共存温度域に保持しな
がら該超硬合金の表面を脱炭させることによって生成さ
せることを特徴とする高靭性被覆超硬合金の製造方法。
(2) Tungsten carbide and periodic table 4a, 5a, 6a
A cubic compound phase consisting of at least one of group metal carbides, nitrides, and mutual solid solutions thereof, and Fe, Ni
, a binder phase consisting of at least one of Co, and a binder phase made of at least one of Co is treated in a vacuum or gas atmosphere to form an intermediate layer in which the surface of the cemented carbide is enriched in the binder phase than the cemented carbide. A method for producing a coated cemented carbide in which a single layer or a multilayer outer layer is formed on the surface of the intermediate layer by a chemical vapor deposition method or a physical vapor deposition method, wherein the intermediate layer coats the cemented carbide with the cemented carbide. 1. A method for producing a high-toughness coated cemented carbide, which is produced by decarburizing the surface of the cemented carbide while maintaining the solid-liquid coexistence temperature range of a binder phase contained in the cemented carbide.
(3)上記結合相の固液共存温度域は、1290℃以上
〜1360℃以下であることを特徴とする特許請求の範
囲第2項記載の高靭性被覆超硬合金の製造方法。
(3) The method for producing a high-toughness coated cemented carbide according to claim 2, wherein the solid-liquid coexistence temperature range of the binder phase is from 1290°C to 1360°C.
JP24543385A 1985-11-01 1985-11-01 High-tenacity coated cemented carbide and manufacture thereof Granted JPS62105628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24543385A JPS62105628A (en) 1985-11-01 1985-11-01 High-tenacity coated cemented carbide and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24543385A JPS62105628A (en) 1985-11-01 1985-11-01 High-tenacity coated cemented carbide and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62105628A true JPS62105628A (en) 1987-05-16
JPH0363949B2 JPH0363949B2 (en) 1991-10-03

Family

ID=17133584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24543385A Granted JPS62105628A (en) 1985-11-01 1985-11-01 High-tenacity coated cemented carbide and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62105628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382766A (en) * 1989-08-24 1991-04-08 Sumitomo Electric Ind Ltd Coated sintered hard alloy for wear resistant tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023165040A (en) 2020-09-18 2023-11-15 ヤマハ発動機株式会社 Straddling type vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382766A (en) * 1989-08-24 1991-04-08 Sumitomo Electric Ind Ltd Coated sintered hard alloy for wear resistant tool

Also Published As

Publication number Publication date
JPH0363949B2 (en) 1991-10-03

Similar Documents

Publication Publication Date Title
JP5363445B2 (en) Cutting tools
US4497874A (en) Coated carbide cutting tool insert
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
JPS634070A (en) Cutting tool
JP3658949B2 (en) Coated cemented carbide
JP2007237391A (en) Coated cermet cutting tool
JPH11124672A (en) Coated cemented carbide
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JPS6117909B2 (en)
JPS598679A (en) Coated hard sintered body
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPS6119367B2 (en)
JPS61183187A (en) Coated hard sintered body
JPS62105628A (en) High-tenacity coated cemented carbide and manufacture thereof
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP3358696B2 (en) High strength coating
JPH06226509A (en) Coating cutting tool
JPS5867858A (en) Coated sintered hard alloy member
JPH0547633B2 (en)
JP3872544B2 (en) Coated cemented carbide
JPS60174876A (en) Manufacture of coated cutting tool
JPH0122344B2 (en)
KR102001877B1 (en) Method for Forming Coating Layers which are made of Distributed Amorphous and Nanocrystalline Alloy on a Cutting Tool
JPS5856033B2 (en) Coated cemented carbide parts
JPS6343453B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term