JPH0547633B2 - - Google Patents

Info

Publication number
JPH0547633B2
JPH0547633B2 JP4277584A JP4277584A JPH0547633B2 JP H0547633 B2 JPH0547633 B2 JP H0547633B2 JP 4277584 A JP4277584 A JP 4277584A JP 4277584 A JP4277584 A JP 4277584A JP H0547633 B2 JPH0547633 B2 JP H0547633B2
Authority
JP
Japan
Prior art keywords
phase
sintered alloy
cemented carbide
intermediate layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4277584A
Other languages
Japanese (ja)
Other versions
JPS60187678A (en
Inventor
Yasuro Taniguchi
Hisashi Sasaki
Mitsuo Ueki
Keiichi Kobori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP4277584A priority Critical patent/JPS60187678A/en
Publication of JPS60187678A publication Critical patent/JPS60187678A/en
Publication of JPH0547633B2 publication Critical patent/JPH0547633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、切削工具、耐摩耗工具及び耐衝撃工
具に適する被覆焼結合金に係り、具体的には焼結
合金基体と被覆層との間に中間層を介在させるこ
とにより耐摩耗性、耐塑性変形性及び耐欠損性が
向上し、特に切削工具として使用したときに重負
荷の加わる切削領域において耐チツピング性及び
耐塑性変形性を主とする切削性能にすぐれた被覆
焼結合金工具に関する。 〔背景技術〕 従来、炭化タングステン基超硬合金の表面に周
期律表の4a、5a、6a族金属の炭化物、窒化物、
酸化物、硼化物、硅化物、硫化物及びこれらの相
互固溶体並びに酸化アルミニウムのうち少なくと
も1種の単層又は2種以上からなる多重層の被覆
層を形成してなる被覆超硬合金は多数提案され、
その一部は広く実用化されている。 しかし一般に従来の被覆超硬合金は、被覆層が
炭化タングステン基超硬合金よりも脆弱であるた
めに超硬合金のみの場合よりも低い応力でクラツ
クが発生し、この被覆層に発生したクラツクが超
硬合金内部に迄容易に進展して被覆超硬合金の欠
損に結び付くという問題がある。そこで被覆超硬
合金の耐欠損性を向上させるために超硬合金表面
部の靭性を富化したものが提案される。例えば、
超硬合金の表面部に内部と比べて軟質の中間層を
存在させて、この中間層の表面に被覆層を形成さ
せた被覆超硬合金が特公昭57−39301に提案され
ており、又超硬合金の表面硬さを低くして内部に
なるほど次第に硬さを高くし、この超硬合金表面
に被覆層を形成させた被覆超硬合金が特公昭58−
26428に提案されている。しかしこれらの軟質な
中間層の存在する被覆超硬合金は、軟質な中間層
が被覆層に生じたクラツクを超硬合金内部に進展
するのを抑制する効果はあるものの負荷が作用し
たときに塑性変形し易くなり、例えば切削工具と
して使用しとときに重負荷の加ような切削領域又
は高温状態になるような切削領域では刃先に塑性
変形が生じて寿命が短かいという問題がある。 〔発明の目的〕 本発明は、上記のような従来の被覆超硬合金の
問題点を解決したもので、特に切削工具として使
用したときに旋削での高速切削又は高送り切削か
らドリル等の穴あけ加工の切削まで、耐摩耗性は
勿論のこと耐欠損性及び耐塑性変形性の要求され
るような切削領域にも適する被覆焼結合金工具の
提供を目的とする。 〔発明の開示〕 超硬合金を切削工具として使用する際の工具寿
命に影響を与える合金特性のうち、とくに重要な
ものは、耐摩耗性、耐欠損性及び高温における耐
塑性変形性である。これら3者のうち、耐摩耗性
に関しては、超硬合金表面に炭化物、窒化物、炭
窒化物、酸化物等を被覆することによつて、それ
が大きく改善できることは周囲の事実であり、被
覆超硬合金として広く実用化されている。しかし
ながら、耐欠損性と耐塑性変形性については、こ
れらを共に満足する超硬合金は未だ得られていな
い。即ち両者は相反する性質のものであり、例え
ば耐欠損性を高めようとすれば、超硬合金中の硬
質相粒子を大きくしたり、結合相量を増加させる
などするために、一般に合金硬さの低下を招く。
又耐塑性変形性を向上させようとすれば、逆に結
合相量を減じ、硬さを上昇させるのが最も効果が
大きい。このような背景をもとに、現在、実用化
されている被覆超硬合金の基体としては、硬質相
粒子の粒度及び結合相量を種々変化させたものと
なつており、これらを切削条件などに応じて適宜
使い分けなければならないのが実状である。一
方、耐欠損性を重視して、被覆層と超硬合金基体
との間に、局部的に軟質層を存在せしめた被覆超
硬合金が提案されているが、この場合、耐欠損性
を重視する余り、耐塑性変形性は犠牲になつてい
る。以上のような現状を踏まえ、発明者等は、被
覆焼結合金について、耐摩耗性は勿論のこと、更
に耐欠損性と耐塑性変形性の両方共向上させるこ
とを追究した結果、本発明を完成するに到つたも
のである。 即ち、本発明の被覆焼結合金工具は、元素周期
律表の4a、5a、6a族金属の炭化物、窒化物、及
びこれらの相互固溶体のうちの少なくとも1種の
硬質相とCo、Ni、Fe、Mo、Cr、Wのうちの少
なくとも1種の結合相とを含有する焼結合金基体
の表面に元素周期律表の4a、5a、6a族金属の炭
化物、窒化物、酸化物、硼化物、硅化物、硫化物
及びこれらの相互固溶体並びに酸化アルミニウム
のうち少なくとも1種の単層又は2種以上からな
る多重層の被覆層を形成してなる被覆焼結合金の
焼結合金基体と被覆層と間に、焼結合金基体より
も靭性に富み、しかも焼結合金基体の表面に対し
て平行にラメラ状の軟質部と硬質部が交互に配置
されてなる中間層を介在させたものである。 本発明における中間層は、焼結合金基体内部と
同等あるいはそれ以上の硬さを持つラメラ状の硬
質部と、結合相とほぼ同等の硬さを持つラメラ状
の軟質部とから成り、これらは基体表面に対して
平行に、内部に向かつて所定深さまで交互に存在
する。このようにラメラ状の軟質部と硬質部を基
体表面に平行に交互に配置することの利点を述べ
ると、低靭性の被覆層に生じたき裂が基体内部に
向かつて進展する際、中間層内に存在して結合層
とほぼ同等の靭性を有する軟質部で抑止されるこ
とになり、本発明工具は耐欠損性の向上がはから
れている。又、切削工具として使用するとき、工
具に塑性変形が引起すのは、工具表面のうち、特
にすくい面における張力であるが、この張力を中
間層内に存在して基体内部の硬質相とほぼ同等の
硬さを有する硬質部が担うことになり、本発明工
具は十分な耐塑性変形性を有することになる。こ
のような中間層はラメラ状の硬質部とラメラ状の
軟質部か基体表面に対して平行に連続して交互に
存在することによつて積層状になつている場合も
あるが特に、ラメラ状の軟質部については、基体
表面に平行方向で断続的な形態の方が耐塑性変形
性に対して望ましく、又この断続的な形態のラメ
ラ状の軟質部が基体表面に平行方向の長さ(a)と基
体表面に垂直方向の長さ(b)の比(a/b)が10〜
100程度にあることが耐塑性変形性と耐欠損性か
ら望ましい。以上のような中間層を基体表面部に
有する本発明の被覆焼結合金工具は、耐摩耗性、
耐欠損性及び耐塑性変形性をすべて兼ね備えた工
具となる。 本発明において、中間層の厚みが5μm未満で
は耐欠損性を向上させるのに十分でなく、又
100μmを超えて厚くなると耐塑性変形性が劣る
傾向が強くなるのと製造工程時間が長くなる等の
煩雑さが加わるために中間層の厚さは5μm以上
〜100μm以下が好ましい。この中間層を形成し
ている硬質部が基体表面に対して垂直方向の長さ
で1μm未満では耐塑性変形性の向上がはかれず、
10μmを超えると耐欠損性を低下させることから
硬質部は、基体表面に対する垂直方向の長さで
1μm以上10μm以下が好ましい。又中間層を形成
している軟質部が基体表面に対して垂直方向の長
さで0、2μm未満では耐欠損性に対して効果が
弱く、2μmを超えると塑性変形し易くなること
から軟質部は、基体表面に対する垂直方向の長さ
で0、2μm以上〜2μm以下が好ましい。この中
間層を形成している硬質部は、焼結合金基体の硬
質相とほぼ同等の成分からなり、そのミクロ硬さ
は基体内部の硬さと同等あるいはそれ以上である
ことが好ましい。又中間層を形成している軟質部
は、焼結合金基体の結合相とほぼ同等の成分から
なり、そのミクロ硬さは結合相成分の硬さを反映
したものであることが好ましい。 本発明の被覆焼結合金工具において、焼結合金
基体としてはWC−Co基超硬合金、TiC−Ni−
Mo基サーメツト及びTiC−TiN−Ni−Mo基サ
ーメツトにも応用できるが特に、焼結合金基体の
硬質相が炭化タングステン相と周期律表4a、5a、
6a族金属の炭化物、窒化物及びこれらの相互固
溶体のうちの少なくとも1種からなる立方晶系化
合物相とからなる超硬合金の場合、中間層にもこ
の超硬合金と同一成分の硬質相を含有して、この
中間層内に含有する立方晶系化合物相の炭化タン
グステン相に対する割合が焼結合金基体内におけ
る同割合よりもの減少していないことが望まし
い。このように立方晶系化合物相が中間層内に存
在していると、まず第1に、立方晶系化合物例え
ば、TaC、TiC、TiN、(Ti、W)C、(Ta、W)
C、(Ti、Ta、W)C、(Ti、W)CN、(Ta、
Nb、W)C、(Ti、Ta、Nb、W)C等の単一化
合物又は複合化合物を含む超硬合金においては、
これらの単一化合物又は複合化合物からなる立方
晶系化合物相の結合炭素量および/または結合窒
素量がある程度の幅を持ちうるために低炭素およ
び/または低窒素側のη相及び高炭素および/ま
たは高窒素側の遊離炭素および/または遊離窒素
が共に出現しない健全相の炭素量および/または
窒素量幅が拡大する。このことは化学蒸着法又は
物理蒸着法により超硬合金表面に被覆層を形成す
る被覆工程において多大の利点をもたらす。即
ち、特に高温での処理が要求される化学蒸着法に
よつて例えば、TiCの被覆層を超硬合金基体表面
に形成する場合、基体から被覆層中への炭素およ
び/または窒素の流出のため被覆層と基体との境
界部にη相が要求されることは知られている。こ
のη相は、健全な合金基体よりも著しく脆弱であ
り、被覆超硬合金工具にとつて大いに有害な相で
ある。とりわけ工具の耐欠損性の低下につながる
ことは多くの研究報文にみられるところである。
そこで本発明の如く、基体表面部の中間層内に立
力晶系化合物相を残存せしめて健全相の炭素量お
よび/または窒素量幅を拡大しておけば、被覆層
の被覆工程において基体から被覆層中へ炭素およ
び/または窒素が流出しても有害なη相が形成さ
れ難く、もし仮にη相が形成されたとしても最小
量に抑制することができることから耐欠損性に対
して効果がある。次に立方晶系化合物が中間層内
に存在している第2の利点は、被覆超硬合金工具
の使用中に1部被覆層が剥離除去された後も直ち
には工具寿命とならず、被覆層の剥離した状態で
連続して使用されることが多いが、このような場
合、露出した超硬合金基体表面の中間層内に立立
方晶系化合物が存在していれば、高温における耐
摩耗性及び被加工材との耐圧着性にもすぐれ、こ
の耐圧着性にすぐれることから圧着分離損傷も生
じ難くなつて耐欠損性にすぐれると共に被加工材
の仕上面精度もあまり損なわない。 本発明の被覆焼結合金会具は、例えば従来の粉
末治金法で作製した焼結合金基体の表面に、目的
の中間層成分を構成する軟質部と硬質部のそれぞ
れの粉末をスラリー状にして交互に繰り返し塗布
した後、液相出現温度以上で再加熱して中間層を
作製し、次に中間層の表面に化学蒸着法又は物理
蒸着法によつて被覆層を形成することによつて得
ることができる。この中間層の作製は、Co、Ni、
Fe、Cr、Mo、W等の少なくとも1種の目的とす
る軟質部を構成する金属粉末と4a、5a、6a族金
属の炭化物、窒化物、硼化物、硅化物、酸化物及
びこれらの相互固溶体のうちの少なくとも1種の
目的とする硬質部を構成する金属化合物粉末とを
それぞれスラリー状にして交互に繰り返し焼結合
金基体表面又は焼結前の圧粉末もしくは成形体の
表面に塗布することもできる。又、Co、Ni、Fe
の少なくとも1種以上と4a、5a、6a族金属の少
なくとも1種以上と炭素および/または窒素を交
互に繰り返し焼結合金基体表面に真空又は雰囲気
ガス中で蒸着、イオンプレーテイング又はスパツ
タリングにより付着された後液相出現温度以上に
再加熱することによつても中間層を作製すること
ができる。更に焼結合金基体を焼結後の冷却過程
又は焼結後再加熱して液相出現温度以上で浸炭又
は脱炭もしくはこれらの繰り返しが可能になるよ
うに炉内雰囲気をコントロールすることによつて
中間層を作製することもできる。 〔発明の代表的な実施形態〕 実施例 1 WC−5%TiC−5%TaC−6%Coの組成(重
量%)に配合した超硬合金圧粉体を用意し、これ
を真空中、1400℃で40分間焼結して得た超硬合金
の表面にCo粉末及びWC−5%TiC−5%TaC混
合粉末の各スラリー(溶剤エタノール)を繰り返
し交互に塗布した後、真空中1400℃で10分間再加
熱して本発明にかかる超硬合金基体試片を作製し
た。この試片の表面近傍の断面組織を顕微鏡で観
察したところ、基体試片の表面に対して垂直方向
の長さが7μmでCo相の少ないラメラ状の硬質部
と、同じく長さが1μmでほぼCo相からなるラメ
ラ状の軟質部とが交互に存在する組織が基体表面
より内部に向かつて30μmの深さまで存在してい
た。 一方、比較の目的で、上記ラメラ状硬質部とラ
メラ状軟質部の合計した成分になるようにWC−
5%TiC−5%TaC−13%Co混合粉末のスラリ
ーを上記と同一成分の超硬合金基体表面に塗布し
た後、上記と同一条件で再加熱した比較試片(a)及
び表面処理を行なわず、同一条件で再加熱のみ行
なうた比較試片(b)をそれぞれ作製した。これら比
較試片(a)及び(b)の表面組織を観察したところ、(a)
及び(b)共にラメラ状の硬質部及びラメラ状の軟質
部が存在してなかつた。 ついで、上記本発明にかかる基体試片と比較試
片(a)及び(b)の表面に、化学蒸着法により、TiC層
を5μm、Al2O3層を1μmとなるように順次被覆し
て、最終的にTNMN332形状被覆超硬合金試料
を得た。こうして得た各試料について、下記に示
す条件で外周旋削による切削試験を行ない、第1
表に示す結果を得た。 (A) 耐欠損性試験 被削材 S48C(HB260)等間隔4本スロツト入 切削速度 100m/min 切込み量 1.5mm 送い速度 0.24mm/rev 切削油なし(乾式切削) (B) 耐塑性変形性試験 被削材 SNCM439(HB290) 切削速度 150m/min 切込み量 1.5mm 切削油 なし(乾式切削) 切削時間 3min 送り速度 0.4mm/rev
[Technical Field] The present invention relates to a coated sintered alloy suitable for cutting tools, wear-resistant tools, and impact-resistant tools, and specifically, the present invention relates to a coated sintered alloy suitable for cutting tools, wear-resistant tools, and impact-resistant tools. Coated sintered bond with improved wear resistance, plastic deformation resistance, and chipping resistance, and excellent cutting performance mainly in chipping resistance and plastic deformation resistance, especially in cutting areas where heavy loads are applied when used as a cutting tool. Regarding metal tools. [Background technology] Conventionally, carbides, nitrides, etc. of metals from groups 4a, 5a, and 6a of the periodic table have been deposited on the surface of tungsten carbide-based cemented carbide.
Many coated cemented carbides have been proposed in which a single layer of at least one of oxides, borides, silicides, sulfides, their mutual solid solutions, and aluminum oxide are formed, or a multilayer coating layer is formed of two or more of them. is,
Some of them have been widely put into practical use. However, in general, conventional coated cemented carbide has a coating layer that is more brittle than tungsten carbide-based cemented carbide, so cracks occur at lower stress than with cemented carbide alone, and cracks that occur in this coating layer There is a problem in that it easily propagates inside the cemented carbide, leading to damage to the coated cemented carbide. Therefore, in order to improve the fracture resistance of the coated cemented carbide, a method has been proposed in which the toughness of the surface portion of the cemented carbide is enriched. for example,
A covered cemented carbide was proposed in Japanese Patent Publication No. 57-39301, in which an intermediate layer that is softer than the interior is present on the surface of the cemented carbide, and a coating layer is formed on the surface of this intermediate layer. The surface hardness of the hard metal is lowered and the hardness gradually increases toward the inside, and a coated cemented carbide is produced by forming a coating layer on the surface of this cemented carbide.
Proposed in 26428. However, coated cemented carbide with such a soft intermediate layer has the effect of suppressing cracks that occur in the coating layer from propagating inside the cemented carbide, but when a load is applied, the coated cemented carbide becomes plastic. For example, when used as a cutting tool, plastic deformation occurs at the cutting edge in a cutting area where a heavy load is applied or where the cutting area is exposed to high temperatures, resulting in a short life. [Object of the Invention] The present invention solves the problems of the conventional coated cemented carbide as described above, and particularly when used as a cutting tool, it can be used for high-speed cutting or high-feed cutting in lathes, as well as for drilling holes such as drills. The object of the present invention is to provide a coated sintered alloy tool that is suitable for cutting processes that require not only wear resistance but also chipping resistance and plastic deformation resistance. [Disclosure of the Invention] Among the alloy properties that affect the tool life when cemented carbide is used as a cutting tool, particularly important ones are wear resistance, chipping resistance, and plastic deformation resistance at high temperatures. Of these three, it is a fact that wear resistance can be greatly improved by coating the cemented carbide surface with carbides, nitrides, carbonitrides, oxides, etc. It is widely used as a cemented carbide. However, a cemented carbide that satisfies both fracture resistance and plastic deformation resistance has not yet been obtained. In other words, the two have contradictory properties. For example, in order to improve fracture resistance, it is generally necessary to increase the hardness of the alloy by increasing the size of the hard phase particles in the cemented carbide or increasing the amount of the binder phase. This results in a decrease in
Furthermore, in order to improve the plastic deformation resistance, the most effective method is to reduce the amount of binder phase and increase the hardness. Based on this background, the substrates of coated cemented carbide currently in practical use have various particle sizes of hard phase particles and amounts of binder phase, and these can be adjusted by changing cutting conditions, etc. The reality is that it must be used appropriately depending on the situation. On the other hand, a coated cemented carbide has been proposed in which a soft layer is locally present between the coating layer and the cemented carbide base, with emphasis placed on fracture resistance. As a result, plastic deformation resistance is sacrificed. In light of the above-mentioned current situation, the inventors investigated how to improve not only the wear resistance but also both fracture resistance and plastic deformation resistance of coated sintered alloys, and as a result, they have developed the present invention. It has come to completion. That is, the coated sintered alloy tool of the present invention comprises a hard phase of at least one of carbides, nitrides, and mutual solid solutions of metals from groups 4a, 5a, and 6a of the periodic table of elements, and Co, Ni, and Fe. , carbides, nitrides, oxides, borides of metals from groups 4a, 5a, and 6a of the periodic table of the elements on the surface of a sintered alloy substrate containing at least one binder phase of Mo, Cr, and W. A sintered alloy substrate and a coating layer of a coated sintered alloy formed with a single layer or a multilayer coating layer consisting of at least one of silicides, sulfides, mutual solid solutions thereof, and aluminum oxide; In between, there is interposed an intermediate layer which has higher toughness than the sintered alloy base and is composed of lamellar soft parts and hard parts alternately arranged parallel to the surface of the sintered alloy base. The intermediate layer in the present invention consists of a lamellar hard part having a hardness equal to or higher than that of the inside of the sintered alloy base, and a lamellar soft part having a hardness almost equal to that of the binder phase. They exist alternately parallel to the substrate surface and toward the interior to a predetermined depth. The advantage of arranging the lamellar soft parts and hard parts alternately in parallel to the substrate surface is that when a crack that occurs in the low-toughness coating layer propagates toward the inside of the substrate, it causes cracks in the intermediate layer. The fracture resistance of the tool of the present invention is improved because the soft part exists in the bonding layer and has almost the same toughness as the bonding layer. Furthermore, when used as a cutting tool, plastic deformation is caused in the tool by the tension on the tool surface, especially on the rake face, but this tension is absorbed by the intermediate layer that is present in the intermediate layer and the hard phase inside the base material. The hard part having the same hardness plays this role, and the tool of the present invention has sufficient plastic deformation resistance. Such an intermediate layer may be formed into a laminate by having a lamellar hard part and a lamellar soft part continuously and alternately existing parallel to the substrate surface. Regarding the soft part, it is preferable for the plastic deformation resistance that it is intermittent in the direction parallel to the substrate surface, and that the length of the lamellar soft part in the intermittent form in the direction parallel to the substrate surface ( The ratio (a/b) of a) to the length perpendicular to the substrate surface (b) is 10 to
A value of about 100 is desirable from the viewpoint of plastic deformation resistance and chipping resistance. The coated sintered metal tool of the present invention having the above intermediate layer on the surface of the base has wear resistance,
The tool has both fracture resistance and plastic deformation resistance. In the present invention, if the thickness of the intermediate layer is less than 5 μm, it is not sufficient to improve fracture resistance, or
If the thickness exceeds 100 .mu.m, the plastic deformation resistance tends to be poor, and the manufacturing process time becomes longer, which adds complexity. Therefore, the thickness of the intermediate layer is preferably 5 .mu.m or more and 100 .mu.m or less. If the length of the hard part forming this intermediate layer in the direction perpendicular to the substrate surface is less than 1 μm, the plastic deformation resistance cannot be improved.
If the thickness exceeds 10 μm, the fracture resistance will decrease, so the hard part should be
The thickness is preferably 1 μm or more and 10 μm or less. In addition, if the length of the soft part forming the intermediate layer in the direction perpendicular to the base surface is less than 0.2 μm, it will have a weak effect on chipping resistance, and if it exceeds 2 μm, it will easily deform plastically, so the soft part The length in the direction perpendicular to the substrate surface is preferably 0.2 μm or more and 2 μm or less. It is preferable that the hard part forming this intermediate layer is made of almost the same component as the hard phase of the sintered alloy base, and its microhardness is equal to or higher than the hardness inside the base. Further, it is preferable that the soft portion forming the intermediate layer is made of substantially the same component as the binder phase of the sintered alloy base, and that its microhardness reflects the hardness of the binder phase component. In the coated sintered alloy tool of the present invention, the sintered alloy substrate is WC-Co based cemented carbide, TiC-Ni-
It can also be applied to Mo-based cermets and TiC-TiN-Ni-Mo-based cermets, but in particular, the hard phase of the sintered alloy base is the tungsten carbide phase and the periodic table 4a, 5a,
In the case of a cemented carbide consisting of a cubic compound phase consisting of at least one of carbides and nitrides of Group 6a metals and their mutual solid solution, the intermediate layer also contains a hard phase having the same composition as the cemented carbide. It is desirable that the proportion of the cubic compound phase contained in the intermediate layer to the tungsten carbide phase is not reduced compared to the same proportion in the sintered alloy substrate. If a cubic compound phase is present in the intermediate layer in this way, first of all, cubic compounds such as TaC, TiC, TiN, (Ti, W) C, (Ta, W)
C, (Ti, Ta, W) C, (Ti, W) CN, (Ta,
In cemented carbide containing single compounds or composite compounds such as Nb, W)C, (Ti, Ta, Nb, W)C,
Since the amount of bonded carbon and/or amount of bonded nitrogen in the cubic compound phase composed of these single compounds or composite compounds can vary to some extent, the η phase on the low carbon and/or low nitrogen side and the high carbon and/or Alternatively, the carbon content and/or nitrogen content range of the healthy phase in which free carbon and/or free nitrogen do not appear on the high nitrogen side is expanded. This provides significant advantages in coating processes in which coating layers are formed on cemented carbide surfaces by chemical vapor deposition or physical vapor deposition. That is, when, for example, a coating layer of TiC is formed on the surface of a cemented carbide substrate by a chemical vapor deposition method that requires processing at a particularly high temperature, carbon and/or nitrogen may flow from the substrate into the coating layer. It is known that an η phase is required at the boundary between the coating layer and the substrate. This η phase is significantly more brittle than a sound alloy substrate and is a highly detrimental phase for coated cemented carbide tools. In particular, many research reports have shown that this leads to a decrease in the fracture resistance of tools.
Therefore, as in the present invention, if the vertical crystalline compound phase is left in the intermediate layer on the surface of the substrate and the range of carbon content and/or nitrogen content of the healthy phase is expanded, the amount of carbon and/or nitrogen in the healthy phase can be expanded. Even if carbon and/or nitrogen flows into the coating layer, harmful η phase is unlikely to be formed, and even if η phase is formed, it can be suppressed to a minimum amount, so it has no effect on fracture resistance. be. Next, the second advantage of the presence of the cubic compound in the intermediate layer is that even after a part of the coating layer is peeled off during use of a coated cemented carbide tool, the tool life does not end immediately; In many cases, the layers are used continuously with peeling, but in such cases, if a vertical cubic compound is present in the intermediate layer on the exposed cemented carbide substrate surface, it will improve wear resistance at high temperatures. It also has excellent resistance to pressure bonding and pressure bonding with the workpiece, and because of this excellent pressure bonding resistance, it is difficult to cause damage due to pressure separation, resulting in excellent chipping resistance and does not significantly impair the finished surface accuracy of the workpiece. The coated sintered metal fitting of the present invention is produced by slurrying powders for the soft part and the hard part constituting the desired intermediate layer component on the surface of a sintered metal base made by conventional powder metallurgy, for example. After applying the mixture alternately and repeatedly, an intermediate layer is created by reheating at a temperature above the liquid phase appearance temperature, and then a coating layer is formed on the surface of the intermediate layer by chemical vapor deposition or physical vapor deposition. Obtainable. The preparation of this intermediate layer consists of Co, Ni,
At least one metal powder such as Fe, Cr, Mo, W, etc. constituting the desired soft part and carbides, nitrides, borides, silicides, oxides of group 4a, 5a, and 6a metals, and mutual solid solutions thereof At least one of the metal compound powder constituting the desired hard part may be made into a slurry and alternately and repeatedly applied to the surface of the sintered alloy substrate or the surface of the compacted powder or compact before sintering. can. Also, Co, Ni, Fe
and at least one or more metals of Groups 4a, 5a, and 6a, and carbon and/or nitrogen are alternately and repeatedly deposited on the surface of the sintered alloy substrate by vapor deposition, ion plating, or sputtering in vacuum or atmospheric gas. The intermediate layer can also be produced by heating the mixture to a temperature higher than the liquid phase appearance temperature. Furthermore, by controlling the atmosphere in the furnace so that the sintered alloy substrate can be carburized or decarburized at a temperature higher than the liquid phase appearance temperature by cooling the sintered alloy substrate after sintering or reheating after sintering, or repeating these steps. Intermediate layers can also be created. [Representative Embodiments of the Invention] Example 1 A cemented carbide green compact having a composition (wt%) of WC-5%TiC-5%TaC-6%Co was prepared, and it was heated in vacuum at 1400°C. Slurries of Co powder and WC-5%TiC-5% TaC mixed powder (solvent ethanol) were repeatedly and alternately applied to the surface of the cemented carbide obtained by sintering at ℃ for 40 minutes, and then sintered at 1400℃ in vacuum. A cemented carbide substrate specimen according to the present invention was produced by reheating for 10 minutes. When the cross-sectional structure near the surface of this sample was observed under a microscope, it was found that there was a lamellar hard part with a length of 7 μm perpendicular to the surface of the base specimen with little Co phase, and a lamellar hard part with a length of 1 μm and almost A structure in which lamellar soft parts consisting of a Co phase existed alternately existed from the surface of the substrate to a depth of 30 μm. On the other hand, for the purpose of comparison, WC-
After applying a slurry of 5% TiC - 5% TaC - 13% Co mixed powder to the surface of a cemented carbide substrate with the same components as above, a comparison specimen (a) was reheated under the same conditions as above and surface treatment was performed. First, comparative specimens (b) were prepared in which only reheating was performed under the same conditions. When the surface structures of these comparison specimens (a) and (b) were observed, (a)
and (b) both had no lamellar hard part or lamellar soft part. Next, the surfaces of the substrate specimen according to the present invention and comparative specimens (a) and (b) were sequentially coated with a TiC layer of 5 μm and an Al 2 O 3 layer of 1 μm by chemical vapor deposition. , Finally, TNMN332 shape coated cemented carbide sample was obtained. For each sample obtained in this way, a cutting test was conducted by circumferential turning under the conditions shown below.
The results shown in the table were obtained. (A) Fracture resistance test workpiece material S48C (H B 260) with 4 equally spaced slots Cutting speed 100m/min Depth of cut 1.5mm Feed rate 0.24mm/rev No cutting oil (dry cutting) (B) Plasticity resistance Deformability test workpiece material SNCM439 (H B 290) Cutting speed 150m/min Depth of cut 1.5mm Cutting oil None (dry cutting) Cutting time 3min Feed rate 0.4mm/rev

【表】 実施例 2 実施例1と同一組成のものを同一条件で焼結
し、この超硬合金基体を炉内にセツトして、炉内
に全圧30torrのCH4+H2+COの混合ガスを導入
し、各ガス量の比率を変えて浸炭又は脱炭を数回
繰り返した後、炉冷した。その結果得られた超硬
合金試片の表面層は、実施例1とほぼ同一の組織
のものであつた。この試片に実施例1と同様の条
件でTiC層及びAl2O3層の被覆層を設けた本発明
の被覆焼結合金工具を使用して実施例1と同様の
切削試験を行なつた結果、第1表に示した本発明
品とほぼ同等の性能を示した。 実施例 3 WC−8%TiC−4%TaC−2%NbC−7%Co
組成(重量%)に配合した超硬合金圧粉末を用意
し、真空中1420℃で50分間焼結した後、その表面
に、Co粉末及びWC−8%TiC−4%TaC−2%
NbC混合粉末の各スラリー(溶剤エタノール)
を交互に繰り返し塗布した後実施例1と同条件に
再加熱して超硬合金基体試片(c)を作製した。 上記と同一組成の超硬合金基体の表面に、Co
粉末及びWC粉末の各スラリーを交互に繰り返し
塗布した後、実施例1と同条件にて再加熱して超
硬合金基体試片(d)を作製した。こうして得た超硬
合金基体試片(c)及び(d)の表面組織を顕微鏡にて観
察した所、共にCo相の少ないラメラ状の硬質部
と、ほぼCo1相からなるラメラ状の軟質部とが交
互に存在する組織が表面より内部に向つて60μm
の深さまで存在していた。この内前者の超硬合金
基体試片(c)のラメラ状硬硬質部には、炭化タング
ステン相と(W、Ti、Ta、Nb)C固溶体である
立方晶系化合物相が存在していたのに対して、後
者の超硬合金基体試片(d)のラメラ状硬質部には炭
化タングステン相のみからなつていた。 一方、比較の目的で、上記と同一成分の超硬合
金基体に表面処理を行なわずに上記を同一条件で
再加熱のみ行なつた比較試片を作製した。この比
較試片の表面組織を観察した所、ラメラ状の硬質
部及びラメラ状の軟質部が存在してなかつた。 ついで、上記本発明にかかる超硬合金基体試片
(c)及び(d)と比較試片の各表面に、化学蒸着法によ
り、TiCを2μm、TiCNを2μm、TiNを1μmとな
るように順次被覆して、最終的にSNMA432形状
の被覆超硬合金試料を得た。こうして得た各試料
の表面組織を顕微鏡にて観察した所、本発明の試
料(c)は、被覆層と中間層との境界部に殆んどη相
が存在してないのに対して、本発明の試料(d)は、
被覆層と中間層との境界部に1〜2μmの厚みの
η相が生成しているのが認められた。比較試料
は、中間層が存在してなく、被覆層と基体との境
界部に所々η相が存在しているものであつた。こ
れらの各試料を実施例1と同一条件で切削試験を
行ない、その結果を第2表に示した。
[Table] Example 2 A material with the same composition as in Example 1 was sintered under the same conditions, and this cemented carbide substrate was set in a furnace, and a mixed gas of CH 4 + H 2 + CO at a total pressure of 30 torr was placed in the furnace. was introduced, carburizing or decarburizing was repeated several times by changing the ratio of each gas amount, and then the furnace was cooled. The surface layer of the resulting cemented carbide specimen had almost the same structure as in Example 1. A cutting test similar to that in Example 1 was conducted on this specimen under the same conditions as in Example 1 using the coated sintered metal tool of the present invention in which a coating layer of a TiC layer and three Al 2 O layers was provided. As a result, it showed almost the same performance as the product of the present invention shown in Table 1. Example 3 WC-8%TiC-4%TaC-2%NbC-7%Co
After preparing a cemented carbide compact powder with the same composition (wt%) and sintering it in vacuum at 1420°C for 50 minutes, Co powder and WC-8%TiC-4%TaC-2% were added to the surface.
Each slurry of NbC mixed powder (solvent ethanol)
After alternately and repeatedly applying the following, the samples were reheated under the same conditions as in Example 1 to prepare a cemented carbide substrate specimen (c). Co
After each slurry of powder and WC powder was applied repeatedly and alternately, it was reheated under the same conditions as in Example 1 to produce a cemented carbide substrate specimen (d). When the surface structures of the thus obtained cemented carbide substrate specimens (c) and (d) were observed under a microscope, both showed a lamellar hard part with little Co phase and a lamellar soft part almost composed of Co1 phase. 60 μm inward from the surface
existed to the depths of Among these, the lamellar hard part of the former cemented carbide substrate specimen (c) contained a tungsten carbide phase and a cubic compound phase that was a (W, Ti, Ta, Nb)C solid solution. In contrast, the lamellar hard part of the latter cemented carbide substrate specimen (d) consisted only of tungsten carbide phase. On the other hand, for the purpose of comparison, a comparative specimen was prepared by reheating a cemented carbide substrate having the same components as those described above under the same conditions without surface treatment. When the surface structure of this comparative specimen was observed, it was found that there were no lamellar hard parts or lamellar soft parts. Next, the cemented carbide substrate specimen according to the present invention
The surfaces of (c) and (d) and comparison specimens were sequentially coated with 2 μm of TiC, 2 μm of TiCN, and 1 μm of TiN by chemical vapor deposition, and finally coated carbide in the shape of SNMA432. An alloy sample was obtained. When the surface structure of each sample thus obtained was observed under a microscope, it was found that in sample (c) of the present invention, almost no η phase existed at the boundary between the coating layer and the intermediate layer. Sample (d) of the present invention is
It was observed that an η phase with a thickness of 1 to 2 μm was formed at the boundary between the covering layer and the intermediate layer. In the comparative sample, there was no intermediate layer, and the η phase was present in some places at the boundary between the coating layer and the substrate. Each of these samples was subjected to a cutting test under the same conditions as in Example 1, and the results are shown in Table 2.

〔産業上の利用可能性〕[Industrial applicability]

以上の実施例の結果、本発明の被覆焼結合金工
具は、耐摩耗性は勿論のこと耐欠損性及び耐塑性
変形性にすぐれていることからパンチ、ダイ等の
剪断工具、スリツター、裁断刃等の切断工具、ガ
イドブツシユ、ロール、ゲージ類の機械部品治工
具及びバルブ、メカニカルシール等の耐摩耐食部
品としての耐摩耗用工具並びに旋削用工具、フラ
イス用工具及びエンドミル、リーマ、ドリル等の
穴あけ用工具等としての切削用工具に利用できる
産業上有用な工具材料である。
As a result of the above examples, the coated sintered alloy tool of the present invention has excellent not only wear resistance but also chipping resistance and plastic deformation resistance, so it can be used in shearing tools such as punches and dies, slitters, and cutting blades. Wear-resistant tools such as cutting tools, guide bushes, rolls, gauges and other mechanical parts, jigs and tools, wear-resistant and corrosion-resistant parts such as valves and mechanical seals, turning tools, milling tools, and drilling tools such as end mills, reamers, drills, etc. It is an industrially useful tool material that can be used as cutting tools.

Claims (1)

【特許請求の範囲】 1 元素周期律表の4a、5a、6a族金属の炭化物、
窒化物及びこれらの相互固溶体のうちの少なくと
も1種の硬質相とCo、Ni、Fe、Mo、Cr、Wの
うちの少なくとも1種の結合相とを含有する焼結
合金基体の表面に元素周期律表の4a、5a、6a族
金属の炭化物、窒化物、酸化物、硼化物、硅化
物、硫化物及びこれらの相互固溶体並びに酸化ア
ルミニウムのうちの少なくとも1種の単層又は2
種以上からなる多重層を形成してなる被覆焼結合
金において、 前記焼結合金基体と前記被覆層との間に、該焼
結合金基体よりも靭性に富み、かつ該焼結合金基
体の表面に対して平行にラメラ状の軟質部と硬質
部が交互に配置されてなる中間層を介在させてな
ることを特徴とする被覆焼結合金工具。 2 上記焼結合金基体の硬質相が炭化タングステ
ン相と周期律表4a、5a、6a族金属の炭化物、窒
化物及びこれらの相互固溶体のうちの少なくとも
1種からなる立方晶系化合物相とからなり、かつ
上記中間層にも前記焼結合金基体と同一成分の硬
質相を含有し、該中間層内の立方晶系化合物相の
炭化タングステン相に対する割合が前記焼結合金
基体内における同割合よりも減少していないこと
を特徴とする特許請求の範囲第1項記載の被覆焼
結合金工具。
[Scope of Claims] 1. Carbide of metals from groups 4a, 5a, and 6a of the periodic table of elements;
A sintered alloy substrate containing at least one hard phase of nitrides and mutual solid solutions thereof and at least one binder phase of Co, Ni, Fe, Mo, Cr, and W has an elemental periodic structure on the surface of the sintered alloy substrate. A single layer or two of at least one of carbides, nitrides, oxides, borides, silicides, sulfides and their mutual solid solutions of metals in Groups 4a, 5a and 6a of the Table of Contents, and aluminum oxide
In the coated sintered alloy formed by forming a multi-layer consisting of at least one layer, the sintered alloy base and the coating layer are provided with a surface having higher toughness than the sintered alloy base and a surface of the sintered alloy base. 1. A coated sintered metal tool characterized by interposing an intermediate layer in which lamellar soft parts and hard parts are alternately arranged in parallel to the sintered metal tool. 2. The hard phase of the sintered alloy substrate is composed of a tungsten carbide phase and a cubic compound phase consisting of at least one of carbides, nitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table. , and the intermediate layer also contains a hard phase having the same composition as the sintered alloy base, and the ratio of the cubic compound phase to the tungsten carbide phase in the intermediate layer is higher than the same ratio in the sintered alloy base. The coated sintered metal tool according to claim 1, characterized in that the coated sintered metal tool is not reduced.
JP4277584A 1984-03-06 1984-03-06 Coated sintered alloy tool Granted JPS60187678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277584A JPS60187678A (en) 1984-03-06 1984-03-06 Coated sintered alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277584A JPS60187678A (en) 1984-03-06 1984-03-06 Coated sintered alloy tool

Publications (2)

Publication Number Publication Date
JPS60187678A JPS60187678A (en) 1985-09-25
JPH0547633B2 true JPH0547633B2 (en) 1993-07-19

Family

ID=12645342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277584A Granted JPS60187678A (en) 1984-03-06 1984-03-06 Coated sintered alloy tool

Country Status (1)

Country Link
JP (1) JPS60187678A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313580A (en) * 1989-06-09 1991-01-22 Toyo Kinzoku Netsushiyori Kenkyusho:Kk Surface-treated metallic body and welding work positioning pin and metallic mold extruding pin mode of the metallic body
JP2591403B2 (en) * 1992-05-26 1997-03-19 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool
JPH06262405A (en) * 1993-03-05 1994-09-20 Toshiba Tungaloy Co Ltd Coating part for tool
US6589602B2 (en) 2001-04-17 2003-07-08 Toshiba Tungaloy Co., Ltd. Highly adhesive surface-coated cemented carbide and method for producing the same
AT511950B1 (en) * 2012-03-14 2013-04-15 Boehlerit Gmbh & Co Kg Coated body and method of coating a body

Also Published As

Publication number Publication date
JPS60187678A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
US5066553A (en) Surface-coated tool member of tungsten carbide based cemented carbide
JP3866305B2 (en) Composite high hardness material for tools
EP0438916B1 (en) Coated cemented carbides and processes for the production of same
EP3170919A1 (en) Coated cutting tool
KR20120140642A (en) Method for high speed machining and coated cutting tool
KR20080019571A (en) Sintered cemented carbides using vanadium as gradient former
JPH068010A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
KR20110100621A (en) Improved coated cutting insert for rough turning
JP2007237391A (en) Coated cermet cutting tool
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
EP1352697B1 (en) Coated cutting tool insert
JPH0547633B2 (en)
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP2625923B2 (en) Surface coated cermet for cutting tools
JP3850085B2 (en) Coated cermet for cutting tools
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JPH0222454A (en) Production of cutting tool made of surface-treated tungsten carbide-base sintered hard alloy
JP3358696B2 (en) High strength coating
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JPS644989B2 (en)
JP4126451B2 (en) Cemented carbide
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JPH0873289A (en) Composite high hardness material for tool

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term