JPH11124672A - Coated cemented carbide - Google Patents

Coated cemented carbide

Info

Publication number
JPH11124672A
JPH11124672A JP28682797A JP28682797A JPH11124672A JP H11124672 A JPH11124672 A JP H11124672A JP 28682797 A JP28682797 A JP 28682797A JP 28682797 A JP28682797 A JP 28682797A JP H11124672 A JPH11124672 A JP H11124672A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
aluminum oxide
coated cemented
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28682797A
Other languages
Japanese (ja)
Other versions
JP3671623B2 (en
Inventor
Katsuya Uchino
克哉 内野
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28682797A priority Critical patent/JP3671623B2/en
Publication of JPH11124672A publication Critical patent/JPH11124672A/en
Application granted granted Critical
Publication of JP3671623B2 publication Critical patent/JP3671623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated cemented carbide having excellent breaking strength as well as excellent resistance to peeling, wear, and crater and suitably used for a cutting tool. SOLUTION: A ceramic coating layer, formed on the surface of a base material composed of cemented carbide, has an inner layer and an outer layer. The orientational property index TC (311), with respect to (311) plane, of a titanium carbonitride layer contained in the inner layer is the greatest among orientational property indices, and the value of this orientational property index TC (311) is regulated to 1.5-3. Further, the crystal structure of an aluminum oxide layer contained in the outer layer is of α-type, and respective orientational property indices TCa (104) and TCa (116) of (104) plane and (116) plane of this aluminum oxide layer are regulated to >=1.3, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被覆超硬合金に関
し、より特定的には、切削工具などに使用される強靱か
つ耐摩耗性に優れる被覆超硬合金に関するものである。
The present invention relates to a coated cemented carbide, and more particularly to a coated cemented carbide used for cutting tools and the like, which is excellent in toughness and wear resistance.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】超硬
合金の表面に炭化チタン、窒化チタン、炭窒化チタンあ
るいは酸化アルミニウムなどの被覆層を蒸着することに
より切削工具の寿命を向上させることが行なわれてお
り、一般に化学蒸着法、プラズマCVD(Chemical Vap
or Deposition )法、物理蒸着法などを用いて生成され
た被覆層などが広く普及している。
2. Description of the Related Art The life of a cutting tool has been improved by depositing a coating layer of titanium carbide, titanium nitride, titanium carbonitride or aluminum oxide on the surface of a cemented carbide. In general, chemical vapor deposition, plasma CVD (Chemical Vap
or a deposition layer formed by using a physical vapor deposition method or the like.

【0003】しかし、これらの被覆切削工具を用いて加
工を行なった場合、特に鋼の高速切削加工や高速で鋳鉄
の加工のように高温での被覆層の耐摩耗性および耐クレ
ーター性が必要な加工、あるいは小物部品加工のように
加工数が多く被削材への食いつき回数が多い加工などで
被覆層の耐摩耗性が不足したり、被覆層の損傷、剥離が
発生することによる工具寿命の低下が発生していた。
[0003] However, when machining is performed using these coated cutting tools, the wear resistance and crater resistance of the coating layer at high temperatures are required, especially in high-speed cutting of steel and high-speed machining of cast iron. The tool life is shortened due to insufficient wear resistance of the coating layer or damage or peeling of the coating layer due to the number of processings such as processing or small parts processing, where the number of processings is large and the number of bites on the work material is large. The decline had occurred.

【0004】これらの課題を克服するために、これまで
に被覆技術については、被覆層の組織制御がなされてき
た。たとえば、特開平8−132130号公報や特開平
5−269606号公報に示されるような内層の配向
性、組織の制御や、外層の酸化アルミニウム層の結晶系
や配向の制御などの多くの改良が試みられてきた。しか
し、その効果は十分とは言えないのが現状であった。
[0004] In order to overcome these problems, in the coating technique, the structure of the coating layer has been controlled so far. For example, many improvements such as control of the orientation and texture of the inner layer and control of the crystal system and orientation of the outer aluminum oxide layer as disclosed in JP-A-8-132130 and JP-A-5-269606 are disclosed. Have been tried. However, the effect was not enough at present.

【0005】それゆえ、本発明の目的は、優れた耐剥離
性、耐摩耗性および耐クレーター性と優れた破壊強度と
を有し、切削工具に適した被覆超硬合金を提供すること
である。
Accordingly, an object of the present invention is to provide a coated cemented carbide having excellent peel resistance, abrasion resistance, crater resistance and excellent breaking strength and suitable for cutting tools. .

【0006】[0006]

【課題を解決するための手段】本願発明者らは、上記問
題点を解決すべく鋭意検討した結果、従来の被覆切削工
具用の被覆超硬合金に比較して、切削における被覆層の
耐剥離性を大きく向上させるとともに、膜自体の耐摩耗
性と耐クレーター性とを向上させ、膜の破壊強度の向上
を可能にすることにより、工具の寿命を安定して飛躍的
に向上させ得る被覆超硬合金を見出した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors of the present invention have found that compared with conventional coated cemented carbides for coated cutting tools, peeling of the coating layer during cutting is more difficult. A coating that can greatly improve the wear resistance and crater resistance of the film itself and improve the breaking strength of the film, thereby enabling the tool life to be stably and dramatically improved. A hard alloy was found.

【0007】このため、本発明の被覆超硬合金は以下の
構成を有する。本発明の被覆超硬合金は、炭化タングス
テンを主成分とし、IVa、Va、VIa族金属の炭化
物、窒化物、炭窒化物の少なくとも1種を含む硬質相と
Coを主成分とする結合相とからなる超硬合金の基材
と、その基材表面に形成された内層および外層を有する
セラミックス被覆層とを備えており、内層および外層は
以下の特徴を有する。
Therefore, the coated cemented carbide of the present invention has the following constitution. The coated cemented carbide of the present invention contains tungsten carbide as a main component, a hard phase containing at least one of carbides, nitrides, and carbonitrides of group IVa, Va, and VIa metals, and a binder phase containing Co as a main component. And a ceramic coating layer having an inner layer and an outer layer formed on the surface of the substrate, and the inner layer and the outer layer have the following characteristics.

【0008】内層は炭窒化チタン層を有する多層構造か
らなり、炭窒化チタン層の配向性指数TCを、
The inner layer has a multilayer structure having a titanium carbonitride layer, and has an orientation index TC of the titanium carbonitride layer,

【0009】[0009]

【数3】 (Equation 3)

【0010】と定義したとき、この式で表わされる(3
11)面の配向性指数TC(311)が他の面の配向性
指数に比較して最も大きく、かつ配向性指数TC(31
1)の値が1.5以上3以下である。
When defined as (3)
11) The orientation index TC (311) of the surface is the largest as compared with the orientation index of the other surface, and the orientation index TC (31)
The value of 1) is 1.5 or more and 3 or less.

【0011】外層は少なくとも酸化アルミニウム層を有
し、酸化アルミニウム層の結晶構造がα型を有し、この
酸化アルミニウムの配向性指数TCaを、
The outer layer has at least an aluminum oxide layer, and the crystal structure of the aluminum oxide layer has an α-type.

【0012】[0012]

【数4】 (Equation 4)

【0013】と定義したとき、この式で表される(10
4)面と(116)面との各配向性指数TCa(10
4)とTCa(116)とが各々1.3以上である。
When defined as (10)
4) Each orientation index TCa (10) between the (116) plane and the (116) plane.
4) and TCa (116) are each 1.3 or more.

【0014】炭窒化チタンの配向性については、配向性
指数TC(311)を1.5以上とすることにより、膜
の耐破壊性を大きく向上させることが可能となり、膜の
微小チッピングを防止できることから、結果として耐摩
耗性が大きく向上する。ただし、配向性指数TC(31
1)が3を超えると、一定方向の配向が強くなり過ぎる
ことにより、逆に膜の破壊性が低下する。
Regarding the orientation of titanium carbonitride, by setting the orientation index TC (311) to 1.5 or more, it is possible to greatly improve the breakdown resistance of the film, and to prevent micro chipping of the film. As a result, the wear resistance is greatly improved. However, the orientation index TC (31
If 1) exceeds 3, the orientation in a certain direction becomes too strong, and conversely, the destructibility of the film decreases.

【0015】また、酸化アルミニウム層の配向性につい
ては、配向性指数TCa(104)とTCa(116)
を各々1.3以上とすることにより、膜の強度と硬度と
をともに向上させることが可能となり、膜の耐摩耗性と
耐チッピング性とが向上することにより工具寿命の向上
が可能となる。
As for the orientation of the aluminum oxide layer, the orientation indexes TCa (104) and TCa (116) are used.
Is 1.3 or more, both the strength and hardness of the film can be improved, and the tool life can be improved by improving the wear resistance and chipping resistance of the film.

【0016】以上の内層と外層との膜質、膜構造の組合
せにより、これまで得られなかったような膜全体として
の膜硬度および膜強度が初めて実現でき、これにより飛
躍的に工具寿命を向上させることが可能となるのであ
る。
By the combination of the film quality and the film structure of the inner layer and the outer layer described above, the film hardness and the film strength of the entire film, which could not be obtained so far, can be realized for the first time, thereby dramatically improving the tool life. It becomes possible.

【0017】上記の被覆超硬合金においては、内層は、
炭窒化チタン層以外に、窒化チタン層、炭窒化チタン層
および硼窒化チタン層よりなる群から選ばれる少なくと
も1層を有し、外層は酸化アルミニウム層以外に、炭化
チタン層、炭窒化チタン層および窒化チタン層よりなる
群から選ばれる少なくとも1層を有することが好まし
い。
In the above coated cemented carbide, the inner layer is
In addition to the titanium carbonitride layer, it has at least one layer selected from the group consisting of a titanium nitride layer, a titanium carbonitride layer and a titanium boronitride layer, and the outer layer other than the aluminum oxide layer, a titanium carbide layer, a titanium carbonitride layer and It is preferable to have at least one layer selected from the group consisting of titanium nitride layers.

【0018】上記の被覆超硬合金においては、外層の酸
化アルミニウム層の直下の層が、硼窒化チタン層である
ことが好ましい。
In the above-mentioned coated cemented carbide, the layer directly below the outer aluminum oxide layer is preferably a titanium boronitride layer.

【0019】上記の被覆超硬合金においては、外層の酸
化アルミニウムの配向性指数が、TCa(104)+T
Ca(116)≧3.5であることが好ましい。また、
これに加えて、酸化アルミニウム層において、(10
4)面および(116)面を除く面の配向性指数が、い
ずれも0.6以下であることがより好ましい。
In the above coated cemented carbide, the orientation index of the aluminum oxide in the outer layer is TCa (104) + T
It is preferable that Ca (116) ≧ 3.5. Also,
In addition to this, in the aluminum oxide layer, (10
It is more preferable that both the orientation index of the plane excluding the (4) plane and the (116) plane be 0.6 or less.

【0020】上記の被覆超硬合金においては、被覆層の
層厚が10μm以上20μm以下であり、外層の酸化ア
ルミニウム層の層厚が4μm以上15μm以下であるこ
とが好ましい。
In the above coated cemented carbide, it is preferable that the thickness of the coating layer is 10 μm or more and 20 μm or less, and the thickness of the outer aluminum oxide layer is 4 μm or more and 15 μm or less.

【0021】従来の酸化アルミニウム層では膜強度が不
足して、層厚を厚くしていくと耐クレーター性を向上さ
せる効果よりも、膜の破壊による耐摩耗性、耐チッピン
グ性の低下のデメリットが大きくなり、十分な厚膜化の
効果が得られなかった。本発明の構造をとることによ
り、酸化アルミニウム層の耐チッピング性を向上させな
がら、耐クレーター性を向上させることが可能となっ
た。この効果は特に、被覆層の総膜厚を10〜20μm
とし、そのうち酸化アルミニウム層の膜厚が4μm以上
とすることにより、より効果的に得られる。ただし、酸
化アルミニウム層の膜厚が15μmを超えると、膜の硬
度不足あるいは膜の耐チッピング性の不足による耐摩耗
性の低下がみられるようになる。
In the conventional aluminum oxide layer, the film strength is insufficient, and as the layer thickness is increased, the demerit of abrasion resistance and chipping resistance decrease due to film destruction is more than the effect of improving crater resistance. As a result, the effect of increasing the film thickness was not obtained. By adopting the structure of the present invention, it has become possible to improve the crater resistance while improving the chipping resistance of the aluminum oxide layer. This effect is particularly effective when the total film thickness of the coating layer is 10 to 20 μm.
More effectively, the thickness of the aluminum oxide layer is set to 4 μm or more. However, when the thickness of the aluminum oxide layer exceeds 15 μm, a decrease in wear resistance due to insufficient hardness of the film or insufficient chipping resistance of the film is observed.

【0022】上記の被覆超硬合金においては、外層のア
ルミニウム層の硬度が、内層の炭窒化チタン層の硬度の
80%以上であることが好ましい。
In the above-mentioned coated cemented carbide, the hardness of the outer aluminum layer is preferably at least 80% of the hardness of the inner titanium carbonitride layer.

【0023】炭窒化チタンと酸化アルミニウムとでは、
元々物性的には炭窒化チタンの方が硬く、耐摩耗性に優
れることが知られているが、外層の酸化アルミニウム層
を内層の炭窒化チタン層で支えることで、ある程度は酸
化アルミニウム層の塑性変形の不足が補われていた。し
かし、酸化アルミニウム層の厚みが増加するに従って、
酸化アルミニウム層自体の硬さの影響が大きくなり、耐
摩耗性(耐塑性変形)が不足気味になる。これを防ぐた
めには、上記したような高硬度を有する酸化アルミニウ
ム層が必要となる。
With titanium carbonitride and aluminum oxide,
Originally, it is known that titanium carbonitride is harder and has better wear resistance.However, by supporting the outer aluminum oxide layer with the inner titanium carbonitride layer, the plasticity of the aluminum oxide layer is The lack of deformation was compensated. However, as the thickness of the aluminum oxide layer increases,
The effect of the hardness of the aluminum oxide layer itself increases, and the wear resistance (plastic deformation resistance) tends to be insufficient. In order to prevent this, an aluminum oxide layer having high hardness as described above is required.

【0024】この高硬度の酸化アルミニウム層は、TC
a(104)+TCa(116)≧3.5でかつTCa
(104)>TCa(116)で得られる。
This high hardness aluminum oxide layer is made of TC
a (104) + TCa (116) ≧ 3.5 and TCa
(104)> TCa (116).

【0025】なお、硬度は膜表面にほぼ平行な面(膜表
面と4°以内の傾きの面)で膜を鏡面に仕上げ、その面
において膜表面になるべく近い位置(下地の膜質の影響
を避けるため)でマイクロヌープ硬度計で50gの荷重
で測定される。
The hardness is determined by finishing the film to a mirror surface on a surface substantially parallel to the film surface (a surface inclined within 4 ° with respect to the film surface), and at a position as close as possible to the film surface on the surface (to avoid the influence of the quality of the underlying film). Therefore, it is measured with a Micro Knoop hardness meter at a load of 50 g.

【0026】以下に本発明の構造の製造方法について説
明する。まず、本発明における炭窒化チタン層は、被覆
する際の雰囲気をTiCl4 、CH3 CN、N2 および
2 とし、前半と後半との条件を次のように変更して成
膜する。すなわち、成膜初期から120分の間は(Ti
Cl4 +CH3 CN)/トータルガス量の比率を後半に
比べて小さくし、かつ前半のN2 /トータルガス量の比
率を後半の2倍以上とし、層厚を10μm未満とするこ
とにより達成できる。
The method for manufacturing the structure of the present invention will be described below. First, the titanium carbonitride layer in the present invention is formed by changing the atmosphere in the coating to TiCl 4 , CH 3 CN, N 2 and H 2 and changing the conditions of the first half and the second half as follows. That is, (Ti
(Cl 4 + CH 3 CN) / total gas amount is made smaller than that of the latter half, and the ratio of the first half N 2 / total gas amount is twice or more of the latter half and the layer thickness is less than 10 μm. .

【0027】次に、本発明の酸化アルミニウム層は、A
lCl3 およびCO2 を原料ガスとする通常のCVDプ
ロセスにより製造される。
Next, the aluminum oxide layer of the present invention comprises A
It is manufactured by a normal CVD process using lCl 3 and CO 2 as source gases.

【0028】具体的なαアルミナの配向性の制御は、以
下の方法による。まず、アルミナ層直下層まで被覆した
後、アルミナ成膜を開始する前に、CO/CO2 比が
0.3以下、PCO2 が0.3〜0.6Torrの雰囲気
に10〜15分間晒し、直下層表面を部分的に僅かに酸
化させ、その後に1000〜1050℃の温度でアルミ
ナ膜を成膜する。これにより、アルミナ成膜温度にかか
わらず、α型のアルミナの成膜が可能となるが、この際
の直下層表面の酸化条件の選定により、アルミナ膜の配
向性の制御が可能となる。また、同じ酸化条件を用いて
アルミナの膜厚を変えることによっても配向性を変化さ
せることが可能である。
Specifically, the orientation of α-alumina is controlled by the following method. First, after covering up the alumina layer immediately below layer, before starting the alumina film, CO / CO 2 ratio is 0.3 or less, P CO2 is exposed for 10 to 15 minutes in an atmosphere of 0.3~0.6Torr, The surface immediately below the layer is partially slightly oxidized, and then an alumina film is formed at a temperature of 1000 to 1050 ° C. Thus, α-type alumina can be formed regardless of the alumina film formation temperature. At this time, the orientation of the alumina film can be controlled by selecting the oxidation conditions on the surface immediately below the layer. The orientation can also be changed by changing the thickness of alumina under the same oxidation conditions.

【0029】なお、この直下層としてTiNに硼素を微
量添加したTiBN層を用いることは、上層の酸化アル
ミニウム層の密着度向上により有効である。
It is effective to use a TiBN layer obtained by adding a small amount of boron to TiN as the immediately lower layer to improve the adhesion of the upper aluminum oxide layer.

【0030】被覆した後、被覆層の表面にブラスト処理
あるいはブラシ処理などの機械的処理により切り刃稜線
部のみでアルミナ層が薄膜化あるいは除去されるまで表
面を処理することにより、上述の効果はより大きくな
る。この際の処理の程度は、切り刃稜線部の中でも実際
に切削時に切り粉が接触する刃先部で確実にアルミナ層
が薄膜化あるいは除去されていることが必要である。し
かし、処理の程度により、刃先から離れた位置の稜線部
でアルミナ層が一部薄膜化あるいは除去されていなくて
も全く問題はなく、本発明の効果は得られる。
After coating, the surface of the coating layer is subjected to mechanical processing such as blasting or brushing until the alumina layer is thinned or removed only at the cutting edge ridge, so that the above-mentioned effect is obtained. Be larger. The degree of processing at this time requires that the alumina layer be surely thinned or removed at the cutting edge portion of the cutting edge ridge line with which the cutting powder actually contacts during cutting. However, depending on the degree of treatment, there is no problem even if the alumina layer is not partially thinned or removed at the ridge portion at a position away from the cutting edge, and the effects of the present invention can be obtained.

【0031】また、本発明では、アルミナ層が薄膜化あ
るいは除去されているのは切り刃稜線部のみとしている
が、処理法によってはチップの座面周辺などの切削と関
係ない角張った場所でも処理されていることがあるが、
これについても実質的には本発明の効果には全く影響し
ない。
Also, in the present invention, the alumina layer is thinned or removed only at the ridge of the cutting edge. However, depending on the processing method, the alumina layer may be processed even at an angular place unrelated to cutting, such as around the seating surface of the chip. May have been
This does not substantially affect the effects of the present invention.

【0032】また、このような膜表面処理により、被覆
後被覆層中に存在する引っ張り残留応力を内層のTiC
N層で10kg/mm2 以下まで低減させることによ
り、膜の耐破壊に対する効果を向上させることが可能と
なる。
Further, by such a film surface treatment, the tensile residual stress existing in the coating layer after coating is reduced by the TiC of the inner layer.
By reducing it to 10 kg / mm 2 or less in the N layer, it is possible to improve the effect on the breakdown resistance of the film.

【0033】さらに、超硬合金基材の表面部で炭化タン
グステンを除く硬質相が減少または消失した層を有し、
その厚みが平坦部において50μm以下である表層部が
強靱化された超硬合金と本発明の被覆層および表面処理
とを組合せることにより、超硬合金部表層付近ごと被覆
層が脱落するような損傷に対し、非常に効果がある。
Further, the surface of the cemented carbide substrate has a layer in which a hard phase other than tungsten carbide is reduced or disappears,
By combining the coating layer and the surface treatment of the present invention with a toughened hard metal having a surface layer portion having a thickness of 50 μm or less in the flat portion and the coating layer of the present invention, the coating layer falls off near the surface layer of the hard metal portion. Very effective against damage.

【0034】基材表面領域の厚みを50μm以下とした
のは、50μmを超えると切削中に表層部でやや塑性変
形あるいは弾性変形が生じる傾向があるためで、50μ
m以下でより効果的であるためである。
The reason why the thickness of the substrate surface region is set to 50 μm or less is that if the thickness exceeds 50 μm, a slight plastic deformation or elastic deformation tends to occur in the surface layer during cutting.
m or less is more effective.

【0035】なお、表層領域は、従来より知られている
ような窒素含有硬質相原料を用いる方法、または焼結時
の昇温過程で加窒雰囲気とし、結合相の液相出現後に脱
窒、脱炭雰囲気とすることで製造できる。
The surface layer is formed by a method using a nitrogen-containing hard phase raw material as conventionally known, or a nitriding atmosphere during a heating process during sintering, and denitrification after the appearance of a liquid phase of a binder phase. It can be manufactured in a decarburized atmosphere.

【0036】[0036]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0037】実施例1 基材として以下のA〜Dの組成でCNMG120408
の形状を有するWC基超硬合金基体を準備した。
Example 1 CNMG120408 was used as a substrate with the following compositions A to D
A WC-based cemented carbide substrate having the following shape was prepared.

【0038】 A:WC−9%Co−2%ZrCN−4%NbC B:WC−6%Co−2%ZrCN−3%TiCN C:WC−9%Co−4%TiCN−4%NbC D:WC−6%Co−2%ZrC−3%TiC この基体の表面に以下の表1に示す内層および外層の構
造の被覆膜を生成した。内層はTiCN層以外にTiN
層、TiC層およびTiBN層の少なくとも一層を有す
る積層構造とし、外層は少なくともAl2 3 層を有
し、これに適宜、TiC層やTiN層を積層した構造と
した。
A: WC-9% Co-2% ZrCN-4% NbC B: WC-6% Co-2% ZrCN-3% TiCN C: WC-9% Co-4% TiCN-4% NbC D: WC-6% Co-2% ZrC-3% TiC A coating film having an inner layer and an outer layer structure shown in Table 1 below was formed on the surface of the substrate. The inner layer is TiN other than the TiCN layer.
Layer, a TiC layer and a TiBN layer, and the outer layer has at least an Al 2 O 3 layer, and a TiC layer and a TiN layer are appropriately laminated on the outer layer.

【0039】[0039]

【表1】 [Table 1]

【0040】A〜Cのサンプルの基材表層部には、WC
とCoのみからなる層が存在し、それぞれの厚みは平坦
部厚みで基材A:25μm、基材B:50μm、基材
C:55μmであった。サンプルDの基材表面には表層
領域は存在しなかった。以下に本発明品の各層の被覆条
件を示す。
The surface layer of the base material of each of the samples A to C has WC
And Co only, each having a flat part thickness of 25 μm for base A, 50 μm for base B, and 55 μm for base C. No surface layer region was present on the substrate surface of Sample D. The coating conditions of each layer of the product of the present invention are shown below.

【0041】(TiN層) 温度:900℃、圧力:120torr、 反応ガス組成:容量%で、46%H2 −4%TiCl4
−50%N2 (本発明品1〜9のTiCN) TiCN層(前半120分): 温度:900℃、圧力:50torr、 反応ガス組成:容量%で、68.6%H2 −1.2%T
iCl4 −0.2%CH3 CN−30%N2 TiCN層(後半残り): 温度:900℃、圧力:50torr、 反応ガス組成:容量%で、76.6%H2 −7.2%T
iCl4 −1.2%CH3 CN−15%N2 (TiBN層) 温度:980℃、圧力:200torr、 反応ガス組成:容量%で、45.5%H2 −4%TiC
4 −49%N2 −1.5%BCl3 (Al2 3 層) 温度:980℃、圧力:50torr、 反応ガス組成:容量%で、87%H2 −9%AlCl3
−4%CO2 (TiC層) 温度:1020℃、圧力:50torr、 反応ガス組成:容量%で、92%H2 −3%TiCl4
−5%CH4 ここで、内層のTiCN層の配向性指数は、X線回折に
よる回折ピークから求めた。この際、TiCN層の(3
11)面の回折ピークは基材のWCの(111)面ピー
クと重なり、(111)面のピーク強度は、(WCの最
強ピークである(101)面の強度)×0.25である
ことから、TiCN層の(311)位置の強度からこれ
を減じてWC(111)面による強度分を差し引いた。
また、各試料のTiCN層の配向性を表2に示す。
(TiN layer) Temperature: 900 ° C., pressure: 120 torr, reaction gas composition: 46% H 2 -4% TiCl 4 by volume%
-50% N 2 (TiCN of the present inventions 1 to 9) TiCN layer (first half 120 minutes): Temperature: 900 ° C., pressure: 50 torr, the reaction gas composition: by volume%, 68.6% H 2 -1.2 % T
iCl 4 -0.2% CH 3 CN-30% N 2 TiCN layer (remaining in the latter half): temperature: 900 ° C., pressure: 50 torr, reaction gas composition: 76.6% H 2 -7.2% by volume% T
iCl 4 -1.2% CH 3 CN-15% N 2 (TiBN layer) Temperature: 980 ° C., pressure: 200 torr, reaction gas composition: 45.5% H 2 -4% TiC by volume%
l 4 -49% N 2 -1.5% BCl 3 (Al 2 O 3 layer) Temperature: 980 ° C., Pressure: 50 torr, Reaction gas composition: 87% H 2 -9% AlCl 3 by volume%
-4% CO 2 (TiC layer) Temperature: 1020 ° C., Pressure: 50 torr, Reaction gas composition: 92% H 2 -3% TiCl 4 by volume%
−5% CH 4 Here, the orientation index of the inner TiCN layer was determined from a diffraction peak by X-ray diffraction. At this time, (3) of the TiCN layer
The diffraction peak of the 11) plane overlaps with the (111) plane peak of the WC of the substrate, and the peak intensity of the (111) plane is (the intensity of the (101) plane which is the strongest peak of WC) × 0.25. From this, the intensity at the (311) position of the TiCN layer was subtracted to subtract the intensity by the WC (111) plane.
Table 2 shows the orientation of the TiCN layer of each sample.

【0042】[0042]

【表2】 [Table 2]

【0043】この結果より、本発明のサンプルのTiC
N層は、いずれも(311)面に配向しており、配向性
指数は他の面のそれに比較して最も大きかった。またア
ルミナの配向性を表3に示す。
From these results, it was found that the TiC of the sample of the present invention was
Each of the N layers was oriented in the (311) plane, and the orientation index was the largest compared to that of the other planes. Table 3 shows the orientation of alumina.

【0044】[0044]

【表3】 [Table 3]

【0045】ここでアルミナ成膜前のTiBN膜表面の
酸化状態を変えることにより、アルミナの配向性を変え
たサンプルを同時に作製し、これをたとえば1a、1
b、1cというように表記して表中に示した。ここで、
CO/CO2 =0.3に固定し、試料aではPCO2
0.3torr、10分、試料bではPCO2 =0.4t
orr、12分、試料cではPCO2 =0.6torr、
15分の酸化条件を用いたものである。
Here, by changing the oxidation state of the surface of the TiBN film before the formation of the alumina, a sample in which the orientation of alumina was changed was simultaneously produced.
These are shown in the table as b, 1c. here,
CO / CO 2 = 0.3 was fixed, and for sample a, P CO2 =
0.3 torr, 10 minutes, sample b: P CO2 = 0.4 t
orr, 12 minutes, for sample c, P CO2 = 0.6 torr,
The oxidation condition was used for 15 minutes.

【0046】なお、本発明のTiCN層は被覆後破断
し、破断面のSEM(走査型電子顕微鏡)観察を行なっ
たところ柱状組織となっていた。表1、2および3には
比較のために従来品(比較品)も併せて載せた。比較品
10〜14のTiCN膜の成膜は、以下に示す条件で行
なった。
Incidentally, the TiCN layer of the present invention was broken after coating, and the fractured surface was observed by SEM (scanning electron microscope) to show a columnar structure. Tables 1, 2 and 3 also show conventional products (comparative products) for comparison. The TiCN films of the comparative products 10 to 14 were formed under the following conditions.

【0047】(TiCN層(比較品10、11)) 温度:900℃、圧力:50torr、 反応ガス組成:容量%で、76.6%H2 −7.2%T
iCl4 −1.2%CH3 CN−15%N2 (TiCN層(比較品12)) 温度:1000℃、圧力:150torr、 反応ガス組成:容量%で、90%H2 −4%TiCl4
−4%CH4 −2%N 2 また、比較品13および14のアルミナ層は、以下に示
す成膜条件でα型アルミナを生成した。なお、これらに
おいては、アルミナ層以外は本発明品の条件で成膜を実
施した。
(TiCN layer (Comparative products 10 and 11)) Temperature: 900 ° C., pressure: 50 torr, reaction gas composition: 76.6% H by volume%Two-7.2% T
iClFour-1.2% CHThreeCN-15% NTwo (TiCN layer (Comparative product 12)) Temperature: 1000 ° C., pressure: 150 torr, reaction gas composition: 90% H by volume%Two-4% TiClFour
-4% CHFour-2% N Two The alumina layers of Comparative Products 13 and 14 are shown below.
Α-type alumina was produced under the following film forming conditions. In addition, these
In this case, film formation was performed under the conditions of the product of the present invention except for the alumina layer.
gave.

【0048】(アルミナ層(比較品13、14)) 温度:1060℃、圧力:68torr、 反応ガス組成:容量%で、85%H2 −9%AlCl3
−6%CO2 (アルミナ生成前のTiBN層表面の酸化処理は行なわ
ず、アルミナの反応ガス組成で同時にアルミナ生成を開
始) 以上のサンプルを用い、次に示す切削条件1および2で
性能評価を行なった。
(Alumina layer (Comparative products 13 and 14)) Temperature: 1060 ° C., Pressure: 68 torr, Reaction gas composition:% by volume, 85% H 2 -9% AlCl 3
-6% CO 2 (No oxidation treatment of TiBN layer surface before alumina generation, alumina generation started at the same time with alumina reaction gas composition) Using the above samples, performance evaluation was performed under the following cutting conditions 1 and 2. Done.

【0049】(切削条件1) 被削材:SCM415 切削速度:400m/min 送り:0.30mm/rev 切込み:1.5mm 切削時間:15分 切削油:水溶性 (切削条件2) 被削材:FC25 切削速度:300m/min 送り:0.3mm/rev 切込み:1.5mm 切削時間:30分 切削油:水溶性 この評価結果を表4および5に示す。(Cutting condition 1) Work material: SCM415 Cutting speed: 400 m / min Feed: 0.30 mm / rev Depth of cut: 1.5 mm Cutting time: 15 minutes Cutting oil: water soluble (Cutting condition 2) Work material: FC25 Cutting speed: 300 m / min Feed: 0.3 mm / rev Depth of cut: 1.5 mm Cutting time: 30 minutes Cutting oil: water-soluble The evaluation results are shown in Tables 4 and 5.

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】この結果から、本発明品では比較品に比較
して膜の耐摩耗性および耐チッピング性と、耐クレータ
ー性のいずれにおいても優れていることが判明した。
From these results, it was found that the product of the present invention was superior to the comparative product in all of the abrasion resistance, chipping resistance and crater resistance of the film.

【0053】実施例2 実施例1で作製した本発明のサンプルのうち、試料1
a、2a、…、6aを用い、これに被覆した後、SiC
砥粒を含有するナイロンブラシで、膜表面に処理を施し
た。この処理により、試料1a、4aおよび6aでは稜
線部のアルミナ層が除去されていた。また、試料2a、
3aおよび5aでは、アルミナ膜厚が平坦部での厚みの
2/3〜1/2になるまで処理されていた。表面を処理
した試料を1aH〜6aHとする。また、さらにこれに
鉄粉を用いたブラスト処理を施した試料1aHB〜6a
HBを作製した。これらについては、X線回折装置を用
いて、sin2 φ法により内層のTiCN層の残留応力
を測定した結果を表6に、実施例1の切削条件1および
2の条件で切削評価をした結果を表7および8に各々示
す。
Example 2 Of the samples of the present invention prepared in Example 1, Sample 1
a, 2a,..., 6a, and after covering the
The film surface was treated with a nylon brush containing abrasive grains. By this treatment, the alumina layers at the ridge portions were removed in the samples 1a, 4a and 6a. Sample 2a,
In 3a and 5a, the treatment was performed until the alumina film thickness became 2/3 to 1/2 of the thickness at the flat portion. The sample whose surface was treated is designated as 1 aH to 6 aH. Samples 1aHB to 6a further subjected to a blast treatment using iron powder
HB was produced. Table 6 shows the results of measuring the residual stress of the inner TiCN layer by a sin 2 φ method using an X-ray diffractometer, and the results of cutting evaluation under the cutting conditions 1 and 2 of Example 1. Are shown in Tables 7 and 8, respectively.

【0054】[0054]

【表6】 [Table 6]

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【表8】 [Table 8]

【0057】これらの結果から、ブラスト処理を施さな
い試料1aH〜6aHでは引っ張り残留応力がすべて1
0kg/mm2 より大きかったのに対し、ブラスト処理
を施した試料1aHB〜6aHBでは引っ張り残留応力
はすべて10kg/mm2 以下となることが判明した。
またブラスト処理を施した試料1aHB〜6aHBで
は、切削条件1および2の双方においてブラスト処理を
施さない試料1aH〜6aHの場合よりも膜のチッピン
グ、境界欠損および逃げ面摩耗が改善されることが判明
した。
From these results, it was found that all of the samples 1aH to 6aH which were not subjected to the blast treatment had a tensile residual stress of 1
While it was larger than 0 kg / mm 2 , it was found that all of the blasted samples 1aHB to 6aHB had a tensile residual stress of 10 kg / mm 2 or less.
Further, it was found that in the samples 1aHB to 6aHB subjected to the blast treatment, the chipping of the film, the boundary defect and the flank wear were improved in the cutting conditions 1 and 2 as compared with the samples 1aH to 6aH not subjected to the blast treatment. did.

【0058】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0059】[0059]

【発明の効果】以上説明したように、本発明の被覆超硬
合金においてはセラミックス被覆層の内層に含まれる炭
窒化チタン層と外層に含まれる酸化アルミニウム層との
配向性を所定の範囲とすることにより、優れた耐剥離
性、耐摩耗性および耐クレーター性と優れた破壊強度と
を有し、切削工具に適した被覆超硬合金を得ることがで
きる。これにより、切削工具の寿命を安定して飛躍的に
向上させることが可能となる。
As described above, in the coated cemented carbide according to the present invention, the orientation of the titanium carbonitride layer contained in the inner layer of the ceramic coating layer and the aluminum oxide layer contained in the outer layer is within a predetermined range. Thereby, it is possible to obtain a coated cemented carbide having excellent peeling resistance, wear resistance, crater resistance, and excellent breaking strength, and suitable for a cutting tool. This makes it possible to stably and dramatically improve the life of the cutting tool.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステンを主成分とし、IV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物の
少なくとも1種を含む硬質相とCoを主成分とする結合
相とからなる超硬合金の基材と、 前記基材表面に形成された内層および外層を有するセラ
ミックス被覆層とを備え、 前記内層は炭窒化チタン層を有する多層構造からなり、
前記炭窒化チタン層において、以下の式で表わされる
(311)面の配向性指数TC(311)が他の面の配
向性指数に比較して最も大きく、かつ前記配向性指数T
C(311)の値が1.5以上3以下であり、 前記外層は少なくとも酸化アルミニウム層を有し、前記
酸化アルミニウム層の結晶構造がα型を有し、前記酸化
アルミニウム層において、以下の式で表わされる(10
4)面と(116)面との各配向性指数TCa(10
4)とTCa(116)とが、各々1.3以上であるこ
とを特徴とする、被覆超硬合金。 【数1】 【数2】
1. The method according to claim 1, wherein the main component is tungsten carbide.
a cemented carbide base material comprising a hard phase containing at least one of carbides, nitrides, and carbonitrides of a, Va, and VIa metals and a binder phase containing Co as a main component; A ceramic coating layer having an inner layer and an outer layer, wherein the inner layer has a multilayer structure having a titanium carbonitride layer,
In the titanium carbonitride layer, the orientation index TC (311) of the (311) plane represented by the following formula is the largest as compared with the orientation index of the other plane, and the orientation index T
The value of C (311) is 1.5 or more and 3 or less, the outer layer has at least an aluminum oxide layer, and the crystal structure of the aluminum oxide layer has an α-type. (10
4) Each orientation index TCa (10) between the (116) plane and the (116) plane.
4) Coated cemented carbide characterized in that each of TCa (116) is 1.3 or more. (Equation 1) (Equation 2)
【請求項2】 前記内層は、前記炭窒化チタン層以外に
窒化チタン層、炭窒化チタン層および硼窒化チタン層よ
りなる群から選ばれる少なくとも1層を有し、 前記外層は前記酸化アルミニウム以外に前記炭化チタン
層、炭窒化チタン層および窒化チタン層よりなる群から
選ばれる少なくとも1層を有する、請求項1に記載の被
覆超硬合金。
2. The inner layer has at least one layer selected from the group consisting of a titanium nitride layer, a titanium carbonitride layer, and a titanium boronitride layer in addition to the titanium carbonitride layer, and the outer layer is made of a material other than the aluminum oxide. The coated cemented carbide according to claim 1, comprising at least one layer selected from the group consisting of a titanium carbide layer, a titanium carbonitride layer, and a titanium nitride layer.
【請求項3】 前記外層の前記酸化アルミニウム層の直
下の層が、硼窒化チタン層であることを特徴とする、請
求項1および2のいずれかに記載の被覆超硬合金。
3. The coated cemented carbide according to claim 1, wherein a layer of the outer layer immediately below the aluminum oxide layer is a titanium boronitride layer.
【請求項4】 前記外層の前記酸化アルミニウム層の配
向性指数が、TCa(104)+TCa(116)≧
3.5であることを特徴とする、請求項1、2および3
のいずれかに記載の被覆超硬合金。
4. The orientation index of the aluminum oxide layer of the outer layer is TCa (104) + TCa (116) ≧
4. The method according to claim 1, wherein the number is 3.5.
The coated cemented carbide according to any one of the above.
【請求項5】 前記酸化アルミニウム層において、(1
04)面および(116)面を除く面の配向性指数が、
いずれも0.6以下であることを特徴とする、請求項4
に記載の被覆超硬合金。
5. The method according to claim 1, wherein (1)
The orientation index of the plane excluding the (04) plane and the (116) plane is
5. The method according to claim 4, wherein each of them is 0.6 or less.
2. The coated cemented carbide according to item 1.
【請求項6】 前記被覆層の層厚が10μm以上20μ
m以下であり、前記外層の前記酸化アルミニウム層の層
厚が4μm以上15μm以下であることを特徴とする、
請求項1、2、3、4および5のいずれかに記載の被覆
超硬合金。
6. The coating layer has a thickness of 10 μm or more and 20 μm or more.
m or less, and the thickness of the aluminum oxide layer of the outer layer is 4 μm or more and 15 μm or less,
The coated cemented carbide according to any one of claims 1, 2, 3, 4, and 5.
【請求項7】 前記外層の前記アルミニウム層の硬度
が、前記内層の前記炭窒化チタン層の硬度の80%以上
であることを特徴とする、請求項6に記載の被覆超硬合
金。
7. The coated cemented carbide according to claim 6, wherein the hardness of the aluminum layer of the outer layer is 80% or more of the hardness of the titanium carbonitride layer of the inner layer.
【請求項8】 切り刃稜線部付近の前記酸化アルミニウ
ム層の膜厚が、平坦部に比較し、薄くなっているまたは
存在しないことを特徴とする、請求項1、2、3、4、
5、6および7のいずれかに記載の被覆超硬合金。
8. The method according to claim 1, wherein the thickness of the aluminum oxide layer near the ridge of the cutting edge is smaller or not present as compared with the flat portion.
8. The coated cemented carbide according to any one of 5, 6, and 7.
【請求項9】 少なくとも前記切り刃稜線部において、
前記内層の前記炭窒化チタン層の引っ張り残留応力が1
0kg/mm2 以下であることを特徴とする、請求項8
に記載の被覆超硬合金。
9. At least at the cutting edge ridge portion,
The titanium carbonitride layer of the inner layer has a tensile residual stress of 1
9. The pressure is 0 kg / mm 2 or less.
2. The coated cemented carbide according to item 1.
【請求項10】 超硬合金の前記基材の表面部で前記炭
化タングステンを除く前記硬質相が減少または消失した
層を有し、その層の厚みが前記平坦部において50μm
以内であることを特徴とする、請求項8および9のいず
れかに記載の被覆超硬合金。
10. A layer in which the hard phase other than the tungsten carbide is reduced or disappears on the surface of the cemented carbide substrate, and the thickness of the layer is 50 μm in the flat portion.
The coated cemented carbide according to any one of claims 8 and 9, characterized in that:
JP28682797A 1997-10-20 1997-10-20 Coated cemented carbide Expired - Lifetime JP3671623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28682797A JP3671623B2 (en) 1997-10-20 1997-10-20 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28682797A JP3671623B2 (en) 1997-10-20 1997-10-20 Coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH11124672A true JPH11124672A (en) 1999-05-11
JP3671623B2 JP3671623B2 (en) 2005-07-13

Family

ID=17709560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28682797A Expired - Lifetime JP3671623B2 (en) 1997-10-20 1997-10-20 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3671623B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079022A1 (en) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Coated hard alloy
JP2005205516A (en) * 2004-01-21 2005-08-04 Yunitakku Kk Method of manufacturing cutting tool and cutting tool
JP2006326767A (en) * 2005-05-27 2006-12-07 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL HAVING THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
WO2007058065A1 (en) * 2005-11-21 2007-05-24 Sumitomo Electric Hardmetal Corp. Cutting tip of cutting edge replacement type
WO2007077822A1 (en) * 2006-01-06 2007-07-12 Sumitomo Electric Hardmetal Corp. Blade edge replacing type cutting tip
EP1689898B1 (en) 2003-12-03 2009-05-27 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2011093003A (en) * 2009-10-27 2011-05-12 Kyocera Corp Surface-coated member
JP2012030359A (en) * 2011-09-21 2012-02-16 Sumitomo Electric Hardmetal Corp Cutting edge replaceable cutting tip
US8394169B2 (en) 2003-12-03 2013-03-12 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US20130164547A1 (en) * 2011-12-21 2013-06-27 Kennametal Inc. Cemented carbide body and applications thereof
WO2018003789A1 (en) * 2016-07-01 2018-01-04 株式会社タンガロイ Coated cutting tool
WO2019176202A1 (en) 2018-03-16 2019-09-19 住友電工ハードメタル株式会社 Surface coated cutting tool and manufacturing method for same
WO2019176201A1 (en) 2018-03-16 2019-09-19 住友電工ハードメタル株式会社 Surface coated cutting tool and manufacturing method for same
EP2267182B2 (en) 2004-06-30 2021-11-17 Mitsubishi Materials Corporation Coated cutting tool
US11213894B2 (en) 2018-03-16 2022-01-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
US11219952B2 (en) 2018-03-16 2022-01-11 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593852B2 (en) * 1999-06-21 2010-12-08 住友電工ハードメタル株式会社 Coated hard alloy
US6756111B1 (en) 1999-06-21 2004-06-29 Sumitomo Electric Industries, Ltd. Coated hard alloy
WO2000079022A1 (en) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Coated hard alloy
US8394169B2 (en) 2003-12-03 2013-03-12 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
EP1689898B1 (en) 2003-12-03 2009-05-27 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
EP1689898B2 (en) 2003-12-03 2018-10-10 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
JP2005205516A (en) * 2004-01-21 2005-08-04 Yunitakku Kk Method of manufacturing cutting tool and cutting tool
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
EP2267182B2 (en) 2004-06-30 2021-11-17 Mitsubishi Materials Corporation Coated cutting tool
JP2006326767A (en) * 2005-05-27 2006-12-07 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL HAVING THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
WO2007058065A1 (en) * 2005-11-21 2007-05-24 Sumitomo Electric Hardmetal Corp. Cutting tip of cutting edge replacement type
US8137795B2 (en) 2005-11-21 2012-03-20 Sumitomo Electric Hardmetal Corp. Indexable insert
JP2007136631A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Hardmetal Corp Cutting tip with replaceable edge
KR101419950B1 (en) * 2005-11-21 2014-07-16 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cutting tip of cutting edge replacement type
US8097332B2 (en) 2006-01-06 2012-01-17 Sumitomo Electric Hardmetal Corp. Indexable cutting insert
JP2007181896A (en) * 2006-01-06 2007-07-19 Sumitomo Electric Hardmetal Corp Cutting edge exchange type cutting tip
WO2007077822A1 (en) * 2006-01-06 2007-07-12 Sumitomo Electric Hardmetal Corp. Blade edge replacing type cutting tip
DE112006001156C5 (en) * 2006-01-06 2016-12-22 Sumitomo Electric Hardmetal Corp. Cutting tip with exchangeable blades
JP2011093003A (en) * 2009-10-27 2011-05-12 Kyocera Corp Surface-coated member
JP2012030359A (en) * 2011-09-21 2012-02-16 Sumitomo Electric Hardmetal Corp Cutting edge replaceable cutting tip
US20130164547A1 (en) * 2011-12-21 2013-06-27 Kennametal Inc. Cemented carbide body and applications thereof
US8834594B2 (en) * 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
JP2018001347A (en) * 2016-07-01 2018-01-11 株式会社タンガロイ Coated cutting tool
WO2018003789A1 (en) * 2016-07-01 2018-01-04 株式会社タンガロイ Coated cutting tool
CN109475945A (en) * 2016-07-01 2019-03-15 株式会社泰珂洛 Coated cutting tool
CN109475945B (en) * 2016-07-01 2020-07-17 株式会社泰珂洛 Coated cutting tool
US10882116B2 (en) 2016-07-01 2021-01-05 Tungaloy Corporation Coated cutting tool
WO2019176202A1 (en) 2018-03-16 2019-09-19 住友電工ハードメタル株式会社 Surface coated cutting tool and manufacturing method for same
WO2019176201A1 (en) 2018-03-16 2019-09-19 住友電工ハードメタル株式会社 Surface coated cutting tool and manufacturing method for same
KR20200100827A (en) 2018-03-16 2020-08-26 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool and its manufacturing method
KR20200101975A (en) 2018-03-16 2020-08-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool and its manufacturing method
US11213894B2 (en) 2018-03-16 2022-01-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same
US11219952B2 (en) 2018-03-16 2022-01-11 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of manufacturing the same

Also Published As

Publication number Publication date
JP3671623B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3658949B2 (en) Coated cemented carbide
EP0074759A2 (en) Sintered hard metal products having a multi-layer wear-restistant coating
JP3671623B2 (en) Coated cemented carbide
JP2007528941A (en) Coated body and method for coating substrate
JP3382781B2 (en) Multi-layer coated hard tool
JP5099747B2 (en) Coated cermet cutting tool
WO1999052662A1 (en) Coated cemented carbide cutting tool
JP3658948B2 (en) Coated cemented carbide
US10570521B2 (en) Multilayer structured coatings for cutting tools
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3697894B2 (en) Coated cemented carbide cutting tool
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JPH08257808A (en) Surface coated cutting tool
JP2000024808A (en) Covered cemented carbide cutting tool
JPH07328808A (en) Surface covered tungsten car bidf rdadical cemented carbide cutting tool having hard overlater superior in interlayer a adhesion performance
JP2864798B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool members
JP3230375B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2611360B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent impact resistance with hard coating layer
JPH09141502A (en) Surface-coated tungsten-carbide-based cemented carbide having good chipping resistance in hard coated layer
JP3230374B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term