JPS62104072A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62104072A
JPS62104072A JP60242753A JP24275385A JPS62104072A JP S62104072 A JPS62104072 A JP S62104072A JP 60242753 A JP60242753 A JP 60242753A JP 24275385 A JP24275385 A JP 24275385A JP S62104072 A JPS62104072 A JP S62104072A
Authority
JP
Japan
Prior art keywords
region
high resistance
silicon
polycrystalline silicon
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60242753A
Other languages
Japanese (ja)
Other versions
JPH0693501B2 (en
Inventor
Yukio Minato
湊 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60242753A priority Critical patent/JPH0693501B2/en
Publication of JPS62104072A publication Critical patent/JPS62104072A/en
Publication of JPH0693501B2 publication Critical patent/JPH0693501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the reliability and integration by burying a polycrystalline silicon in a groove type separating region for a partitioning an element region to form a high resistance, and directly connecting the element region with the high resistance, thereby omitting wirings. CONSTITUTION:A groove type separating region 4 is formed in a substrate formed with a buried layer 2 and an epitaxial layer 3 on a P-type silicon substrate 1 to form an element region 5, and bipolar transistors Q1, Q2 and Schottky barrier diodes SBD1, SBD2 are formed in the region 5. Polycrystalline silicon 7 is filled in a silicon oxide film 6 formed in the groove of the region 4, and the top of the silicon 7 forms a load resistor 8 set to a high resistance value by implanting boron in low density thereto. A hole 9 which communicates with the region 5 is formed on the side wall of the film 6, and the load resistor 8 is connected directly with the transistors Q1, Q2 and SBD1, SBD2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特に回路素子に高抵抗
を有する半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and particularly to a semiconductor integrated circuit having high resistance in circuit elements.

〔従来の技術〕[Conventional technology]

最近のバイポーラ型記憶素子を有する半導体集積回路は
、高容量化や高速化を図るために、素子間を分離する分
離領域に溝型構造を採用していることが多い。また通常
では、高速型の記憶素子としてバイポーラトランジスタ
を用いたフリップ・フロップ回路が利用されているが、
その大容量化を満たすためには極めて高い値でかつ安定
した負荷抵抗が必要とされる。このため、半導体基板に
不純物を導入して構成した拡散抵抗でこの負荷抵抗を構
成することは困難であり、半導体基板上に所要の厚さ及
び面積に成長させた多結晶シリコンを利用した抵抗が使
用されている。
Recent semiconductor integrated circuits having bipolar memory elements often employ a trench structure in isolation regions that separate elements in order to increase capacity and speed. Also, flip-flop circuits using bipolar transistors are usually used as high-speed storage elements, but
In order to meet the requirements for increasing capacity, an extremely high value and stable load resistance is required. For this reason, it is difficult to construct this load resistor with a diffused resistor constructed by introducing impurities into a semiconductor substrate, and a resistor using polycrystalline silicon grown to the required thickness and area on a semiconductor substrate is difficult. It is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体集積回路では、通常負荷抵抗とし
ての多結晶シリコン抵抗を素子の分離領域上に配設して
いるが、溝型分離領域を採用している半導体集積回路で
は分離領域の平面スペースが小さいため、多結晶シリコ
ン抵抗の厚さやパターニング精度等からみて、これを所
要の大きさのパターンに形成することが難しく、必要な
値の高抵抗を得ることは難しい。また、仮に必要な高抵
抗を形成することができたとしても、これに応じて多結
晶シリコンが占める面積も大きくなり半導体集積回路の
集積度を向上する上での障害になる。
In the conventional semiconductor integrated circuit described above, a polycrystalline silicon resistor as a load resistor is usually arranged on the isolation region of the element, but in a semiconductor integrated circuit that uses a trench-type isolation region, the planar space of the isolation region is Since the resistance is small, it is difficult to form a pattern of the required size in terms of the thickness of the polycrystalline silicon resistor, patterning accuracy, etc., and it is difficult to obtain a high resistance value of the required value. Furthermore, even if it were possible to form the necessary high resistance, the area occupied by polycrystalline silicon would increase accordingly, which would be an obstacle to improving the degree of integration of semiconductor integrated circuits.

更に、分離領域上に形成した多結晶シリコン抵抗と、素
子領域に形成した素子とを電気的に接続するためのアル
ミニウム配線を配設する必要もあり、集積度を更に低下
させる原因となっている。
Furthermore, it is necessary to provide aluminum wiring to electrically connect the polycrystalline silicon resistor formed on the isolation region and the element formed in the element region, which further reduces the degree of integration. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路は、半導体集積回路の集積度を
低下することなく所望の多結晶シリコン高抵抗を構成す
ることを可能とするものであり、素子領域を区画する溝
型分離領域内に多結晶シリコンを埋設して高抵抗を形成
するとともに、この溝型分離領域の絶縁性壁面の一部に
形成した開口を通して前記素子領域と多結晶シリコンの
高抵抗とを直接接続する構成としている。
The semiconductor integrated circuit of the present invention makes it possible to configure a desired polycrystalline silicon high resistance without reducing the degree of integration of the semiconductor integrated circuit, and includes a multi-layer structure in a groove-type isolation region that partitions an element region. A high resistance layer is formed by embedding crystalline silicon, and the element region and the high resistance layer of polycrystalline silicon are directly connected through an opening formed in a part of the insulating wall surface of the trench isolation region.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、  (b)は本発明の一実施例の平面図
と、そのBB線断面図であり、この半導体集積回路は2
個のバイポーラトランジスタQ、、Qzを用いて第2図
に示すフリツプ・フロップ回路を構成し、これを記憶素
子として構成している。
FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view taken along the line BB of an embodiment of the present invention, and this semiconductor integrated circuit has two
A flip-flop circuit shown in FIG. 2 is constructed using bipolar transistors Q, , Qz, and this is constructed as a memory element.

即ち、P型シリコン基板1に埋込層2及びエピタキシャ
ル層3を形成した基体に溝型の分離領域4を形成して素
子領域5を画成し、この素子領域5内にバイポーラトラ
ンジスタQI、Q2及びショットキバリヤダイオード5
BDI 、5BDZを夫々構成している。前記バイポー
ラトランジスタはコレクタC+、Czと、ベースB+ 
、Bz及び各2個のエミッタE+m+  Elb、  
E2111  Ezbを夫々設けている。
That is, a groove-shaped isolation region 4 is formed in a base body in which a buried layer 2 and an epitaxial layer 3 are formed on a P-type silicon substrate 1 to define an element region 5, and bipolar transistors QI, Q2 are formed in this element region 5. and Schottky barrier diode 5
They constitute BDI and 5BDZ respectively. The bipolar transistor has a collector C+, Cz and a base B+.
, Bz and two emitters each E+m+ Elb,
E2111 and Ezb are provided respectively.

また、前記溝型の分離領域4は溝内面に設けたシリコン
酸化膜6内に多結晶シリコン7を充填し、かつこの多結
晶シリコン7の上部には低濃度にボロンを導入して所要
の高い抵抗値に設定した負荷抵抗8を構成している。そ
して、この負荷抵抗8に対応する前記シリコン酸化膜6
の側壁位置には前記素子領域5に夫々連通ずる開口9.
9を形成し、負荷抵抗8を直接前記バイポーラトランジ
スタQ、、Q、及びSBD、、SBD、に接続させてい
る。
Further, in the groove-type isolation region 4, a silicon oxide film 6 provided on the inner surface of the groove is filled with polycrystalline silicon 7, and boron is introduced at a low concentration into the upper part of the polycrystalline silicon 7 to obtain a desired high It constitutes a load resistor 8 whose resistance value is set. The silicon oxide film 6 corresponding to this load resistor 8
Openings 9. which communicate with the element regions 5 are provided at the side wall positions of the openings 9.
A load resistor 8 is directly connected to the bipolar transistors Q, , Q, and SBD, , SBD.

図中、10.11.12は夫々バイポーラトランジスタ
Q+ 、Qzのコレクタ、ベース、エミッタの容重+i
を示し、13はエピタキシャル層3と整流性接触するS
BD、、5BDzの電極を示す。
In the figure, 10.11.12 are the collector, base, and emitter capacities +i of bipolar transistors Q+ and Qz, respectively.
and 13 is S in rectifying contact with the epitaxial layer 3.
BD, 5BDz electrodes are shown.

次に、第3図(a)〜(f)を用いて前記半導体集積回
路の製造方法の一例を説明する。
Next, an example of a method for manufacturing the semiconductor integrated circuit will be explained using FIGS. 3(a) to 3(f).

先ず、同図(a)のように、結晶軸<100>で、4イ
ンチの10〜20Ω口のP型シリコン基板1の素子領域
5に相当する箇所にN型埋込層2を形成し、更にこの上
に5ΩcIIIのN型エピタキシャル層3を1μmの厚
さに成長させる。その上に厚さ0.5μmのシリコン窒
化膜20を成長させ、更にその上にフォトレジスト21
を塗布形成する。
First, as shown in FIG. 5A, an N-type buried layer 2 is formed at a location corresponding to the element region 5 of a 4-inch 10-20Ω P-type silicon substrate 1 with a crystal axis <100>. Furthermore, an N-type epitaxial layer 3 of 5ΩcIII is grown on this to a thickness of 1 μm. A silicon nitride film 20 with a thickness of 0.5 μm is grown on it, and a photoresist 21 is further grown on it.
Form by applying.

次いで、前記フォトレジスト21をパターニングしてこ
れをマスクとし、前記シリコン基板1に対して選択エツ
チングを行って同図(b)のように素子分離領域4に相
当する箇所に前記シリコン基板1に達する幅1μmの溝
22を形成する。
Next, the photoresist 21 is patterned and using this as a mask, the silicon substrate 1 is selectively etched to reach the silicon substrate 1 at a location corresponding to the element isolation region 4 as shown in FIG. A groove 22 with a width of 1 μm is formed.

次に、前記シリコン窒化膜20を除去した上で溝22の
底面及び側面、更には素子領域表面を1000℃、10
分で熱酸化し、同図(C)のように各面にシリコン酸化
膜6を成長させる。
Next, after removing the silicon nitride film 20, the bottom and side surfaces of the groove 22 and the surface of the element region are heated at 1000°C for 10 minutes.
The silicon oxide film 6 is grown on each surface as shown in FIG.

しかる上で、溝22内に濡れ性が良好でかつ粘性の極め
て低いフォトレジスト23を溝22の略一杯にまで塗布
し、その後同図(d)のように分離領域4と素子領域5
の境界一部のフォトレジスト23を現像除去して窓23
a、23aを開設する。
Then, a photoresist 23 with good wettability and extremely low viscosity is coated in the groove 22 until the groove 22 is almost completely filled, and then the isolation region 4 and the element region 5 are coated as shown in FIG.
A part of the photoresist 23 at the border of the window 23 is developed and removed.
a, 23a will be opened.

次いで、同図(e)のように前記フォトレジスト23を
マスクにして前記シリコン酸化膜6を選択エツチングし
、窓23a、23aに対応する箇所を深さ5000人ま
でエツチングして開口9.9を形成する。そして、フォ
トレジスト23を全て除去した後、前記溝22内に真性
の多結晶シリコン7を充填する。これにより、充填され
た多結晶シリコン7は開口9.9を通して隣接する素子
領域5.5のエピタキシャル層3.3に夫々接続された
状態となる。
Next, as shown in FIG. 5E, the silicon oxide film 6 is selectively etched using the photoresist 23 as a mask, and the portions corresponding to the windows 23a are etched to a depth of 5000 mm to form an opening 9.9. Form. After removing all of the photoresist 23, the groove 22 is filled with intrinsic polycrystalline silicon 7. Thereby, the filled polycrystalline silicon 7 becomes connected to the epitaxial layer 3.3 of the adjacent element region 5.5 through the opening 9.9.

その後、表面が略平坦とされた基板1上に、図示を省略
するレジストを形成した上でこれをマスクとし、同図(
f)のように前記多結晶シリコン7の開口9.9で挟ま
れる領域、換言すれば負荷抵抗を形成する領域にポロン
をイオン注入し、層抵抗が300 KΩ/口の負荷抵抗
8を形成する。なお、この負荷抵抗8以外の領域の多結
晶シリコン7には低濃度のリンをイオン注入しておいて
もよい。
After that, a resist (not shown) was formed on the substrate 1 whose surface was made substantially flat, and this was used as a mask.
As shown in f), poron ions are implanted into the region between the openings 9.9 of the polycrystalline silicon 7, in other words, into the region where the load resistor is to be formed, to form the load resistor 8 with a layer resistance of 300 KΩ/hole. . Incidentally, ions of low concentration phosphorus may be implanted into the polycrystalline silicon 7 in the region other than the load resistor 8.

以下、常法によって多結晶シリコンや金属で各電極10
,11.12及び13を形成することにより第1図の半
導体集積回路を完成する。
Hereinafter, each electrode 10 is made of polycrystalline silicon or metal using a conventional method.
, 11, 12 and 13, the semiconductor integrated circuit of FIG. 1 is completed.

この構成によれば、負荷抵抗8は分離領域4の溝22内
に必要十分な深さく厚さ)で構成することができ、この
厚さを適宜に調節することにより所望の高い値の抵抗を
形成できる。このため、負荷抵抗8の抵抗値を安定した
状態で形成できるとともに、抵抗の構成に必要とする平
面面積を低減して集積度の向上を図ることができる。ま
た、負荷抵抗8は素子分離領域4と素子領域5を区画す
るシリコン酸化膜6に形成した開口9.9を通して夫々
トランジスタQl、QzやSBD、、5BD2に直接接
続しているので、これらを電気的に接続するためのアル
ミニウム等の配線は不要となり、この配線を省略した分
だけ集積度の向上を図ることもできる。この実施例では
SBD、  (バイポーラトランジスタQ、のコレクタ
C6)とバイポーラトランジスタQ2のベースB2とを
接続し、かつバイポーラトランジスタQ1のベースB1
とSBD、(バイポーラトランジスタQ2のコレクタC
Z)を夫々抵抗8.8で接続している。更に、この構成
では負荷抵抗8が溝22内に埋設した状態で構成される
ので、半導体集積回路の表面の平坦化を図り、この上に
形成する多層配線の信頼性を高めることもできる。
According to this configuration, the load resistor 8 can be configured to have a necessary and sufficient depth and thickness within the groove 22 of the separation region 4, and by adjusting this thickness appropriately, a desired high resistance value can be obtained. Can be formed. Therefore, the resistance value of the load resistor 8 can be formed in a stable state, and the plane area required for the configuration of the resistor can be reduced, thereby improving the degree of integration. In addition, the load resistor 8 is directly connected to the transistors Ql, Qz, SBD, 5BD2 through openings 9.9 formed in the silicon oxide film 6 that partition the element isolation region 4 and the element region 5, respectively, so that these can be electrically connected. Wiring made of aluminum or the like for physical connection becomes unnecessary, and the degree of integration can be improved by the amount that this wiring is omitted. In this embodiment, the SBD (collector C6 of bipolar transistor Q) is connected to the base B2 of bipolar transistor Q2, and the base B1 of bipolar transistor Q1 is
and SBD, (collector C of bipolar transistor Q2
Z) are connected through a resistor of 8.8. Furthermore, in this configuration, the load resistor 8 is buried in the groove 22, so that the surface of the semiconductor integrated circuit can be flattened and the reliability of the multilayer wiring formed thereon can be improved.

なお、前記実施例において負荷抵抗8を構成する以外の
多結晶シリコン7はCVDシリコン酸化膜やその他の絶
縁膜を使用してもよい。
Incidentally, in the above embodiment, a CVD silicon oxide film or other insulating film may be used for the polycrystalline silicon 7 other than the one constituting the load resistor 8.

また、本発明はバイポーラ型の半導体集積回路に限らず
、溝型の分離領域を有しかつ高抵抗を必要とするもので
あればMOS型の半導体集積回路にも同様に適用できる
Furthermore, the present invention is not limited to bipolar type semiconductor integrated circuits, but can be similarly applied to MOS type semiconductor integrated circuits as long as they have a groove-type isolation region and require high resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、素子領域を区画する溝型
分離領域内に多結晶シリコンを埋設して高抵抗を形成す
るとともに、この溝型分離領域の絶縁性壁面の一部に形
成した開口を通して前記素子領域と多結晶シリコンの高
抵抗とを直接接続しているので、素子分離領域の平面範
囲内で抵抗値の高いかつ安定な抵抗を構成でき、しかも
素子領域と抵抗とを直接接続して両者間の配線を省略で
きるので、半導体集積回路の信頼性の向上と集積度の向
上を図ることができる。
As explained above, the present invention embeds polycrystalline silicon in a trench-type isolation region that partitions an element region to form a high resistance, and also forms an opening in a part of an insulating wall surface of this trench-type isolation region. Since the element region and the high resistance of polycrystalline silicon are directly connected through the element isolation region, a stable resistor with a high resistance value can be constructed within the plane range of the element isolation region. Since the wiring between the two can be omitted, the reliability and degree of integration of the semiconductor integrated circuit can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、(a)は平面図、(
b)はそのBB線断面回、第2図はその回路図、第3図
(a)〜<r>はその製造方法を工程順に示す断面図で
ある。 1・・・シリコン基板、2・・・埋込層、3・・・エピ
タキシャル層、4・・・素子分離領域、5・・・素子領
域、6・・・シリコン酸化膜、7・・・多結晶シリコン
、8・・・高抵抗、9・・・開口、10,11.12・
・・トランジスタの電極、13・・・SBDの電極、2
0・・・シリコン窒化膜、21・・・フォトレジスト、
22・・・溝、23・・・フォトレジスト。 代理人 弁理士  鈴 木 章 夫 第1図(a) 第1図(b) 7:吟耗晶ンソフ/ 第3図
FIG. 1 shows an embodiment of the present invention, in which (a) is a plan view and (a) is a plan view;
b) is its BB line cross-sectional view, FIG. 2 is its circuit diagram, and FIGS. 3(a) to <r> are cross-sectional views showing the manufacturing method in order of steps. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Buried layer, 3...Epitaxial layer, 4...Element isolation region, 5...Element region, 6...Silicon oxide film, 7...Multiple layers Crystal silicon, 8... High resistance, 9... Opening, 10, 11.12.
...Transistor electrode, 13...SBD electrode, 2
0... Silicon nitride film, 21... Photoresist,
22...Groove, 23...Photoresist. Agent Patent Attorney Akio Suzuki Figure 1 (a) Figure 1 (b) 7: Ginsaku Nsofu / Figure 3

Claims (1)

【特許請求の範囲】 1、素子領域を溝型の素子分離領域で区画するとともに
回路の一部に高抵抗を有する半導体集積回路において、
半導体基板に凹設した溝型分離領域内に多結晶シリコン
を埋設して高抵抗を形成するとともに、この溝型分離領
域に設けた絶縁性壁面に形成した一部開口を通して前記
素子領域と多結晶シリコンの高抵抗とを直接接続したこ
とを特徴とする半導体集積回路。 2、素子分離領域により互いに分離される複数の素子領
域を前記多結晶シリコンの高抵抗で相互に接続してなる
特許請求の範囲第1項記載の半導体集積回路。
[Claims] 1. In a semiconductor integrated circuit in which an element region is divided by a trench-type element isolation region and a part of the circuit has high resistance,
Polycrystalline silicon is buried in a groove-type isolation region recessed in the semiconductor substrate to form high resistance, and the element region and polycrystalline silicon are connected to each other through a partial opening formed in an insulating wall surface provided in this groove-type isolation region. A semiconductor integrated circuit characterized by a direct connection to a high-resistance silicon. 2. The semiconductor integrated circuit according to claim 1, wherein a plurality of element regions separated from each other by element isolation regions are interconnected by the high resistance of the polycrystalline silicon.
JP60242753A 1985-10-31 1985-10-31 Semiconductor integrated circuit Expired - Lifetime JPH0693501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242753A JPH0693501B2 (en) 1985-10-31 1985-10-31 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242753A JPH0693501B2 (en) 1985-10-31 1985-10-31 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS62104072A true JPS62104072A (en) 1987-05-14
JPH0693501B2 JPH0693501B2 (en) 1994-11-16

Family

ID=17093753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242753A Expired - Lifetime JPH0693501B2 (en) 1985-10-31 1985-10-31 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0693501B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316978A (en) * 1993-03-25 1994-05-31 Northern Telecom Limited Forming resistors for intergrated circuits
JPH07273288A (en) * 1994-03-30 1995-10-20 Nec Corp Manufacture of semiconductor device
JP2007502737A (en) * 2003-08-18 2007-02-15 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー Cylinders especially for vehicle hydraulic brake systems
JP5569831B1 (en) * 2013-05-15 2014-08-13 国立大学法人東北大学 Inner wall surface processing method for micro vacancy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140854A (en) * 1983-12-28 1985-07-25 Hitachi Ltd High-resistant element
JPS60144961A (en) * 1984-01-04 1985-07-31 Nec Corp Semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140854A (en) * 1983-12-28 1985-07-25 Hitachi Ltd High-resistant element
JPS60144961A (en) * 1984-01-04 1985-07-31 Nec Corp Semiconductor integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316978A (en) * 1993-03-25 1994-05-31 Northern Telecom Limited Forming resistors for intergrated circuits
JPH07273288A (en) * 1994-03-30 1995-10-20 Nec Corp Manufacture of semiconductor device
JP2007502737A (en) * 2003-08-18 2007-02-15 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー Cylinders especially for vehicle hydraulic brake systems
JP4913594B2 (en) * 2003-08-18 2012-04-11 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー Cylinders especially for vehicle hydraulic brake systems
JP5569831B1 (en) * 2013-05-15 2014-08-13 国立大学法人東北大学 Inner wall surface processing method for micro vacancy
US10020222B2 (en) 2013-05-15 2018-07-10 Canon, Inc. Method for processing an inner wall surface of a micro vacancy

Also Published As

Publication number Publication date
JPH0693501B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4948748A (en) Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill
US4992389A (en) Making a self aligned semiconductor device
US4974060A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR920010846B1 (en) Semiconductor device and method of manufacturing the same
US4963957A (en) Semiconductor device having bipolar transistor with trench
US5047815A (en) Semiconductor memory device having a trench-stacked capacitor
US4988639A (en) Method of manufacturing semiconductor devices using trench isolation method that forms highly flat buried insulation film
JPH031837B2 (en)
KR900000635B1 (en) Semiconductor memory device
US6009010A (en) Static semiconductor memory device having data lines in parallel with power supply lines
EP0200603B1 (en) A small contactless ram cell
US4584594A (en) Logic structure utilizing polycrystalline silicon Schottky diodes
JPS62104072A (en) Semiconductor integrated circuit
US5313090A (en) Bipolar memory cell having capacitors
JPH01265558A (en) Semiconductor memory
EP0266572B1 (en) Semiconductor memory device having a plurality of memory cells of single transistor type
US6939762B2 (en) Semiconductor devices and methods for manufacturing the same
JP2741393B2 (en) Semiconductor device
JP2969876B2 (en) Semiconductor device and manufacturing method thereof
JPS60144961A (en) Semiconductor integrated circuit
JPS63122147A (en) Semiconductor device
JPS60211969A (en) Semiconductor device
JPS60245144A (en) Semiconductor integrated circuit device
JPH01286356A (en) Semiconductor integrated circuit
JPS6394668A (en) Storage device