JPS6394668A - Storage device - Google Patents

Storage device

Info

Publication number
JPS6394668A
JPS6394668A JP61240574A JP24057486A JPS6394668A JP S6394668 A JPS6394668 A JP S6394668A JP 61240574 A JP61240574 A JP 61240574A JP 24057486 A JP24057486 A JP 24057486A JP S6394668 A JPS6394668 A JP S6394668A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline
gate
protrusions
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61240574A
Other languages
Japanese (ja)
Inventor
Hideharu Nakajima
中嶋 英晴
Mitsuo Soneda
曽根田 光生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61240574A priority Critical patent/JPS6394668A/en
Publication of JPS6394668A publication Critical patent/JPS6394668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0383Making the capacitor or connections thereto the capacitor being in a trench in the substrate wherein the transistor is vertical

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce a leakage current which flows through a transfer transistor by a method wherein a plurality of wiring layers which connect the tips of pillar-shape protrusions along a required direction are so provided as to be isolated from gate electrode to constitute a storage device. CONSTITUTION:A mask pattern of photoresist is formed on a P<->type Si substrate 1 surface and trenches 3 are formed by RIE. With this process, a plurality of pillar-shape protrusions 4 are formed on the substrate 1 surface in island shapes. Then 1st gate oxide film 6 is formed over the whole surface by heat oxidation. After that, 1st polycrystalline Si layer 5 is made to grow. Trenches 7 are dug from the top surfaces of the pillar-shape protrusions 4 by RIE. Then, after 2nd gate oxide film 8 is formed, donors are implanted by ion implantation to form S/D regions 9. After that, 2nd polycrystalline Si layer 10 is made to grow and apertures are drilled in the Si layer 10 at the center parts of the protrusions 4. After a layer insulating film 11 is formed, apertures for bit line contacts are drilled in the film 11 and Al wirings are applied to form the bit lines 12. With this constitution, quantity of charges which leak from a trench capacitor through a transfer transistor can be significantly reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体メモリ装置に関し、特にトレンチ型キ
ャパシタを有するDRAMの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and more particularly to a DRAM structure having a trench type capacitor.

〔発明の概要〕[Summary of the invention]

本発明は、トレンチ型キャパシタを有するDRAMに於
いて、半忠体基板に形成された複数の柱状突起部の下部
にその誘電体層を介してキャパシタ電極を設け、その上
部にはゲート絶縁膜を介して前記キャパシタ電極と絶縁
してスイッチングトランジスタのゲート電極を設け、前
記複数の柱状突起部を結ぶゲート電極を複数形成し、前
記柱状突起部の先端を中心にして前記スイッチングトラ
ンジスタを複数に分割する不純物領域を前記柱状突起部
に形成し、その柱状突起部の先端部を所定方向に接続す
る複数の配線層を前記ゲート電極と絶縁した状態で設け
るようにメモリ装置を構成することによって、従来と同
等の集積度を保ちつつリーク電流を低下させたものであ
る。
In a DRAM having a trench type capacitor, the present invention provides a capacitor electrode at the bottom of a plurality of columnar projections formed on a semi-fidelity substrate through a dielectric layer, and a gate insulating film on the top of the capacitor electrode. A gate electrode of a switching transistor is provided insulated from the capacitor electrode through a gate electrode, a plurality of gate electrodes are formed to connect the plurality of columnar protrusions, and the switching transistor is divided into a plurality of parts around the tips of the columnar protrusions. By configuring the memory device in such a way that an impurity region is formed in the columnar protrusion and a plurality of wiring layers connecting the tips of the columnar protrusion in a predetermined direction are provided in a state insulated from the gate electrode, the memory device is improved. This reduces leakage current while maintaining the same degree of integration.

〔従来の技術〕[Conventional technology]

DRAMの高密度化が進むにつれて、基板内にトレンチ
を掘り、その中にキャパシタを形成するトレンチ型キャ
パシタを利用したDRAMがその主流に成りつつある。
As the density of DRAMs increases, DRAMs using trench-type capacitors, in which a trench is dug in a substrate and a capacitor is formed in the trench, are becoming mainstream.

そのトレンチ型キャパシタを有するDRAMの従来例(
特願昭61−134383号)を第3図に基づいて説明
する。P−型基板1内に掘られたトレンチ表面には、キ
ャパシタ酸化膜6が形成され、第1多結晶St層5によ
って埋められる。この第1多結晶Si層5はキャパシタ
プレートとなる。そのキャパシタプレートを形成した後
、その表面を酸化膜でキャップし、その上に第2多結晶
5ililOを成長させる。この第2多結晶5iFIO
がゲート電極となり、キャパシタより上部のトレンチの
側壁部分がゲート酸化膜となる。ゲート電極となる第2
多結晶Si層を酸化膜により被った後、ドナーをイオン
注入してS/DjJ域9を形成しPJ線12によりビッ
トラインを配線する。
Conventional example of DRAM with trench type capacitor (
(Japanese Patent Application No. 134383/1983) will be explained based on FIG. A capacitor oxide film 6 is formed on the surface of the trench dug in the P- type substrate 1, and is filled with a first polycrystalline St layer 5. This first polycrystalline Si layer 5 becomes a capacitor plate. After forming the capacitor plate, its surface is capped with an oxide film, and a second polycrystalline 5ililO is grown thereon. This second polycrystalline 5iFIO
becomes the gate electrode, and the side wall portion of the trench above the capacitor becomes the gate oxide film. The second electrode becomes the gate electrode.
After covering the polycrystalline Si layer with an oxide film, donor ions are implanted to form S/DjJ regions 9 and bit lines are wired by PJ lines 12.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図に示されるように、従来のトレンチ型キャパシタ
を用いたDRAMのセルに於いては、キャパシタプレー
トとなる第1多結晶5iJ55の上に、トランスファゲ
ートとなる第2多結晶Si層1oが形成されている。こ
の従来の構造では、トランスファゲートが一段しかない
ため、キャパシタからリークする電荷の量を無視するこ
とができず、メモリセルの電荷保持特性を改善する事に
限界があった。
As shown in FIG. 3, in a DRAM cell using a conventional trench-type capacitor, a second polycrystalline Si layer 1o, which becomes a transfer gate, is placed on a first polycrystalline 5iJ55, which becomes a capacitor plate. It is formed. In this conventional structure, since there is only one stage of transfer gate, the amount of charge leaking from the capacitor cannot be ignored, and there is a limit to improving the charge retention characteristics of the memory cell.

トレンチ内の第2多結晶5iliの深さを大きくして、
キャパシタプレート5とS/DjJ域9との距離つまり
ゲート長を長くすれば、電荷のリークを低下させること
はできるが、一方で、トランジスタのG、が低下しメモ
リのドライブ能力が落ち、また付加容量が増加してアク
セスタイムが遅くなると言う問題が生じる。従ってトラ
ンジスタのゲート長しはむやみに長くすることが出来ず
、これによってリーク電流を低下させることは困難であ
った。
By increasing the depth of the second polycrystalline 5ili in the trench,
By increasing the distance between the capacitor plate 5 and the S/DjJ region 9, that is, the gate length, it is possible to reduce charge leakage, but on the other hand, the G of the transistor decreases, the memory drive ability decreases, and the additional A problem arises in that the increased capacity slows down access time. Therefore, the gate length of the transistor cannot be increased unnecessarily, and it has been difficult to reduce leakage current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半導体基板に形成された複数の柱状突起部の
下部にその誘電体層を介してキャパシタ電極を設け、そ
の上部にはゲート絶縁膜を介して前記キャパシタ電極と
絶縁してスイッチングトランジスタのゲート電極を設け
、前記複数の柱状突起部を結ぶゲート電極を複数形成し
、前記柱状突起部の先端を中心にして前記スイッチング
トランジスタを複数に分割する不純物領域を前記柱状突
起部に形成し、その柱状突起部の先端部を所定方向に接
続する複数の配線層を前記ゲート電極と絶縁した状態で
設けるようにメモリ装置を構成することによって、前記
問題点を解決した。
The present invention provides a capacitor electrode at the bottom of a plurality of columnar protrusions formed on a semiconductor substrate through a dielectric layer thereof, and insulates the capacitor electrode from the capacitor electrode through a gate insulating film at the top of the capacitor electrode to form a switching transistor. providing a gate electrode, forming a plurality of gate electrodes connecting the plurality of columnar protrusions, forming an impurity region in the columnar protrusion that divides the switching transistor into a plurality of parts around the tip of the columnar protrusion; The above problem has been solved by configuring the memory device so that a plurality of wiring layers connecting the tips of the columnar protrusions in a predetermined direction are provided in a state insulated from the gate electrode.

〔作用〕[Effect]

本発明に於いては、トランスファゲートを多段にしたた
めに、トランスファトランジスタを通過するリーク電流
を激減させることができる。つまりPN接合の数が多く
なるので、接合1個当たりにかかる電圧が低下してリー
ク電流を下げるのである。しかも接合1個当たりのリー
ク電流は、その接合にかかる電圧が低くなると指数函数
的に減少する。
In the present invention, since the transfer gate is provided in multiple stages, the leakage current passing through the transfer transistor can be drastically reduced. In other words, since the number of PN junctions increases, the voltage applied to each junction decreases, reducing leakage current. Moreover, the leakage current per junction decreases exponentially as the voltage applied to that junction decreases.

一方、本発明のDRAMの構造では、多段のトランスフ
ァゲートはトレンチの内部に形成されるので、トランス
ファゲートを多段にする事によってDRAMセルの占有
面積の増大を招(事がない。
On the other hand, in the DRAM structure of the present invention, the multi-stage transfer gates are formed inside the trench, so the multi-stage transfer gates do not increase the occupied area of the DRAM cell.

〔実施例〕〔Example〕

大施班上 第1図A−Fにより、本発明のDRAMの第1の実施例
をその製造方法の工程に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a DRAM of the present invention will be described based on the steps of its manufacturing method with reference to FIGS. 1A to 1F.

A  I”Sii板1板面表面ォトレジストのマスクパ
ターンを形成し、RIE法によりトレンチ3を形成する
。これにより基板1表面には島状に形成された複数の柱
状突起4が形成される。
A photoresist mask pattern is formed on the surface of the A I"Sii board 1, and trenches 3 are formed by RIE. As a result, a plurality of island-like columnar projections 4 are formed on the surface of the substrate 1.

アクセプターをトレンチの底にイオン注入して、チャン
ネルストッパー2を形成する。
An acceptor is ion-implanted into the bottom of the trench to form a channel stopper 2.

B 熱酸化により第1ゲート酸化膜6を全面に形成する
。その後、第1多結晶Si層5を成長させ、エッチバッ
クを行ってトレンチの下半分にキャパシタプレートを形
成する。
B. A first gate oxide film 6 is formed over the entire surface by thermal oxidation. Thereafter, a first polycrystalline Si layer 5 is grown and etched back to form a capacitor plate in the lower half of the trench.

C,D柱状突起4の頂部からRIE法により深さ1.5
μのトレンチ7を形成する。形成されたトレンチ7を上
から見た状態がD図に示されている。D図のC−C線の
断面図が0図である。
C, D Depth 1.5 from the top of columnar projection 4 by RIE method
A trench 7 of μ is formed. FIG. D shows the formed trench 7 viewed from above. 0 is a cross-sectional view taken along line C-C in figure D.

E 第2ゲート酸化膜8を形成した後、ドナーをイオン
注入してS/D領域9を形成する。その後第2多結晶S
i[10を成長させて、柱状突起部の中心部分を窓開け
する。
E After forming the second gate oxide film 8, donor ions are implanted to form the S/D region 9. Then the second polycrystalline S
i[10 is grown and a window is opened in the center of the columnar projection.

F 層間絶縁膜11を設けた後、ビット線コンタクト用
の窓を開け、/u5t1!線を行ってビット線12を形
成する。
F After providing the interlayer insulating film 11, open a window for bit line contact and /u5t1! A bit line 12 is formed by forming a bit line 12.

去旌開↓ AP−基板1上に、0.5μ厚のN3層、1μ厚のP一
層、0.5μ厚のN″層、1.5μ厚のP一層を各々エ
ピタキシャル成長させる。
Opening↓ On the AP-substrate 1, a 0.5μ thick N3 layer, a 1μ thick P single layer, a 0.5μ thick N″ layer, and a 1.5μ thick P single layer are epitaxially grown.

B  RIE法によりトレンチを形成して、8μの高さ
の柱状突起部を形成し、その表面に熱酸化膜6を150
人成長させて第1ゲート酸化膜6とする。その後第1多
結晶5ili5を形成させてから、それのエッチバンク
を行い、キャパシタプレートを形成する。
A trench is formed by the B RIE method to form a columnar protrusion with a height of 8μ, and a thermal oxide film 6 is deposited on the surface of the columnar protrusion with a thickness of 150 μm.
This is grown to form the first gate oxide film 6. Thereafter, a first polycrystal 5ili5 is formed, and then an etch bank is performed thereon to form a capacitor plate.

Cドナーをイオン注入して、柱状突起部の頂部にN″領
域形成する。第1ゲート酸化膜6をエツチング除去して
、第2ゲート酸化膜8を形成する。その後第2多結晶5
i510を全面に形成する。
A C donor is ion-implanted to form an N'' region at the top of the columnar protrusion. The first gate oxide film 6 is removed by etching to form a second gate oxide film 8. Thereafter, a second polycrystalline 5 is formed.
i510 is formed on the entire surface.

D 層間絶縁膜11を形成し、層間絶縁膜11、第2多
結晶Si層10及び第2ゲート酸化膜8をエッチする。
D. An interlayer insulating film 11 is formed, and the interlayer insulating film 11, second polycrystalline Si layer 10, and second gate oxide film 8 are etched.

次いで酸化処理を行ってから、RIE法を行いコンタク
ト窓の側壁を絶縁する。
Next, an oxidation treatment is performed, and then an RIE method is performed to insulate the side walls of the contact window.

E  Atを全面に付着させ、パターニングを行ってビ
ット線12を形成する。
E At is deposited on the entire surface and patterned to form the bit line 12.

この実施例では、エピタキシャル法によりP一層とN″
層を積層させたが、PSG膜をデポして、エッチバック
により柱状突起部にリング状に拡散層を設けることも可
能である。
In this example, one layer of P and one layer of N'' are formed by epitaxial method.
Although the layers were laminated, it is also possible to deposit a PSG film and etch back to provide a ring-shaped diffusion layer on the columnar protrusion.

〔発明の効果〕〔Effect of the invention〕

本発明の構造のDRA?lを採用することにより、トレ
ンチキャパシタからトランスフプトランジスタを通過し
てリークする電荷の量を大幅に減少させることができる
DRA of the structure of the present invention? By employing 1, the amount of charge leaking from the trench capacitor through the transfer transistor can be significantly reduced.

また、多段に重ねられたトランスファゲートは、柱状突
起部内に形成されるので、そのメモリセルの面積が従来
のトレンチキャパシタ型DRAMのメモリセルより大き
くなることはない。
Furthermore, since the multi-stage transfer gates are formed within the columnar protrusion, the area of the memory cell does not become larger than that of a memory cell of a conventional trench capacitor type DRAM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Fは本発明のDRAMの製造工程を示した図
である。 第2図A−Eは、本発明のDRAMの他の実施例を示す
図である。 第3図は従来のトレンチキャパシタを示す図である。
FIGS. 1A to 1F are diagrams showing the manufacturing process of the DRAM of the present invention. FIGS. 2A to 2E are diagrams showing other embodiments of the DRAM of the present invention. FIG. 3 is a diagram showing a conventional trench capacitor.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に形成された複数の島状の突起部側壁に誘
電体層を介し、且つ先端を所定長さ残してキャパシタ電
極が形成され、前記の所定長さ残された先端部の表面に
ゲート絶縁膜を介し、且つ前記キャパシタ電極と絶縁さ
れてスイッチングトランジスタのゲート電極が形成され
、前記ゲート電極は前記複数の島状の突起部を所定方向
に結んで複数本形成され、前記複数の島状の突起部先端
部を中心にして前記スイッチングトランジスタを複数段
に分割する不純物領域が、前記突起部表面に形成され、
前記突起部先端部を所定方向に接続する複数の配線層が
、前記ゲート電極と絶縁されて形成されているメモリ装
置。
A capacitor electrode is formed on the side wall of a plurality of island-like protrusions formed on a semiconductor substrate via a dielectric layer, leaving a predetermined length at the tip, and a gate insulator is formed on the surface of the tip with a predetermined length left. A gate electrode of a switching transistor is formed insulated from the capacitor electrode through a film, and a plurality of gate electrodes are formed by connecting the plurality of island-shaped protrusions in a predetermined direction, and the plurality of island-shaped protrusions are connected to each other in a predetermined direction. an impurity region dividing the switching transistor into a plurality of stages around a tip of the protrusion is formed on the surface of the protrusion;
A memory device in which a plurality of wiring layers connecting the tips of the projections in a predetermined direction are formed to be insulated from the gate electrode.
JP61240574A 1986-10-09 1986-10-09 Storage device Pending JPS6394668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240574A JPS6394668A (en) 1986-10-09 1986-10-09 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240574A JPS6394668A (en) 1986-10-09 1986-10-09 Storage device

Publications (1)

Publication Number Publication Date
JPS6394668A true JPS6394668A (en) 1988-04-25

Family

ID=17061546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240574A Pending JPS6394668A (en) 1986-10-09 1986-10-09 Storage device

Country Status (1)

Country Link
JP (1) JPS6394668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585178B1 (en) 2005-02-05 2006-05-30 삼성전자주식회사 Semiconductor device comprising finfet having metal gate electrode and fabricating method thereof
US7279774B2 (en) 2004-02-13 2007-10-09 Samsung Electronics Co., Ltd. Bulk substrates in FinFETs with trench insulation surrounding FIN pairs having FINs separated by recess hole shallower than trench

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279774B2 (en) 2004-02-13 2007-10-09 Samsung Electronics Co., Ltd. Bulk substrates in FinFETs with trench insulation surrounding FIN pairs having FINs separated by recess hole shallower than trench
KR100585178B1 (en) 2005-02-05 2006-05-30 삼성전자주식회사 Semiconductor device comprising finfet having metal gate electrode and fabricating method thereof

Similar Documents

Publication Publication Date Title
US5547889A (en) Method of forming a semiconductor device having vertical conduction transistors and cylindrical cell gates
KR900002885B1 (en) Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
US4920389A (en) Memory call array structure and process for producing the same
US5336629A (en) Folder Bitline DRAM having access transistors stacked above trench storage capacitors, each such transistor employing a planar semiconductor body which spans adjacent capacitors
US4974060A (en) Semiconductor integrated circuit device and method of manufacturing the same
US5064777A (en) Fabrication method for a double trench memory cell device
US4763180A (en) Method and structure for a high density VMOS dynamic ram array
EP0463389A1 (en) Structure and fabrication method for a double trench memory cell device
JPS62286270A (en) Semiconductor memory
US5635740A (en) Semiconductor device and method of manufacturing the same
JPH05110017A (en) Semiconductor and manufacture thereof
JPH04234166A (en) Semiconductor integrated circuit device
JPS62193273A (en) Semiconductor memory
US5248891A (en) High integration semiconductor device
JPS6394668A (en) Storage device
JPS62274771A (en) Semiconductor memory
JP2633577B2 (en) Dynamic memory cell and method of manufacturing the same
JP3288371B2 (en) Random access memory or electronic device and method of manufacturing the same
JPS6324657A (en) Manufacture of semiconductor memory
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPH06342887A (en) Mist-type dynamic random-access memory cell and its manufacture
JPS63207173A (en) Manufacture of semiconductor device
JPS63179567A (en) Manufacture of semiconductor storage device
JPH0311662A (en) Semiconductor memory device
JPS6379370A (en) Semiconductor storage device and manufacture thereof