JPS62101368A - Production of clad ingot - Google Patents

Production of clad ingot

Info

Publication number
JPS62101368A
JPS62101368A JP23918385A JP23918385A JPS62101368A JP S62101368 A JPS62101368 A JP S62101368A JP 23918385 A JP23918385 A JP 23918385A JP 23918385 A JP23918385 A JP 23918385A JP S62101368 A JPS62101368 A JP S62101368A
Authority
JP
Japan
Prior art keywords
core material
clad
cooled mold
cladding
water cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23918385A
Other languages
Japanese (ja)
Inventor
Seiji Otomo
大友 清司
Hiromichi Saito
斉藤 弘道
Takeshi Kono
河野 彪
Yoshio Hashimoto
橋本 嘉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23918385A priority Critical patent/JPS62101368A/en
Publication of JPS62101368A publication Critical patent/JPS62101368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To reduce the production cost and to improve working efficiency by disposing a water cooled mold to the outside periphery of a core material which is perpendicularly set and heating the outside surface of the core material while pouring a molten metal into the space between the core material and the water cooled mold thereby melting and heating the core material. CONSTITUTION:The water cooled mold 5 is disposed apart at a specified space to the outside peripheral part of the core material 1 which is perpendicularly set on a stand 14 and a refractory flask 9 is attached onto the same. A heating coil 6 is then set to the outside periphery of the flask 9 and a preheating coil 7 to the periphery of the core material 1. The bottom end of the core material 1 is first set in the water cooled mold 5 and the coils 6, 7 are energized, then the molten metal to be formed as a cladding metal 2 is poured into the flask 9. While the core material 1 is heated to a prescribed temp., the core material is lowered and an ingot clad over the entire surface is produced. The ingot is rolled to a desired sheet thickness. Since the entire surface in the peripheral direction is simultaneously clad, the cost is reduced and the working efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表層と内部の材質が異なるクラッド鋳片の製造
方法に関し、特に表層をステンレス鋼にし、内部を普通
鋼にしたステンレスクラツド鋼板の素材であるステンレ
スクラッド鋳片の製造方法に係わるものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a clad slab having different materials for the surface layer and the inside, and particularly for manufacturing a stainless clad steel plate in which the surface layer is made of stainless steel and the inside is made of ordinary steel. This relates to a method for producing stainless steel clad slabs, which are the raw material.

(従来の技術) 鋳込み法でステンレスクラツド鋼材を製造する従来の方
法は、例えば特公昭54−18670号に示すものがあ
る。この方法は第1図(a)に示す様に芯材1の長辺側
の一方の面にだけクラツド材2をクラツディングする方
法であった。
(Prior Art) A conventional method of manufacturing stainless clad steel materials by casting is disclosed in, for example, Japanese Patent Publication No. 18670/1983. In this method, as shown in FIG. 1(a), the cladding material 2 was clad only on one long side surface of the core material 1.

そして裏表両面のクラツド鋼材を製造する場合には片面
をクラツディングした後1反対の面をもう一度クラッデ
ィングしていた。
In the case of manufacturing a double-sided clad steel material, one side is clad and then the opposite side is clad again.

この方法では、 (1)  片面づつクラツディングするため、クラツデ
ィングをすると、第1図(b)に示すようにクラツド材
が凝固収縮するためクラツド材2の方向に曲シが発生す
る。特にクラツド材がステンレス鋼の場合は、凝固収縮
も大きく曲りの程度も大きい。したがって1反対の面を
繰シ返しクラツディングする場合は、鋼片の曲りを修正
する必要があり、この修正には多大の労力と費用がかか
っていた。
In this method, (1) Since cladding is performed on one side at a time, when cladding is performed, the cladding material solidifies and shrinks, causing bending in the direction of the cladding material 2, as shown in FIG. 1(b). In particular, when the cladding material is stainless steel, solidification shrinkage is large and the degree of bending is large. Therefore, when repeatedly cladding the opposite side, it is necessary to correct the bending of the steel billet, and this correction requires a great deal of labor and cost.

(2)  また、°両面クラツディングしたクラツド材
、を後工程の熱間圧延した場合、第5図(b)に示すよ
うに短辺側にクラツド材2がないため芯材1になる普通
鋼がクラツド材になるステンレス鋼に比べて高温域の変
形抵抗が小さいため、クラツド材に比べ芯材が延び易く
、両端部の芯材が外側にはみ出す現象が生じていた。そ
の結果、両端部の切シ捨て代が大きくなり歩留シが低か
った。
(2) In addition, when a double-sided clad material is hot-rolled in the post-process, as shown in Fig. 5(b), there is no clad material 2 on the short side, so ordinary steel becomes the core material 1. Since the deformation resistance at high temperatures is lower than that of stainless steel, which is the cladding material, the core material stretches more easily than the cladding material, causing the core material at both ends to protrude outward. As a result, the cutting margin at both ends became large, resulting in a low yield.

(3)更に、両面クラツド材を製造する時は、片面づつ
クラツディングして繰シ返していたため、能率が悪くコ
ストが高い等の問題があった。
(3) Furthermore, when manufacturing double-sided cladding materials, cladding was performed on one side at a time and then repeated, which caused problems such as poor efficiency and high costs.

(発明が解決しようとする問題点) 以上のような従来技術の問題点を解消し、クラツド鋼板
を能率よく、安価で、しかも品質の良いものを製造する
方法の開発が望まれていた。本発明はこのような観点か
ら安価で、高品質のクラツド鋼板を製造する方法を提供
するものである。
(Problems to be Solved by the Invention) It has been desired to develop a method for producing clad steel plates efficiently, inexpensively, and of good quality by solving the above-mentioned problems of the prior art. From this viewpoint, the present invention provides a method for producing a high-quality clad steel plate at low cost.

(問題点を解決するだめの手段、作用)本発明は水平断
面部が矩形状なる芯材を架台上に垂直にセットし、その
外周に水冷モールドを配設し、芯材と水冷モールドの4
方向の間隙に芯材と材質の異なる金属溶湯を間欠的、あ
るいは連続的に注入し、芯材の周囲に設けた加熱コイル
に通電することによシ前記芯材外表面と溶湯とを溶融接
合することを特徴とするクラッド鋳片の製造方法にある
(Means and effects for solving the problem) The present invention comprises setting a core material having a rectangular horizontal cross-section vertically on a stand, disposing a water-cooled mold around its outer periphery,
The outer surface of the core material and the molten metal are fused and bonded by intermittently or continuously injecting a molten metal of a different material from the core material into the gap in the direction and energizing a heating coil provided around the core material. A method for manufacturing a clad slab, characterized by:

すなわち本発明の方法は、芯材の表面全周を同時にクラ
ツディングする方法のため、クラツド材の凝固収縮によ
る曲りはほとんど発生しない。
That is, since the method of the present invention simultaneously clads the entire surface of the core material, bending due to solidification shrinkage of the clad material hardly occurs.

また、熱間圧延工程での芯材のはみ出しによる両端の切
シ捨て代もほとんどなく製品歩留りも大幅に向上する。
In addition, there is almost no cutting allowance at both ends due to protrusion of the core material during the hot rolling process, and the product yield is greatly improved.

そして全周同時にクラツディングするためクラツディン
グのスピードは単純には2倍であるが、クラツディング
のための準備作業を含めるとそれ以上の生産能率を達成
できる0本発明の方法を図によって説明する。
Since the entire circumference is clad simultaneously, the cladding speed is simply doubled, but if preparatory work for cladding is included, a higher production efficiency can be achieved.The method of the present invention will be explained with reference to the drawings.

第2図は本発明方法で製造した時のステンレスクラッド
鋳片の断面図(a)と側面図(b)である。芯材1の全
周にクラツド材2をクラツディングしたステンレスクラ
ッド鋳片であるため、クラツド材の凝固収縮による曲り
の発生はほとんどない。
FIG. 2 is a cross-sectional view (a) and a side view (b) of a stainless steel clad slab manufactured by the method of the present invention. Since it is a stainless steel clad slab in which the cladding material 2 is clad around the entire circumference of the core material 1, there is almost no bending due to solidification shrinkage of the cladding material.

次に本発明の方法を順を追って説明する0第3図が概略
図である。架台14の上に垂直にセットした芯材1の外
周部にクラッド厚になる一定の隙間をあけて水冷モール
ド5を配設し、その上に耐火枠9をセットする。加熱コ
イル6はこの耐火枠9の外周に、予熱コイル7は耐火枠
9の上部で芯材1の周囲にセットする。クラツディング
に際して、まず芯材1を上昇させスタートタブ12のあ
る芯材1の下端を水冷モールド5内にセットし、加熱コ
イル6と予熱コイル7に通電し、芯材1の表面が赤熱状
態になるまで加熱し、目標の温度に達した時、クラツド
材2になるステンレス溶湯を予め溶解保持していた溶解
炉から耐火枠9内に注入する0溶湯は芯材1と水冷モー
ルド5の間隙に流れこみ、水冷モールド5の抜熱によシ
黒鉛リング8を介して凝固する。なお、溶着不良等の欠
陥がない健全な境界層を確保するため、予熱コイル7に
所定の電流を流し、芯材lを所定の温度まで加熱し、耐
火枠内溶湯10を加熱コイル6で通電し、溶湯を攪拌、
昇温して、境界の溶着を円滑にし、一定の速度で芯材1
を下降させ、連続的に全面ステンレスクラッド鋳片を製
造する。この様にして製造したクラッド鋳片を所望の板
厚に圧延すれば、容易にクラツド鋼板を製造することが
できる。
Next, FIG. 3 is a schematic diagram for explaining the method of the present invention step by step. A water-cooled mold 5 is placed on the outer periphery of a core material 1 vertically set on a frame 14 with a certain gap corresponding to the cladding thickness, and a refractory frame 9 is set on top of the water-cooled mold 5. The heating coil 6 is set on the outer periphery of this refractory frame 9, and the preheating coil 7 is set around the core material 1 at the upper part of the refractory frame 9. When cluttering, first raise the core material 1, set the lower end of the core material 1 with the start tab 12 in the water-cooled mold 5, and energize the heating coil 6 and preheating coil 7, so that the surface of the core material 1 becomes red-hot. When the target temperature is reached, the molten stainless steel metal, which will become the cladding material 2, is injected into the refractory frame 9 from the melting furnace where it was melted and held in advance, and flows into the gap between the core material 1 and the water-cooled mold 5. It solidifies through the graphite ring 8 due to heat removal from the water-cooled mold 5. In order to ensure a healthy boundary layer free from defects such as poor welding, a predetermined current is applied to the preheating coil 7 to heat the core material l to a predetermined temperature, and the molten metal 10 in the refractory frame is energized by the heating coil 6. and stir the molten metal,
The core material 1 is heated at a constant speed to smooth the welding of the boundary.
is lowered to continuously produce stainless steel clad slabs on the entire surface. By rolling the clad slab produced in this manner to a desired thickness, a clad steel plate can be easily produced.

第4図は本発明方法により片面クラツド鋼板を製造する
場合のクラッド鋳片の製造方法である。
FIG. 4 shows a method for manufacturing a clad slab when a single-sided clad steel plate is manufactured by the method of the present invention.

芯材1の間に剥離材3を挾んで2枚を合わせ、合わせ面
4で溶接して一体物の芯材とする。その後のクラツディ
ング方法は全面クラツド鋼板の時と同じである。クラッ
ド鋳片が出来上がった後は、そのま\熱間圧延を行った
後で合わせ面よシ剥離させ片面クラツド鋼板にするか、
クラッド鋳片の段階で合わせ面より剥離させ、後工程の
熱間圧延を行うか2通電の方法があシどちらの方法を選
んでも良い。
A release material 3 is sandwiched between the core materials 1, the two sheets are brought together, and the mating surfaces 4 are welded to form an integral core material. The subsequent cladding method is the same as for the fully clad steel plate. After the clad slab is completed, it can be hot-rolled as it is, then peeled from the mating surface to make a single-sided clad steel plate, or
Either method may be used, such as peeling off from the mating surface at the stage of forming a clad slab and performing hot rolling in the subsequent process, or applying two currents.

第6図は本発明方法で製造した全周にクラツド材をクラ
ツディングをした全面クラッド鋳片を熱間圧延した時の
圧延方向と直角方向の断面図を示す。これによると従来
法のように短辺側にクラツド材2がない時は第5図(b
)の様に芯材1が両端にはみ出して両端の切り捨て代が
多く歩留りが悪かったが、本発明法である全周にクラツ
ド材2があると第6図(b)の様に芯材1が両端からほ
とんどはみ出さず、両端の切シ捨で代が減少し、大幅に
コスト低減につながった。
FIG. 6 shows a cross-sectional view taken in a direction perpendicular to the rolling direction when a fully clad slab produced by the method of the present invention and having a clad material clad all over its circumference is hot-rolled. According to this, when there is no clad material 2 on the short side as in the conventional method, as shown in Fig. 5 (b
), the core material 1 protrudes from both ends and there is a large amount of cutting allowance at both ends, resulting in a poor yield, but when the method of the present invention has cladding material 2 all around the circumference, the core material 1 protrudes from both ends as shown in Fig. 6(b). Barely protrudes from both ends, and by cutting off both ends, the allowance is reduced, leading to a significant cost reduction.

本発明では芯材として普通鋼、クラツド材としてステン
レス鋼を例に説明したが、これに限られるものでなく、
芯材として低合金鋼、クラツド材として耐熱鋼等の特殊
鋼、Ou、 Ni、 Ti等の非鉄金属、Ni系、 O
r系合金等の合金が適用出来る。
In the present invention, ordinary steel is used as the core material and stainless steel is used as the cladding material, but the present invention is not limited to these.
Low-alloy steel as the core material, special steel such as heat-resistant steel as the cladding material, non-ferrous metals such as Ou, Ni, and Ti, Ni-based, O
Alloys such as r-based alloys can be applied.

(実施例) 次に実施例を上げて説明する〇 母材となる芯材は幅600 mm、厚さ200mm、長
さ4.500 mm の低炭素鋼を使用し、内寸法が長
辺側650mm1短辺側250mm  の水冷モールド
を芯材の外周に配設し、芯材と水冷モールドの間隙が4
方向とも25 mmになる様に芯材をセットする。
(Example) Next, an example will be explained.〇 The core material used as the base material is made of low carbon steel with a width of 600 mm, a thickness of 200 mm, and a length of 4.500 mm, and the inner dimension is 650 mm on the long side. A water-cooled mold with a length of 250 mm on the short side is placed around the outer periphery of the core material, and the gap between the core material and the water-cooled mold is 4.
Set the core material so that it is 25 mm in both directions.

水冷モールドの上にはクラツディングする溶湯を一旦溜
めるための耐火枠をセットする。そして芯材が下降する
際、芯材と水冷モールドとの間隙を一定にするための芯
押し治具をセットする。クラツディングする際は芯材を
上昇させ予めスタートタブをつけた芯材の下端を水冷モ
ールド内にセットする。そして耐火枠の外周に配設した
高周波誘導加熱コイルと耐火枠の上部に配設した高周波
誘導予熱コイルに通電し芯材が所定の温度になるまで誘
導加熱する。芯材が所定の温度に達すると予め溶解炉で
溶解したクラツド材になる溶湯を注湯炉から耐火枠内に
注湯する。クラツド材になる溶湯が耐火枠の上面のメニ
スカスになったとき、一定の速度で芯材を下降させ、連
続的にクラツディングしていく。この時の詳細な施工条
件は第1表に示す通電である。
A fireproof frame is set on top of the water-cooled mold to temporarily store the molten metal that will be crucified. Then, when the core material is lowered, a tail pressing jig is set to maintain a constant gap between the core material and the water-cooled mold. When crutching, lift the core material and place the lower end of the core material with a start tab attached in advance into a water-cooled mold. Electricity is then applied to a high frequency induction heating coil disposed around the outer periphery of the refractory frame and a high frequency induction preheating coil disposed above the refractory frame to induction heat the core material until it reaches a predetermined temperature. When the core material reaches a predetermined temperature, the molten metal that has been previously melted in the melting furnace and will become the clad material is poured into the refractory frame from the pouring furnace. When the molten metal that will become the cladding material forms a meniscus on the top of the refractory frame, the core material is lowered at a constant speed, causing continuous cladding. The detailed construction conditions at this time were the energization shown in Table 1.

(発明の効果) 以上のとおシ、本発明法は従来法と比較して、周方向の
全面を同時にクラツディングするため、作業能率は大幅
に向上でき製造コストも大幅に低減した。また片面クラ
ツド鋼板をつくる時も曲シが発生しないため、曲りに起
因するクラツディングの際の変形などトラブルは全く無
くなシ、コストも勿論のこと、品質も従来法に比べて安
定した製品をつくることができる様になった。
(Effects of the Invention) As described above, compared to the conventional method, the method of the present invention clads the entire surface in the circumferential direction at the same time, so the work efficiency is greatly improved and the manufacturing cost is also significantly reduced. In addition, since no bending occurs when producing single-sided clad steel plates, there are no problems such as deformation during cladding due to bending, and the product is not only cheaper but also more stable in quality than conventional methods. Now I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法で製造した片面クラツド鋼片を示す図で
(a)断面図、(b)は側面図、第2図は本発明法で製
造した全面クラッド鋳片を示す図で(a)断面図、(b
)は側面図、第3図は本発明の設備概要図、第4図は本
発明法で製造する片面クラッド鋳片の断面図、第5図(
a) 、 (b)は従来法で製造した両面クラッド鋳片
の断面図と熱間圧延後の断面図。 第6図(a) 、 (b)は本発明法で製造した全面ク
ラッド鋳片の断面図と熱間圧延後の断面図である。 1・・・芯材      2・トクラッド材3・・・剥
離材     4・・・溶接部5・・・水冷モールド 
 6・・・誘導加熱コイル7・・・誘導予熱コイル 8
・・・黒鉛リング9・・・耐火枠     10・・・
溶湯11・・・スラグ     12・・・スタートタ
ブ13・・・芯押し治具   14・・・架台第1図 (↓) 第2図 (ノン
Figure 1 is a diagram showing a single-sided clad slab manufactured by the conventional method, (a) a cross-sectional view, (b) a side view, and Figure 2 is a diagram showing a fully clad slab manufactured by the method of the present invention (a). ) Cross-sectional view, (b
) is a side view, FIG. 3 is a schematic diagram of the equipment of the present invention, FIG. 4 is a cross-sectional view of a single-sided clad slab manufactured by the method of the present invention, and FIG. 5 (
a) and (b) are a cross-sectional view of a double-sided clad slab manufactured by a conventional method and a cross-sectional view after hot rolling. FIGS. 6(a) and 6(b) are a cross-sectional view of a fully clad slab manufactured by the method of the present invention and a cross-sectional view after hot rolling. 1...Core material 2.Clad material 3...Peeling material 4...Welded part 5...Water-cooled mold
6...Induction heating coil 7...Induction preheating coil 8
...Graphite ring 9...Refractory frame 10...
Molten metal 11... Slag 12... Start tab 13... Tail pushing jig 14... Frame Figure 1 (↓) Figure 2 (Non

Claims (1)

【特許請求の範囲】[Claims] 水平断面部が矩形状なる芯材を架台上に垂直にセットし
、その外周に水冷モールドを配設し、芯材と水冷モール
ドの4方向の間隙に芯材と材質の異なる金属溶湯を間欠
的、あるいは連続的に注入し、芯材の周囲に設けた加熱
コイルに通電することにより前記芯材外表面と溶湯とを
溶融接合することを特徴とするクラッド鋳片の製造方法
A core material with a rectangular horizontal cross section is set vertically on a frame, a water-cooled mold is placed around its outer periphery, and molten metals of different materials are intermittently poured into the gaps in four directions between the core material and the water-cooled mold. Alternatively, a method for producing a clad slab, characterized in that the outer surface of the core material and the molten metal are fused and joined by continuously injecting the molten metal and energizing a heating coil provided around the core material.
JP23918385A 1985-10-25 1985-10-25 Production of clad ingot Pending JPS62101368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23918385A JPS62101368A (en) 1985-10-25 1985-10-25 Production of clad ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23918385A JPS62101368A (en) 1985-10-25 1985-10-25 Production of clad ingot

Publications (1)

Publication Number Publication Date
JPS62101368A true JPS62101368A (en) 1987-05-11

Family

ID=17040951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23918385A Pending JPS62101368A (en) 1985-10-25 1985-10-25 Production of clad ingot

Country Status (1)

Country Link
JP (1) JPS62101368A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418670A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418670A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPS61176447A (en) Starting method of casting and side seal heater in roll type continuous casting installation
JPS62101368A (en) Production of clad ingot
US3414043A (en) Method for the continuous transferring of liquid metals or alloys into solid state with desired cross section without using a mould
JP3095417B2 (en) Metal composite material manufacturing method and apparatus
JPH0451010Y2 (en)
JPS6149750A (en) Continuous casting method of clad steel billet
SU956141A1 (en) Method of producing bimetallic works
JPS6264458A (en) Continuous casting method for thin ingot
JP2599977B2 (en) Method of manufacturing clad steel plate structure
JPS5828684Y2 (en) Surface plate for manufacturing composite steel ingots
JPH0117789B2 (en)
SU1452654A1 (en) Method of producing bimetallic billet
JPS62101369A (en) Production of clad ingot
JPS63215351A (en) Continuous casting apparatus
KR100240226B1 (en) A method of manufacturing a various material-pressure roll through consumable electrode molding
JPS61293632A (en) Method and apparatus for producing clad ingot
JP2006142331A (en) Roll production method
SU969441A1 (en) Method for breaking continuously cast billet
JPS6120647A (en) Production of clad billet by continuous casting
JP4029573B2 (en) Electroslag remelting electrode and electroslag remelting method
JPH01321043A (en) Manufacture of cast clad steel
RU1580699C (en) Method of fusion cladding of layer on flat blank
JPS63238953A (en) Method for casting molten metal by using twin rolls
JPH0195843A (en) Manufacture of cylindrical complex body
JPS63215338A (en) Continuous casting device