JPH01321043A - Manufacture of cast clad steel - Google Patents

Manufacture of cast clad steel

Info

Publication number
JPH01321043A
JPH01321043A JP15338588A JP15338588A JPH01321043A JP H01321043 A JPH01321043 A JP H01321043A JP 15338588 A JP15338588 A JP 15338588A JP 15338588 A JP15338588 A JP 15338588A JP H01321043 A JPH01321043 A JP H01321043A
Authority
JP
Japan
Prior art keywords
core material
corner part
corner
casting
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15338588A
Other languages
Japanese (ja)
Inventor
Seiji Otomo
大友 清司
Hiromichi Saito
斉藤 弘道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15338588A priority Critical patent/JPH01321043A/en
Publication of JPH01321043A publication Critical patent/JPH01321043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To prevent over-heat at corner part of a core material and to reduce margine for erosion at the corner part by executing the specific chamfering to the corner part of the core material before casting. CONSTITUTION:At outer circumference of the core material 1 having square or rectangular horizontal cross section part, molten metal having different material with the core material 1 to manufacture a clad cast slab. In this case, the chamfer work of 10-50C of C face or 10-50R of R face is executed to the corner part of the core material 1 before casting. By this method, the margine for the erosion at the corner part of the core material can be drastically reduced and quantity of alloy element needed to secure the prescribed component of the clad material can be drastically saved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表層と内層の材質が異なるクラッド鋳片の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a clad slab in which the surface layer and the inner layer are made of different materials.

従来の技術 特公昭59−19788号公報等に開示されている誘導
加熱コイルを使用する鋳込みクラッド鋳片の製造プロセ
スの概要を第1図に基づいて説明する。すなわち、水平
断面部が四角形状なる芯材lを架台!2上に垂直にセッ
トし、その外周に水冷モールド5を配設し、芯材1と水
冷モールド5の4方向の間隙に、芯材1と材質の異なる
金属溶湯8を間欠的あるいは連続的に注入し、芯材1の
周囲に設けた予熱コイル3に通電することにより芯材表
面の温度を上げ、クラッド材2と芯材lの接着を円滑に
する。
An outline of the manufacturing process of a cast clad slab using an induction heating coil disclosed in Japanese Patent Publication No. 59-19788 and the like will be explained with reference to FIG. In other words, the core material l whose horizontal cross section is square is mounted! A water-cooled mold 5 is arranged on the outer periphery of the core material 1, and a molten metal 8 of a different material from the core material 1 is intermittently or continuously placed in the gaps between the core material 1 and the water-cooled mold 5 in four directions. The temperature of the surface of the core material is raised by injecting it and energizing the preheating coil 3 provided around the core material 1, thereby smoothing the adhesion between the cladding material 2 and the core material 1.

さらに鋳込んだ溶湯8の周囲に配設した加熱コイル4に
通電しクラッド材2の丁Opを加熱し、クラッド材の内
部欠陥あるいは境界欠陥を防止しながら、前記芯材外表
面とクラッド材になる溶湯8を溶融接合することにより
クラッド鋳片を製造する。
Furthermore, the heating coil 4 disposed around the cast molten metal 8 is energized to heat the opening of the cladding material 2, and while preventing internal defects or boundary defects in the cladding material, the outer surface of the core material and the cladding material are heated. A clad slab is manufactured by melting and joining the molten metal 8.

この場合、予熱コイルは、断面形状が円あるいは矩形状
の場合、コイル内面と芯材の間隔を一定にしてセットし
て加熱していた。この方法では円形断面の場合は芯材表
面の周方向の温度はほぼ均一になり、クラッド後の製品
に悪影響はない、しかし四角形断面の場合は、芯材コー
ナ部の4ケ所はフラット部に比較して過熱され、フラッ
ト部の温度を目標の温度まで加熱するとコーナ部が溶け
出す現象を起した。
In this case, when the preheating coil has a circular or rectangular cross-sectional shape, heating is performed by setting the preheating coil with a constant distance between the inner surface of the coil and the core material. With this method, in the case of a circular cross section, the temperature in the circumferential direction of the core material surface is almost uniform, and there is no adverse effect on the product after cladding.However, in the case of a square cross section, the four corners of the core material are compared to the flat part. When the flat part was heated to the target temperature, the corner part began to melt.

第4図は従来形状の芯材を使用したときのクラッド前後
の状況を示し、(a)は芯材lとコイル3の水平断面図
である。(b)は芯材を加熱した時の温度分布を示すも
ので図中の芯材赤熱部ライン13は目視で赤熱し始めた
線で温度としては800℃近傍と考えられる。これをみ
るとフラット部に対しコーナ部の温度上昇が先行し、距
離にして約100腸■コーナ部が先に加熱される。(C
)はクラッド鋳片になったときの水平断面図である。芯
材コーナ部はかなり広い範囲で溶損している。
FIG. 4 shows the state before and after the cladding when a conventionally shaped core material is used, and (a) is a horizontal sectional view of the core material 1 and the coil 3. (b) shows the temperature distribution when the core material is heated, and the core material red-hot area line 13 in the figure is the line where the core material started to become red-hot when visually observed, and the temperature is considered to be around 800°C. Looking at this, the temperature rises in the corner portions precedes that in the flat portions, and the corner portions are heated first by a distance of approximately 100mm. (C
) is a horizontal cross-sectional view of the clad slab. The corner of the core material has been eroded over a fairly wide area.

発明が解決しようとする課題 芯材コーナ部が過熱し溶けだすと、■クラッド材が溶け
た芯材によって希釈される。したがってクラッド材の目
標成分を確保するためには芯材の希釈により薄められる
成分を前もって増す必要がありコスト的に高くなる。ま
た■芯材の溶は出す量が多い場合はクラッド材と完全に
溶解混合せず、ミクロ偏析が発生する。■コーナ部のク
ラッド材が厚くなると、このスラブを圧延する際、コー
ナ一部の圧延反力が大きくなり、均一な圧延ができない
などの問題が発生した。
Problems to be Solved by the Invention When the corner portion of the core material overheats and begins to melt, (1) the cladding material is diluted by the melted core material. Therefore, in order to secure the target components of the cladding material, it is necessary to increase the components diluted by diluting the core material in advance, which increases the cost. Also, if the amount of core material melted is large, it will not completely melt and mix with the cladding material, resulting in micro-segregation. ■When the cladding material at the corners became thicker, when rolling this slab, the rolling reaction force at some corners became large, causing problems such as uniform rolling being impossible.

課題を解決するための手段 したがって本発明の方法は上記課題を解決することを目
的としたもので、水平断面部が正方形または長方形の芯
材の外周に芯材と異なる材質の溶湯を鋳造してクラッド
鋳片を製造する方法において、前記鋳造前に芯材コーナ
部を10〜50Cの0面または10〜50RのR面の面
取り加工をすることを特徴とする鋳込みクラッド鋼の製
造方法である。
Means for Solving the Problems Therefore, the method of the present invention is aimed at solving the above problems, and involves casting a molten metal of a material different from that of the core material around the outer periphery of a core material whose horizontal cross section is square or rectangular. This method of manufacturing a cast clad slab is characterized in that, before the casting, the corner portion of the core material is chamfered to a 0 surface of 10 to 50C or an R surface of 10 to 50R.

作用 そこで本発明では、芯材コーナ一部の形状と芯材表面の
温度分布についての実験を行ない適正な芯材コーナ一部
の形状を決定した。
Effects Therefore, in the present invention, experiments were conducted regarding the shape of a portion of the core corner and the temperature distribution on the surface of the core to determine an appropriate shape of the portion of the core corner.

第2図は芯材コーナ部の2ケ所を20Cと50Cに切削
加工し、鋳片テストした結果を示す、(a)は断面の芯
材形状とコイルをセットしたときの水平断面図である。
Fig. 2 shows the results of a slab test after cutting two corners of the core material to 20C and 50C, and (a) is a horizontal cross-sectional view of the cross-sectional shape of the core material and when the coil is set.

コーナ部の2個所は直角で、残り2箇所はコーナ部を2
0Cと50Cに切削加工した。
Two corners are at right angles, and the remaining two corners are at right angles.
It was cut to 0C and 50C.

(b)は予熱コイルでこの芯材を予熱した時の芯材表面
の温度分布を示す、最も温度の高い部位はコーナが直角
の個所である0次いで20Cの部分が高い温度を示し、
50Gの部分はクラ?)部とほぼ等しくなっている。
(b) shows the temperature distribution on the surface of the core material when the core material is preheated with a preheating coil.The highest temperature area is the part where the corner is at a right angle, 0 and 20C, where the temperature is high.
Is the 50G part crap? ) is almost equal to the part.

(0)は鋳造した後のクラ7ドスラブの水平断面で芯材
コーナ部の溶損状況を観察したものである。芯材コーナ
部の溶損した個所は当然ながら芯材の温度が高い個所、
即ちコーナ部が直角の部分でコーナ部を削った個所はほ
とんど溶損していないことがわかった。コーナ部の削り
量は10II層以下では、全く効果がなく、50鳳層以
上では、過熱は全く生じないため10〜50層層とした
。また、削り部の形状は0面でもR面でも効果は同様で
あった。
(0) is a horizontal cross section of the Clad 7 slab after casting, and the state of melting damage at the corner of the core material was observed. The areas where the core material corners are melted are naturally those where the temperature of the core material is high.
In other words, it was found that there was almost no melt damage in the areas where the corners were cut at right angles. If the amount of scraping at the corner part is less than 10 II layers, there will be no effect at all, and if it is more than 50 layers, no overheating will occur at all, so the number of layers was set at 10 to 50 layers. Furthermore, the effect was the same whether the shape of the shaved portion was on the 0 side or on the R side.

実施例 次に実施例を上げて説明する。芯材コーナ部の形状を変
えた鋳造テスト結果より、コーナ4個所とも50Cに切
削した芯材を使用し、鋳造テストを行なった。主な鋳造
条件は表−1に示す通りである。
Examples Next, examples will be explained. Based on the results of casting tests in which the shape of the core corner portions was changed, a casting test was conducted using a core material cut to 50C at all four corners. The main casting conditions are shown in Table-1.

第3図(a)はその鋳造テストの状況を示すものである
。(b)は鋳造テスト後の水平断面図を示すもので鋳造
後の芯材コーナ部の形状は、鋳造前の形状とほとんど変
らず芯材の溶損はほとんどないことが確認できた。鋳造
後のクラッド材の成分を分析した結果を表−2に示す、
芯材の溶1によるクラッド材の希釈もほとんどないこと
がわかった。
FIG. 3(a) shows the situation of the casting test. (b) shows a horizontal cross-sectional view after the casting test, and it was confirmed that the shape of the corner of the core material after casting was almost different from the shape before casting, and there was almost no melting loss of the core material. Table 2 shows the results of analyzing the components of the cladding material after casting.
It was found that there was almost no dilution of the cladding material due to melting of the core material.

(以下余白) 表−2クラッド材の化学成分     (重量%)発明
の効果 以上の通り、本発明の方法によりクラッド材をつくると
従来法に比較して芯材コーナ部の過熱は防止でき、クラ
ッドスラブに鋳込んだときも芯材コーナ部の溶損代が大
幅に減少できる。したがって所定成分のクラッド材を確
保するために増す合金元素の量が大幅に節約でき、しか
も品質も従来法に比べて安定した良い製品をつくること
ができる様になった。
(Margins below) Table 2 Chemical composition of cladding material (wt%) Effects of the invention As mentioned above, when cladding material is made by the method of the present invention, overheating of the core material corner can be prevented compared to the conventional method, and the cladding material Even when cast into a slab, the amount of erosion at the core corner can be significantly reduced. Therefore, the amount of alloying elements added to ensure a cladding material with a predetermined composition can be significantly reduced, and it is now possible to produce products with stable quality compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクラッドスラブ製造法の概要を示す立面断面図
、第2図は芯材コーナ部の形状を変えて鋳造テストをし
た時の状況を示す説明図で、(a)は鋳造テストに使用
した芯材とコイルをセットしたときの水平断面図、(b
)は鋳造テスト時の予熱コイル部通過時の芯材各部の温
度分布図、(c)は鋳造後のクラッドスラブの水平断面
図である。 第3図は本発明法であるコーナ部を切削加工した芯材を
使用した時の説明図で、(a)はコイルセットした状況
を示す斜視図、(b)はクラッド後のステンレスクラッ
ドスラブの水平断面図である。 第4図は従来形状の芯材を使用した時のクラッド前後の
状況を示し、(a)は芯材にコイルをセットした時の水
平断面図、(b)は予熱コ身ルによる芯材加熱の状況を
示す斜視図、(C)はクラッド後のステンレスクラッド
スラブの水平断面図である。 l・・−芯材、2・φψクラッド材、3・・・誘導予熱
コイル、4・・・誘導加熱コイル、5・・・水冷モール
ド、6・・・耐火枠、7・・・黒鉛リング、8・φ・溶
湯、9@・・スラグ、10・−・スタートタブ、11−
・・芯押し治具、12・拳−架台、13・拳・芯材赤熱
部ライン、14・・φ芯材溶損部。
Figure 1 is an elevational sectional view showing an overview of the clad slab manufacturing method, Figure 2 is an explanatory diagram showing the situation when a casting test was conducted with the shape of the core corner section changed, and (a) Horizontal sectional view when the core material and coil used are set, (b
) is a temperature distribution diagram of each part of the core material when passing through the preheating coil section during a casting test, and (c) is a horizontal cross-sectional view of the clad slab after casting. Figure 3 is an explanatory diagram when using a core material with cut corners according to the method of the present invention, (a) is a perspective view showing the coil set, and (b) is a stainless steel clad slab after cladding. FIG. Figure 4 shows the situation before and after the cladding when a conventionally shaped core material is used; (a) is a horizontal cross-sectional view when the coil is set on the core material, and (b) is the heating of the core material by the preheating coil. (C) is a horizontal sectional view of the stainless steel clad slab after cladding. l...-core material, 2-φψ cladding material, 3... induction preheating coil, 4... induction heating coil, 5... water cooling mold, 6... refractory frame, 7... graphite ring, 8・φ・molten metal, 9@・slag, 10・−・start tab, 11−
... Tail pushing jig, 12. Fist - stand, 13. Fist - red hot part line of core material, 14. φ core material melted part.

Claims (1)

【特許請求の範囲】[Claims]  水平断面部が正方契約は長方形なる四角形の芯材の外
周に芯材と異なる材質の溶湯を鋳造してクラッド鋳片を
製造する方法において、前記鋳造前に、芯材コーナ部を
10〜50CのC面または10〜50RのR面の面取加
工をすることを特徴とする鋳込みクラッド鋼の製造方法
In a method of manufacturing a clad slab by casting a molten metal of a material different from that of the core material around the outer periphery of a square core material whose horizontal cross section is square, the core material corner portion is heated to a temperature of 10 to 50C before casting. A method for manufacturing cast clad steel, characterized by chamfering a C surface or an R surface of 10 to 50R.
JP15338588A 1988-06-23 1988-06-23 Manufacture of cast clad steel Pending JPH01321043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15338588A JPH01321043A (en) 1988-06-23 1988-06-23 Manufacture of cast clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15338588A JPH01321043A (en) 1988-06-23 1988-06-23 Manufacture of cast clad steel

Publications (1)

Publication Number Publication Date
JPH01321043A true JPH01321043A (en) 1989-12-27

Family

ID=15561324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15338588A Pending JPH01321043A (en) 1988-06-23 1988-06-23 Manufacture of cast clad steel

Country Status (1)

Country Link
JP (1) JPH01321043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361934B (en) * 2000-03-03 2003-05-14 Kobe Steel Ltd Aluminum base alloy containing boron and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361934B (en) * 2000-03-03 2003-05-14 Kobe Steel Ltd Aluminum base alloy containing boron and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH01321043A (en) Manufacture of cast clad steel
JPH0451010Y2 (en)
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
KR101301384B1 (en) Mold for continuous casting
JPS62101368A (en) Production of clad ingot
JPS5910462A (en) Production of copper or copper alloy clad steel
SU565775A1 (en) Method of manufacturing bimetal cutting tools
JPS60106697A (en) End tab welding method
JP2969579B2 (en) Steel continuous casting method
JPS6124105B2 (en)
JPS5828684Y2 (en) Surface plate for manufacturing composite steel ingots
SU789227A1 (en) Bimetal casting method
JPS58110168A (en) Casting method for joined part of shaftlike casting joined with dissimilar metal in axial direction
JPH04322860A (en) Method for cast-wrapping plate material
JPS5832566A (en) Manufacture of structure by remelting of electro-slag
JP2005125336A (en) Thin cast strip and method for producing thin cast strip
JPS6116229B2 (en)
JP4029573B2 (en) Electroslag remelting electrode and electroslag remelting method
JPH0139860B2 (en)
JPS6016318B2 (en) Impeller electroslag welding method
JPS6264458A (en) Continuous casting method for thin ingot
JPH032594B2 (en)
SU706218A1 (en) Method of ingot mould pallet repair
JPS5832544A (en) Manufacture of clad plate
JPS63130712A (en) Treating method for chilling by remelting cast iron