JPS6198331A - Color liquid crystal display device and its production - Google Patents

Color liquid crystal display device and its production

Info

Publication number
JPS6198331A
JPS6198331A JP59220283A JP22028384A JPS6198331A JP S6198331 A JPS6198331 A JP S6198331A JP 59220283 A JP59220283 A JP 59220283A JP 22028384 A JP22028384 A JP 22028384A JP S6198331 A JPS6198331 A JP S6198331A
Authority
JP
Japan
Prior art keywords
liquid crystal
color
film
light
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220283A
Other languages
Japanese (ja)
Inventor
Shigeto Koda
幸田 成人
Shigeru Oikawa
及川 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59220283A priority Critical patent/JPS6198331A/en
Publication of JPS6198331A publication Critical patent/JPS6198331A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain a device which does not require a photoprocess, is simple to produce and has good display quality by forming a color filter of a thin thermosensitive coloring film of an optical writing type and forming the filter in such a manner as to have the patterns of the colors matching the patterns of picture element electrodes. CONSTITUTION:The color filter is formed of the thin thermosensitive coloring film of the optical writing type. The RGB color pattern regions 29, 30, 31 of the color filter are formed in the same position and to the same shape as the positions and shapes of the picture element electrodes 241, 242, 243 facing said regions. The regions where there are no picture element electrodes facing said regions are transparent. An AC voltage 32 is impressed between the electrodes 23 and 241 to orient vertically the dye molecules within the CH liquid crystal in the region sandwiched by these picture element electrodes. The molecules are held horizontally oriented in the other regions. White light 34 is made incident vertically to the substrate in this state via a polarizing plate 33, then the light incident to the electrode 241 transmits the liquid crystal layer and the red pattern 29 of the color filter and is taken out to the substrate 21 side. The light incident to the other regions is all absorbed into the black dye in the GH liquid crystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カラー液晶表示装置、特に光書込み形感熱発
色薄膜をカラーフィルタとして具備したカラー液晶表示
装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a color liquid crystal display device, and more particularly to a color liquid crystal display device having an optically written thermosensitive coloring thin film as a color filter, and a method for manufacturing the same.

従来の技術 従来画像ディスプレイ手段としては、画像の可変、高速
精細性において優れていることから、陰極管(CRT)
、いわゆるブラウン管が、例えばテレビ画像ディスプレ
イ装置として広く使用されていた。しかしながら、この
CRTは真空管であることから、その重量、容積が大き
い(通常、その構造上ディスプレイ面に比較して奥行き
が長い)ことから小型、U量化が難しく、低電圧、低電
力化にも限界があり、これを他の電子装置に組み込む場
合に大きな障害となっていた。また、機械的強度を維持
するために画面を完全な平面とすることが難しく、周辺
部において画像がひずむ等の各種難点を有している。 
                  (一方、最近の
情報ディスプレイ手段としては四隅まで歪のない像を表
示することの重要性が増してきており、このため表示面
の平坦化、縦横座標の正確さを目標として、エレクトロ
ルミネセンス(EL)ディスプレイ、ガス放電ディスプ
レイ(プラズマディスプレイ)並びに液晶ディスプレイ
(LCD)などによるパネル形ディスプレイ装置が、上
記の如きCRTの欠点を根本的に解決し得る有力な手段
として従来から注目され研究開発が進められてきた。
BACKGROUND ART Conventional image display means include cathode tubes (CRTs) because of their superior variable image quality and high-speed definition.
, so-called cathode ray tubes, were widely used, for example, as television image display devices. However, since this CRT is a vacuum tube, its weight and volume are large (usually, due to its structure, it is long in depth compared to the display surface), making it difficult to make it compact and U-quantized, and it is also difficult to reduce voltage and power. There are limitations, and this has been a major obstacle when incorporating it into other electronic devices. Furthermore, it is difficult to make the screen completely flat in order to maintain mechanical strength, and there are various drawbacks such as image distortion in the peripheral areas.
(On the other hand, as a means of displaying information these days, it has become increasingly important to display images without distortion up to the four corners. For this reason, electroluminescence (electroluminescence) Panel-type display devices such as EL) displays, gas discharge displays (plasma displays), and liquid crystal displays (LCDs) have long been attracting attention as powerful means that can fundamentally solve the above-mentioned drawbacks of CRTs, and research and development is progressing. I've been exposed to it.

しかしながら、ELディスプレイおよびプラズマディス
プレイなどはいずれも消費電力が大きく、駆動のために
高電圧を必要とするために、IC等との適合化が難しく
、表示部全体の小型化には依然として大くの問題点を残
している。
However, EL displays and plasma displays both consume large amounts of power and require high voltage to drive, making it difficult to adapt them to ICs, etc., and there is still a large amount of effort required to miniaturize the entire display section. Problems remain.

一方、LCDは消費電力が極めて少な(、低電圧駆動可
能なことから、C−MOS  ICなどで直接駆動でき
るために、他の電子装置に容易に組み込むことができる
。従って、既に電子時計、電子卓上計算機、その他各種
の計測機などにおいて応用され、多数のものが商品化さ
れている。尚、このLCDに対しても、現行の表示品位
を向上させ、表示を多様化することにより、応用分野の
拡張と市場の要請に応じるため、カラー表示化の動向が
ある。
On the other hand, LCDs have extremely low power consumption (and can be driven at low voltages, so they can be driven directly by C-MOS ICs, etc., so they can be easily incorporated into other electronic devices. Therefore, they are already used in electronic watches, electronic It has been applied to desktop calculators and various other measuring instruments, and many products have been commercialized.In addition, by improving the current display quality and diversifying the display, it is possible to expand the application field of LCDs. There is a trend toward color display in order to expand the market and meet market demands.

これまでに知られているカラー液晶表示装置としては、
白(透明)/黒表示モードの液晶セルを光バルブとして
利用し、その上にカラーフィルタ ゛を密着した構造の
ものが主流である。カラーフィルタは、液晶光バルブを
透過してきた白色光のうち所定の色の波長のみを透過さ
せる薄膜又はフィルム状の膜であり、単色表示の場合は
液晶セルの外側ガラス面上に、また多色表示の場合には
液晶セル内の画素電極上に設置される。特に、カラーテ
レビやカラーディスプレイへの応用分野では、液晶セル
をドツトマトリックス状に配置し、各液晶セルの画素電
極上に赤、緑、青の3原色カラーフィルタを分配した加
色混合形のカラー液晶表示装置が、表示色の融通性、視
認性の観点から優れ、た性能を有するものとされている
Color liquid crystal display devices known so far include:
The mainstream structure is to use a liquid crystal cell with a white (transparent)/black display mode as a light valve, with a color filter tightly attached on top of it. A color filter is a thin film or film-like film that transmits only the wavelength of a predetermined color of the white light that has passed through the liquid crystal light valve. In the case of display, it is installed on the pixel electrode within the liquid crystal cell. In particular, in the field of application to color televisions and color displays, liquid crystal cells are arranged in a dot matrix, and color filters of the three primary colors of red, green, and blue are distributed on the pixel electrode of each liquid crystal cell. 2. Description of the Related Art Liquid crystal display devices are considered to have excellent performance in terms of display color flexibility and visibility.

第5図は赤(R)、緑(G)、青(B)の3原色カラー
フィルタを具備した従来の代表的カラー液晶表示装置の
断面図を示すものである。図から明らかな如く、このカ
ラー液晶表示装置は、2枚のガラス基板1および2と、
夫々のガラス基板の対向する面上に設けられた画素電極
3および4と、これらの間の空間に収容された液晶5と
、画素電極4の背面かつガラス基板1の内面に設けられ
た力与−フイルタロと、上記2枚のガラス板1と2との
間をシールし、かつ液晶の収容された空間のスペーサと
して機能する手段7とから構成されている。
FIG. 5 shows a cross-sectional view of a typical conventional color liquid crystal display device equipped with color filters of three primary colors: red (R), green (G), and blue (B). As is clear from the figure, this color liquid crystal display device includes two glass substrates 1 and 2,
Pixel electrodes 3 and 4 provided on opposing surfaces of the respective glass substrates, a liquid crystal 5 housed in the space between them, and a force-applying electrode provided on the back surface of the pixel electrode 4 and on the inner surface of the glass substrate 1. - It consists of a filter and a means 7 which seals between the two glass plates 1 and 2 and functions as a spacer for the space in which the liquid crystal is accommodated.

このような構成において、画素電極3.4は通常透明導
電膜で形成され、ストライブ状のX電極とY電極を交差
させ、その交点を液晶セルとする単純マトリックス構成
と、液晶セル選択用スイッチング素子を備えた孤立画素
電極3と共通画素電極4とからなるアクティブマトリッ
クス構成とが1        ある。
In such a configuration, the pixel electrode 3.4 is usually formed of a transparent conductive film, and has a simple matrix configuration in which striped X electrodes and Y electrodes intersect and the intersection is a liquid crystal cell, and a switching switch for selecting the liquid crystal cell. There is one active matrix configuration consisting of an isolated pixel electrode 3 with an element and a common pixel electrode 4.

;)        。。よう4従来例、(よ、いずゎ
もヵ、−,イ2゜夕の形成ふよび画素電極とカラーフィ
ルタとの位置合せに関し次のような問題があった。
;) . . In the fourth conventional example, there were the following problems with regard to the formation of the electrodes and the alignment between the pixel electrode and the color filter.

(i)  第6図及び第7図は、従来のカラーフィルタ
の構造及びその最終工程を示す断面図であるや第6図の
構造はRSG、B、3種類の有機系染$410.11.
12を基板13上にパターン化したものである。これら
各々の色パターンは、フォトレジスト14の所定領域を
窓開けした後真空蒸着等により堆積した染料を、レジス
ト除去とともにリフトオフによりパターン化する工程を
3回くり返すことにより形成される。
(i) Figures 6 and 7 are cross-sectional views showing the structure of a conventional color filter and its final process.
12 is patterned on a substrate 13. Each of these color patterns is formed by repeating three times the process of opening a predetermined region of the photoresist 14 and then patterning the dye deposited by vacuum evaporation or the like by removing the resist and lift-off.

一方、第7図の構造はポリビニルアルコール、ゼラチン
等の透明膜15の所定領域にR,GSB。
On the other hand, in the structure shown in FIG. 7, R and GSB are applied to predetermined areas of a transparent film 15 made of polyvinyl alcohol, gelatin, etc.

3種類の色素を溶解させた領域16.17.18を形成
したもので、ここでもフォトレジスト19の所定領域を
窓開けし、色素を浸透させる工程を3回くり返す必要が
ある。
Regions 16, 17, and 18 are formed in which three types of dyes are dissolved, and here too, it is necessary to open windows in predetermined areas of the photoresist 19 and repeat the process three times to allow the dyes to penetrate.

このように、従来の多色カラーフィルタの形成法では、
歩留りの支配的要因であるフォトエ       覧■ 程を含む複雑な工程が複数回必要であり、工程数の増加
、歩留りの低下によってパネル製造コストが高くなると
いう欠点があった。
In this way, in the conventional method of forming multicolor color filters,
This method requires multiple complex steps, including photo-etching, which is the dominant factor in yield, and has the drawback of increasing the panel manufacturing cost due to an increase in the number of steps and a decrease in yield.

(ii )  第5図に示す従来例では、カラーフィル
タ6及び画素電極4が設けられたガラス基板1と、対向
する画素電極3が設けられたガラス基板2とはそれぞれ
別々の工程で形成され、その後組立られていた。従って
、カラーフィルタの色パターンと、対向する画素電極と
を同一場所に位置合せして、シール材7により側基板を
固定する必要があった。しかしながら、表示の高性能化
の要求から、画素電極を微細化し、基板面積を拡大する
につれて、色パターンと、対向する画素電極との厳密な
位置合せは困難となり、色にじみや色ずれ等表示特性の
劣化をもたらすという問題が生じた。
(ii) In the conventional example shown in FIG. 5, the glass substrate 1 provided with the color filter 6 and the pixel electrode 4, and the glass substrate 2 provided with the opposing pixel electrode 3 are formed in separate steps, It was then assembled. Therefore, it was necessary to align the color pattern of the color filter and the opposing pixel electrodes at the same location, and to fix the side substrate with the sealing material 7. However, as the pixel electrodes are made finer and the substrate area is expanded due to the demand for higher display performance, it becomes difficult to precisely align the color pattern with the opposing pixel electrode, resulting in display problems such as color bleeding and color shift. A problem arose in that it caused deterioration.

発明が解決しようとする問題点 以上詳しく述べたように、LCDは従来表示装置の主流
であったCRTと比較して、消費電力が極めて少なく、
低電圧駆動が可能であり、その結果性の装置に容易に組
み込むことができ、小型化かつ軽量化が可能であり、し
かも表示面が平坦化可能であることから、既に各種機器
において実用化されている。
Problems to be Solved by the Invention As described in detail above, LCDs consume significantly less power than CRTs, which have been the mainstream of conventional display devices.
It is possible to drive at low voltage, can be easily incorporated into the resulting equipment, can be made smaller and lighter, and can have a flat display surface, so it has already been put into practical use in various devices. ing.

しかしながら、従来の装置はその製法上の限界から、依
然として改良すべき余地が十分に残されており、特にカ
ラー液晶表示装置ではカラーフィルタの形成の際多数の
複雑な工程が必要とされることから、歩留りの低下、製
造コストの増大等の問題を残してふり、更に画素電極の
微細化並びに基板の大型化に伴う、位置合わせの困難さ
、その結果としての色にじみ、色ずれ等、改善すべき多
くの問題が残されている。
However, due to limitations in the manufacturing process of conventional devices, there is still plenty of room for improvement, especially in color LCD devices, which require many complicated steps to form color filters. In addition, problems such as decreased yield and increased manufacturing costs remain, and furthermore, as pixel electrodes become finer and substrates become larger, it is difficult to align them, resulting in color bleeding and color misalignment. Many issues remain.

そこで、本発明の目的はフォト工程が不要で製造が簡単
であり、かつ表示品質のよいカラー液晶表示装置を提供
することにある。また、このようなカラー液晶表示装置
の製造方法を提供することも、本発明の目的の一つであ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a color liquid crystal display device that does not require a photo process, is easy to manufacture, and has good display quality. Another object of the present invention is to provide a method for manufacturing such a color liquid crystal display device.

問題点を解決するための手段 本発明者等は、上記のような従来のカラー液晶表示装置
の現状に鑑みて、前記目的の装置を開発すべく種々検討
した結果、カラーフィルタとして光書込み形の感熱発色
薄膜を使用することが有効であることを見出し、本発明
を完成した。
Means for Solving the Problems In view of the current state of conventional color liquid crystal display devices as described above, the inventors of the present invention have conducted various studies to develop a device for the above purpose, and have developed an optical writing type color filter. The present invention was completed based on the discovery that it is effective to use a thermosensitive coloring thin film.

即ち、本発明のカラー液晶表示装置は、上下2枚の基板
と、夫々該基板の対向する面上に設けられ、少なくとも
一方が透明導電膜で形成された2つの画素電極と、該2
つの画素電極間に挟持された液晶と、前記画素電極の一
方と近接して設けられたカラーフィルタとを具備するカ
ラー液晶表示装置であって、該カラーフィルタが光書込
み形の感熱発色薄膜で形成されており、かつ前記画素電
極のパターンと整合する色パターンを有することを特徴
とする。
That is, the color liquid crystal display device of the present invention includes two upper and lower substrates, two pixel electrodes provided on opposing surfaces of the substrates, and at least one of which is formed of a transparent conductive film.
A color liquid crystal display device comprising a liquid crystal sandwiched between two pixel electrodes, and a color filter provided in close proximity to one of the pixel electrodes, the color filter being formed of an optically writable thermosensitive coloring thin film. and has a color pattern that matches the pattern of the pixel electrode.

このような本発明の表示装置の一例を第1図に示した。An example of such a display device of the present invention is shown in FIG.

図から明らかなように2枚のガラス基板鵡21フよび2
2と、ガラス基板21の下側表面上および;1    
   ガ、ユ基板。。0よ側表面よ1.形成あゎ、□極
23および24. J242.243 と、ガラス基板
21と画素電極23との間に設けられたカラーフィルタ
25と、ガラス基板21と22の空間内に収容された液
晶26(ゲスト色素27を含む)と、該液晶を空間内に
密閉し、該空間を一定に維持するシール材28とから主
として構成されている。カラーフィルタ25には、対向
する画素電極248.24□、24.と同一位置、同一
形状のR,GSB色パターン領域29.30.31が形
成されている。また、対向する画素電極のない領域は透
明である。
As is clear from the figure, two glass substrates 21 and 2
2, on the lower surface of the glass substrate 21 and; 1
Ga, Yu board. . 0 side surface 1. Formation Awa, □poles 23 and 24. J242.243, a color filter 25 provided between the glass substrate 21 and the pixel electrode 23, a liquid crystal 26 (including the guest dye 27) accommodated in the space between the glass substrates 21 and 22, and the liquid crystal It is mainly composed of a sealing material 28 that seals the space and maintains the space constant. The color filter 25 has opposing pixel electrodes 248.24□, 24. R, GSB color pattern areas 29, 30, and 31 having the same position and the same shape are formed. Further, the area where there is no opposing pixel electrode is transparent.

このカラーフィルタ25は光吸収側腹と、これに隣接す
る顕色剤膜および発色剤膜との複数の組合せとすること
ができ、その1例を第2図に詳細に示した。光吸収側腹
401.403.403に隣接した顕色剤膜41..4
12および赤色発色剤膜42、緑色発色剤膜43および
青色発色剤膜44からなるほぼ透明な積層膜によって構
成されている。
The color filter 25 can have a plurality of combinations of light-absorbing flanks and adjoining color developer films and color former films, one example of which is shown in detail in FIG. 2. A color developer film 41. adjacent to the light absorbing side 401.403.403. .. 4
12, a red color former film 42, a green color former film 43, and a blue color former film 44.

本発明のカラー液晶表示装置において、液晶は光バルブ
として機能する。即ち、電界を印加して、      
(液晶分子の配向性を変化させることにより、光書込み
形感熱発色薄膜製カラーフィルタへの光の透過を制御す
る。従って、スメクチック、コレステリック、ネマチッ
クあるいはこれらの混晶などの各種のものが使用でき、
例えばベンジジン系化合L 4.4’−ジアルコキシジ
フェニル系化合物、4.4°−ジアルコキシアゾキシベ
ンゼン系化合物、エトキシフェニルアゾフェニルエステ
ル系化合物、ベンジリデン系化合物、アルコキシベンゾ
イックアシッド系化合物、各種コレステリンカルボン酸
エステル、コレステリンアルコールの炭酸エステル、そ
の他のコレステリン誘導体等各種のものを挙げることが
できる。
In the color liquid crystal display device of the present invention, the liquid crystal functions as a light valve. That is, by applying an electric field,
(By changing the orientation of liquid crystal molecules, the transmission of light to the optically written thermosensitive thin film color filter is controlled. Therefore, various types such as smectic, cholesteric, nematic, or mixed crystals of these can be used. ,
For example, benzidine compounds L 4.4'-dialkoxydiphenyl compounds, 4.4°-dialkoxyazoxybenzene compounds, ethoxyphenylazophenyl ester compounds, benzylidene compounds, alkoxybenzoic acid compounds, various cholesterol Examples include various cholesterin derivatives such as phosphorus carboxylic acid esters, cholesterin alcohol carbonate esters, and other cholesterin derivatives.

また、本発明において、光バルブとして機能する液晶相
は光吸収性の黒色々素等を含むゲスト・ホスト型(GH
)液晶を利用してもよい。
In addition, in the present invention, the liquid crystal phase that functions as a light valve is a guest-host type (GH
) You may use a liquid crystal.

透明導電膜はAu、 Cu、八g、 Pd、 Pt、 
AI、(:r、 Rhなどの金属膜、In2O+、S 
n O2、CdzSn04、Cd01IT○(インジウ
ム−酸化スズ)などの酸化物半導体膜等いずれであって
もよく、大きな導電性と可視領域での高い透過性を有す
るものがよい。
The transparent conductive film is made of Au, Cu, 8g, Pd, Pt,
AI, (:r, metal film such as Rh, In2O+, S
It may be any oxide semiconductor film such as nO2, CdzSn04, Cd01IT○ (indium-tin oxide), etc., and preferably has high conductivity and high transparency in the visible region.

スペーサとしてはマイラフィルム、テフロンフィルムな
ど従来公知の材料を使用することができ、これらは無機
接着剤(ガラスはんだ等)、有機接着剤(エポキシ樹脂
等)でガラス基板に接着されて、液晶を気密封止する。
Conventionally known materials such as Mylar film and Teflon film can be used as the spacer, and these are bonded to the glass substrate with an inorganic adhesive (glass solder, etc.) or an organic adhesive (epoxy resin, etc.) to protect the liquid crystal. Seal.

また、スペーサ自体を°接着剤、ガラスとの接着性のよ
い硬化性樹脂等とすることもできる。
Further, the spacer itself can be made of adhesive, a curable resin that has good adhesion to glass, or the like.

液晶セルとしては上記GH液晶セル、ツィステッドネマ
チック(TN)液晶セルの他各種公知の他の型の液晶セ
ルを用いることができる。
As the liquid crystal cell, in addition to the above-mentioned GH liquid crystal cell and twisted nematic (TN) liquid crystal cell, various other known types of liquid crystal cells can be used.

更に、前記光書込み形感熱発色薄膜は、既に述べたよう
に、光吸収側腹およびこれに隣接する発色剤膜と顕色剤
膜との複数の組合せで構成することができ、光吸収剤、
発色剤および顕色剤としては夫々ビス−(1−クロロ−
3,4−ジチオフェルレート)−ニッケル等の金属錯体
、バナジルフタロシアニン等;レッドDCFなどの赤色
発色剤、マラカイトグリーンラクトンなどの緑色発色剤
、クリスタルバイオレットラクトンなどの青色発色゛剤
等;フェノールフタレインなどが使用できる(特願昭5
8−23621号参照)。
Further, as described above, the optically writable thermosensitive coloring thin film can be composed of a plurality of combinations of a light-absorbing flank and a color-forming agent film and a color-developing agent film adjacent thereto;
Bis-(1-chloro-
3,4-dithioferrate)-metal complexes such as nickel, vanadyl phthalocyanine, etc.; red color formers such as red DCF, green color formers such as malachite green lactone, blue color formers such as crystal violet lactone; phenolphthalein, etc. etc. can be used (Special application
8-23621).

上記光吸収割膜の厚さは一般に0.005〜0.5μm
であり、顕色剤膜の厚さは2〜10.um、赤色、緑−
色及び青色発色剤膜の各厚さは2〜10μmの範囲であ
ることが好ましい(同特願昭58−23621号参照)
The thickness of the light-absorbing membrane is generally 0.005 to 0.5 μm.
The thickness of the developer film is 2 to 10. um, red, green-
The thickness of each of the color and blue coloring agent films is preferably in the range of 2 to 10 μm (see Japanese Patent Application No. 58-23621).
.

光書込み形感熱発色薄膜を所望の色に発色させるには、
第2図に沿って説明すると、光吸収割膜40、.40□
、403のうち所望の膜に焦点が合うように細く絞った
波長700〜900nmの光を照射する。
To make an optically written thermosensitive coloring thin film develop a desired color,
Explaining along FIG. 2, the light absorption membrane 40, . 40□
, 403, the light having a wavelength of 700 to 900 nm is irradiated so as to focus on the desired film.

例えば、光吸収割膜403にのみ焦点の合った集束光4
5.を照射すると、光吸収割膜40.の発熱によって発
色剤膜44と顕色剤膜412とが融解し反応して青色発
色領域46を形成する。しかし、焦点から離れた光吸収
割膜40..40□では充分なエネルギー密度がないた
め発色反応は生じない。また、赤色及び緑色を発色させ
るためには、それぞれ光吸収割膜405.40.に焦点
の合った光452.45.を用いればよい。このように
光書込み形感熱発色薄膜を用い(ると光書込み操作の制
御により任意の位置に所定l )        の色パターンを形成でき、多色フィ
ルターを形成できる。
For example, the focused light 4 focused only on the light absorption membrane 403
5. When irradiated with light, the light-absorbing membrane 40. Due to the heat generated, the color forming agent film 44 and the color developing agent film 412 melt and react to form a blue coloring region 46. However, the light-absorbing membrane 40. .. At 40□, no color reaction occurs because there is not enough energy density. In addition, in order to develop red and green colors, light absorption membranes 405, 40. Light focused on 452.45. You can use In this way, by using an optically written thermosensitive coloring thin film (by controlling the optical writing operation, a predetermined 12 color pattern can be formed at any position), and a multicolor filter can be formed.

本発明は、このようなカラー液晶表示装置の製造方法を
提供することも目的とする。該方法は上下2枚の基板と
、夫々該基板の対向する面上に設けられ、少なくとも一
方が透明導電膜で形成された2つの画素電極と、該2つ
の画素電極間に挟持された液晶と、前記画素電極の一方
に近接して備けられたカラーフィルタとを具備するカラ
ー液晶表示装置の製造方法において、第1の基板上に光
吸収割膜と、該光吸収割膜に隣接した発色剤膜及び顕色
剤膜の複数の組合せよりなる光書込み形の感熱発色薄膜
を堆積し、さらに該積層堆積膜上1と透明導電膜を堆積
し、必要に応じて該第1の画素電極に所定のパターンを
形成する工程と、該第1の基板と第2の画素電極パター
ンが形成された第2の基板とを隔置して液晶を封入し液
晶セルを形成する工程と、前記第、■及び第2の画素電
極間に電圧を印加することにより所定の液晶セルのみを
光透過状態にし、該液晶セル側から前記−光書込み形の
感熱発色薄膜中の所定の光吸収割膜に吸収さ     
  iれる光を基板全面に照射して、前記所定の液晶セ
ルの画素電極パターンに整合した前記光書込み形の感熱
発色薄膜の領域を所定の色に発色させる工程とを含むこ
とを特徴とする。
Another object of the present invention is to provide a method for manufacturing such a color liquid crystal display device. This method uses two upper and lower substrates, two pixel electrodes provided on opposing surfaces of the substrates, at least one of which is formed of a transparent conductive film, and a liquid crystal sandwiched between the two pixel electrodes. , a method of manufacturing a color liquid crystal display device comprising: a color filter provided close to one of the pixel electrodes; a light-absorbing film on a first substrate; An optically writable thermosensitive coloring thin film consisting of a plurality of combinations of a color agent film and a color developer film is deposited, and a transparent conductive film 1 and a transparent conductive film are further deposited on the laminated deposited film, and if necessary, a transparent conductive film is deposited on the first pixel electrode. a step of forming a predetermined pattern; a step of separating the first substrate and a second substrate on which a second pixel electrode pattern is formed and sealing in liquid crystal to form a liquid crystal cell; (2) By applying a voltage between the pixel electrode and the second pixel electrode, only a predetermined liquid crystal cell is brought into a light transmitting state, and light is absorbed from the liquid crystal cell side into a predetermined light-absorbing film in the photo-writing type thermosensitive coloring thin film. difference
irradiating the entire surface of the substrate with light to color a region of the optically writable thermosensitive coloring thin film in a predetermined color that matches the pixel electrode pattern of the predetermined liquid crystal cell.

以上述べたような本発明のカラー液晶表示装置の製法を
、第3図に従って説明する。これは上記のような光書込
み形感熱発色薄膜による発色を利用し、またGH液晶を
備えた表示装置の製法である。
A method of manufacturing the color liquid crystal display device of the present invention as described above will be explained with reference to FIG. This is a method for manufacturing a display device that utilizes color development by an optically written thermosensitive coloring thin film as described above and is equipped with a GH liquid crystal.

まず、ガラス基板50の下側表面上に前記第2図に示し
たような構成の光書込み形感熱発色薄膜51を真空蒸着
法等により堆積し、さらに画素電極52を真空蒸着法、
スパッタ法等により堆積する。
First, an optically written thermosensitive coloring thin film 51 having the structure shown in FIG. 2 is deposited on the lower surface of the glass substrate 50 by vacuum evaporation or the like.
Deposited by sputtering method or the like.

画素電極は必要に応じてエツチング法により、所定の画
素電極パターンに加工する。並行して、ガラス基板53
上に画素電極材料(例えば上記のような透明導電膜材料
)を堆積し、エツチング法により対向する画素電極パタ
ーン541.542.543、の配列を形成する。次に
これら処理の終ったガラス基板50.53を所定の間隙
を保持するようにスペーサ入りシール材55で貼り合せ
る。
The pixel electrode is processed into a predetermined pixel electrode pattern by etching as necessary. In parallel, a glass substrate 53
A pixel electrode material (for example, a transparent conductive film material as described above) is deposited thereon, and an array of opposing pixel electrode patterns 541, 542, and 543 is formed by etching. Next, the glass substrates 50 and 53 that have undergone these treatments are bonded together using a spacer-containing sealant 55 so as to maintain a predetermined gap.

次に、スペーサ入りシール材55と2枚のガラス基板間
に形成された間隙に黒色色素56を含むGH液晶57を
封入し、白(透明)/黒表示の液晶セルの配列を完成す
る。液晶57の封入法は表面張力を利用する方法および
圧力差を利用する方法等とが考えられ、この際液晶は封
入直前に気泡の混入、それによる劣化を防止するために
脱気処理等の前処理を施すことが好ましい。
Next, a GH liquid crystal 57 containing a black dye 56 is sealed in the gap formed between the spacer-containing sealing material 55 and the two glass substrates to complete the arrangement of white (transparent)/black display liquid crystal cells. Possible methods for filling the liquid crystal 57 include methods that utilize surface tension and methods that utilize pressure differences. It is preferable to perform treatment.

光書込み形感熱発色薄膜への色パターンの書込みは、上
記工程終了後液晶セルを動作させながら行う。即ち、液
晶セル配列のうち、例えば赤発色に相当する液晶セルの
画素電極54.と対向する画素電極52の間に交流電圧
を印加し、画素電極54゜の電極パターン領域上の液晶
部分を透明にした状態で、赤色発色剤膜43と顕色剤膜
41.とに挟まれた光吸収割膜401に焦点を結ぶ光5
8を基板全面に走査しながら照射する。入射光のうち画
素電極541に入射した光は光吸収剤40.で焦点を結
び、効率的に熱に変換されて発色剤と顕色剤との反応を
導き赤色発色し、赤色フィルターを与える。しかしなが
ら、他の領域に入射した光は、液晶中の黒色色素に吸収
され、光書込み形感熱発色薄膜51に達せず、発色反応
は生じない。また、画素電極541上でも光吸収削成4
0□、403では光は焦点を結ばず、十分な発熱及び反
応は起らない。
The color pattern is written on the optically writable thermosensitive coloring thin film while the liquid crystal cell is being operated after the above steps are completed. That is, in the liquid crystal cell arrangement, for example, the pixel electrode 54 of the liquid crystal cell corresponding to red coloring. An alternating current voltage is applied between the pixel electrode 52 facing the pixel electrode 52, and the liquid crystal portion on the electrode pattern area of the pixel electrode 54 is made transparent, and the red color former film 43 and the color developer film 41. The light 5 focuses on the light-absorbing membrane 401 sandwiched between
8 while scanning the entire surface of the substrate. Of the incident light, the light that has entered the pixel electrode 541 is absorbed by the light absorber 40. The light is focused and efficiently converted into heat, which leads to a reaction between the color forming agent and color developer, producing a red color and producing a red filter. However, the light incident on other areas is absorbed by the black pigment in the liquid crystal and does not reach the optical writing type thermosensitive coloring thin film 51, so that no coloring reaction occurs. In addition, light absorption reduction 4 is also applied on the pixel electrode 541.
At 0□, 403, the light is not focused and sufficient heat generation and reaction do not occur.

緑色、青色パターンの形成も、上記赤色パターンの形成
工程と同様な工程を繰り返すことにより容易に形成する
ことができる。照射光は光吸収削成の吸収率がよく、エ
ネルギー密度の高い光を用いる。例えば、光吸収剤とし
て前記バナジルフタロシアニンを用いた場合、光吸収率
の高い波長700nm以上の赤外レーザ光が有効である
The green and blue patterns can also be easily formed by repeating the same process as the red pattern formation process. The irradiation light has a high absorption rate and high energy density. For example, when vanadyl phthalocyanine is used as a light absorbent, infrared laser light with a wavelength of 700 nm or more, which has a high light absorption rate, is effective.

複数の光吸収削成のうち所望の膜に選択的に光を吸収さ
せる方法として、前記した焦点合せ法以外に照射光波長
を変える方法が特願昭57−111549に開示されて
いる。例えば、光吸収削成の各膜を光吸収波長領域が重
ならない様な異なる材料で形、     !+−・ii
o*aaigomo“°゛1′040111     
  波長の光を照射する方法である。光吸収剤とじては
例えばビス−(1−クロロ−3,4−ジチオフェルル−
ト)ニッケル等の金属錯体により、近赤外域(波長85
0〜1l100n )で各種の吸収波長をもつ光吸収削
成を形成できる。この方法は前記焦点合せ法に比べ焦点
合せ制御や光の走査が不要であり、基板全面の一括照射
が可能であるなどの特徴がある。
As a method of selectively absorbing light into a desired film among a plurality of light absorption abrasions, in addition to the above-mentioned focusing method, a method of changing the wavelength of the irradiated light is disclosed in Japanese Patent Application No. 111549/1982. For example, each film for light absorption ablation is made of different materials so that the light absorption wavelength ranges do not overlap. +-・ii
o*aaigomo"°゛1'040111
This is a method of irradiating light of different wavelengths. Examples of light absorbers include bis-(1-chloro-3,4-dithiopheryl)
g) Near-infrared region (wavelength 85
0 to 1l100n), it is possible to form light absorption ablation having various absorption wavelengths. Compared to the focusing method described above, this method does not require focusing control or light scanning, and has the characteristics that it is possible to irradiate the entire surface of the substrate at once.

詐J 従来のカラー液晶表示装置で問題となっていたことは、
カラーフィルタ作製の際に多数の複雑なフォト工程が必
要とされ、これが製品歩留りの支配的要因となり、歩留
り低下並びに製造コストの増大を招いていた。しかしな
がら、本発明によれば、多数のフォト工程が不要となり
、単にカラーフィルタ用積層膜を真空蒸着、スパッタ法
等で形成し、装置の組立後に液晶セルを動作させつつ該
積層膜に光書込みすることによりカラーフィルタの作製
を実施できる。この際、レジスト膜形成−窓開け(エツ
チング)−蒸着−レシスト剥離(リ        (
フトオフ)からなる煩雑な工程を必要な回数繰り返すと
いった不便さはない。
Frau J The problem with conventional color liquid crystal display devices is that
Many complicated photo processes are required when producing color filters, and this has become a dominant factor in product yield, leading to a decrease in yield and an increase in manufacturing costs. However, according to the present invention, a large number of photo steps are not required, and a multilayer film for a color filter is simply formed by vacuum evaporation, sputtering, etc., and optical writing is performed on the multilayer film while operating a liquid crystal cell after assembling the device. By this, a color filter can be manufactured. At this time, resist film formation - window opening (etching) - vapor deposition - resist peeling (resist film formation)
There is no inconvenience such as having to repeat the complicated process of ``soft-off'' as many times as necessary.

また従来の製法において改善されるべきもう一つの重大
な問題点はカラーフィルタの形成後液晶セルに組立だこ
とに基づき、画素電極とカラーフィルタの位置合わせが
十分厳密に行えないことにある。この問題は、特に最近
の傾向として、高い表示性能が要求されることから、画
素電極を微細化し、基板面積を拡大する動向がみられ、
このような場合にはとりわけ大きな問題(色ずれ、色に
じみ)をもたらす。
Another serious problem that should be improved in the conventional manufacturing method is that the pixel electrodes and color filters cannot be aligned precisely enough because the color filters are assembled into the liquid crystal cell after formation. This problem has been particularly addressed by the recent trend of miniaturizing pixel electrodes and expanding the substrate area as high display performance is required.
In such cases, particularly serious problems (color shift, color bleeding) arise.

この点、本発明によれば、別々に作られた2枚の基板間
の貼合せの際の位置合わせは大まかでよく、カラーフィ
ルタの形成は、液晶セルの組立後、液晶を動作させつつ
実施される。即ち、本発明の方法によれば、所定の画素
電極パターンに対応した光書込み形感熱発色薄膜の領域
に自己整合的に色パターンを形成することができ、また
光の照射も基板全面に対して行うことができ、照射位置
を外部から制御したり、レジストおよびフォト工程によ
り色パターン位置を決めたりする工程は全く不要である
。ちなみに、従来のカラー液晶表示装置の製造方法では
、一方の基板上に形成されたカラーフィルタの色パター
ンと、対向する基板上に設けられた画素電極パターンと
を厳密に位置合わせしてから、基板を貼合せる必要があ
った。
In this regard, according to the present invention, the alignment between two separately manufactured substrates when bonding can be done only roughly, and the formation of color filters is carried out after assembling the liquid crystal cell while operating the liquid crystal. be done. That is, according to the method of the present invention, a color pattern can be formed in a self-aligning manner in a region of an optically written thermosensitive coloring thin film corresponding to a predetermined pixel electrode pattern, and the irradiation of light can also be performed over the entire surface of the substrate. There is no need to externally control the irradiation position or to determine the color pattern position using resist and photo processes. Incidentally, in the conventional manufacturing method for color liquid crystal display devices, the color pattern of a color filter formed on one substrate is precisely aligned with the pixel electrode pattern provided on the opposing substrate, and then the substrate is removed. It was necessary to attach the .

ス1旦 以下実施例により本発明のカラー液晶表示装置並びにそ
の製法を更に具体的に説明する。
First, the color liquid crystal display device of the present invention and its manufacturing method will be explained in more detail with reference to Examples.

実施例I  GH液晶セル型表示装置の製造本実施例に
おいて作成したカラー液晶表示装置はGH液晶セルを備
えた第1図に示すような構成のものである。
Example I Manufacture of GH liquid crystal cell type display device The color liquid crystal display device produced in this example has a configuration as shown in FIG. 1, which includes a GH liquid crystal cell.

本態様の特徴は、カラーフィルタのRGB色パターン領
域29.30.31が対向する画素電極245.242
.24.の各々と同一位置、同一形状に形成されており
、対向する画素電極の無い領域は透明であることであり
、そのカラー表示は周知の方、法にょり実現できる。即
ち、画素電極23と241との間に交流電圧32を印加
して、これら画素電極に挟まれた領域のGH液晶内の色
素分子を垂直配向させ、他の領域では水平配向のままと
する。この状態で偏光板33を介して白色光34を基板
に垂直入射すると、画素電極241に入射した光は液晶
層及びカラーフィルタの赤色パターン29を透過して基
板21側に取り出され、他の領域に入射した光は全てG
H液晶中の黒色色素に吸収される。従って、表示装置の
所定の位置、所定のカラーフィルタのみを発色させて画
像を表示することが可能となる。
The feature of this embodiment is that the pixel electrodes 245, 242 are opposite to the RGB color pattern areas 29, 30, 31 of the color filter.
.. 24. They are formed in the same position and in the same shape as each of the pixel electrodes, and the regions without opposing pixel electrodes are transparent, and color display can be realized by well-known methods and methods. That is, by applying an AC voltage 32 between the pixel electrodes 23 and 241, the dye molecules in the GH liquid crystal in the region sandwiched between these pixel electrodes are vertically aligned, while remaining horizontally aligned in other regions. In this state, when white light 34 is perpendicularly incident on the substrate through the polarizing plate 33, the light incident on the pixel electrode 241 is transmitted through the liquid crystal layer and the red pattern 29 of the color filter, and is extracted to the substrate 21 side, and is transmitted to other areas. All the light incident on G
Absorbed by the black pigment in the H liquid crystal. Therefore, it is possible to display an image by coloring only a predetermined color filter at a predetermined position of the display device.

本態様ではRSG、B各色パターンと対向する画素電極
とが位置的に完全に整合しているため、画素電極にパタ
ーンくずれや、寸法ずれ等の不良があったとしても、色
ずれや色のにじみは発生せず良好なカラー表示を実現で
きる。
In this embodiment, the RSG and B color patterns and the opposing pixel electrode are completely aligned positionally, so even if there is a defect such as pattern distortion or dimensional deviation in the pixel electrode, color shift or color blurring will occur. It is possible to realize a good color display without any occurrence of color.

本実施例のカラーフィルタに適用した光書込み形感熱発
色薄膜の構造は、第2図に示した通りで1      
 あり、光吸収側腹40..402.403に隣接した
顕色削成415.412及び赤色発色剤膜42、緑色発
色剤膜43、青色発色剤膜44からなるほぼ透明な積層
膜である。各薄膜の材料及び膜厚は光吸収側腹としては
バナジルフタロシアニンを使用し、膜厚は0.09μm
(40,)、0.04μm(40゜)、および0.02
μm(40s)とし、顕色剤膜としてはフェノールフタ
レインを使用し、膜厚は夫々3.0μm (41,)、
および10μm(412)、とし、また赤色発色剤膜と
してレッドDCF6.5μm厚、緑色発色剤膜としてマ
ラカイトグリーンラクトン3.5μm厚、青色発色剤膜
としてクリスタルバイオレットラクトン5μm厚を用い
た。
The structure of the optically written thermosensitive coloring thin film applied to the color filter of this example is as shown in FIG.
Yes, light absorbing flank 40. .. It is a substantially transparent laminated film consisting of color developing material 415 and 412 adjacent to 402 and 403, a red color former film 42, a green color former film 43, and a blue color former film 44. The material and film thickness of each thin film are as follows: Vanadyl phthalocyanine is used as the light absorbing flank, and the film thickness is 0.09 μm.
(40,), 0.04 μm (40°), and 0.02
μm (40s), phenolphthalein was used as the color developer film, and the film thickness was 3.0 μm (41,).
and 10 μm (412), red DCF 6.5 μm thick as the red color former film, malachite green lactone 3.5 μm thick as the green color former film, and crystal violet lactone 5 μm thick as the blue color former film.

この本実施例に従うカラー液晶表示装置の製造は、第3
図に従って説明すると、まずガラス基板50の下側表面
上に前記光書込み形感熱発色薄膜51を真空蒸着法によ
り堆積し、さらに透明導電膜52(ITO)を真空蒸着
法により厚さ0.1μmで堆積する。
The manufacturing of the color liquid crystal display device according to this embodiment is carried out in the third stage.
To explain according to the figure, first, the optically written thermosensitive coloring thin film 51 is deposited on the lower surface of the glass substrate 50 by vacuum evaporation, and then a transparent conductive film 52 (ITO) is deposited to a thickness of 0.1 μm by vacuum evaporation. accumulate.

透明導電膜は必要に応じてエツチング法により画素電極
パターンに加工する。並行して、ガラス基板53上に透
明導電膜(ITO)54を堆積し、工t97ft*I:
−ヨ’)Hmt’>%S*m2’97541、   1
542.543の配列を形成する。次にこれら処理の終
ったガラス基板50.53を所定の間隙を保持するよう
にスペーサ入りシール材55で貼り合せる。このとき基
板間の貼り合せ位置合せは大まかでよい。
The transparent conductive film is processed into a pixel electrode pattern by etching, if necessary. In parallel, a transparent conductive film (ITO) 54 is deposited on the glass substrate 53, and a thickness of 97ft*I:
-Yo') Hmt'>%S*m2'97541, 1
542.543 to form an array. Next, the glass substrates 50 and 53 that have undergone these treatments are bonded together using a spacer-containing sealant 55 so as to maintain a predetermined gap. At this time, the bonding position between the substrates may be roughly aligned.

次に、挟持された間隙に黒色色素56を含むネマチック
型GH液晶57を封入し、白く透明)/黒表示の液晶セ
ルの配列を完成する。光書込み形感熱発色薄膜への色パ
ターンの書込みは、上記工程終了後液晶セルを動作させ
ながら行う。即ち、液晶セル配列のうち、まず赤発色に
相当する液晶セルの画素電極54.と対向する画素電極
52との間に交流電圧を印加し、画素電極54.の電極
パターン領域上の液晶を透明にした状態で、赤色発色剤
膜43と、顕色剤膜41.とに挟まれた光吸収側腹40
1に焦点を結ぶ光5B(830nm :半導体レーザ)
を基板全面に走査しながら照射する。入射光のうち画素
電極54.に入射した光は光吸収剤401で焦点を結び
、効率的に熱に変換されて発色剤と゛顕色剤との反応を
誘起し赤色発色する。しかし、他の領域に入射した光は
、液晶中の黒色色素に吸収され、光書込み形感熱発色薄
膜51に達せず、発色反応は生じない。また画素電極5
4.上でも光吸収側腹403.403では光は焦点を結
ばず十分な発熱及び反応は起らない。
Next, a nematic type GH liquid crystal 57 containing a black dye 56 is sealed in the sandwiched gap to complete the arrangement of liquid crystal cells for white (transparent)/black display. The color pattern is written on the optically writable thermosensitive coloring thin film while the liquid crystal cell is being operated after the above steps are completed. That is, in the liquid crystal cell arrangement, first, the pixel electrode 54 of the liquid crystal cell corresponding to red coloring. An alternating current voltage is applied between the pixel electrodes 52 and the pixel electrodes 54 . With the liquid crystal on the electrode pattern area made transparent, the red color former film 43 and the color developer film 41 . light-absorbing flank 40 sandwiched between
Light 5B (830nm: semiconductor laser) focused on 1
irradiate while scanning over the entire surface of the substrate. Of the incident light, the pixel electrode 54. The incident light is focused by the light absorber 401 and efficiently converted into heat, inducing a reaction between the color former and the color developer to produce a red color. However, the light incident on other areas is absorbed by the black pigment in the liquid crystal and does not reach the optical writing type thermosensitive coloring thin film 51, so that no coloring reaction occurs. Also, the pixel electrode 5
4. In the light absorbing flank 403, the light is not focused and sufficient heat generation and reaction do not occur.

次いで、前記赤色パターンの形成と同様の工程をくり返
すことにより、緑色および青色パターン゛ を形成する
Next, green and blue patterns are formed by repeating the same steps as for forming the red pattern.

実施例2  TN液晶セルを備えた表示装置本実施例で
は、TN液晶セルを備えたカラー液晶表示装置を作成し
た。その構成を第4図に示した。図から明らかな如く、
このTN液晶セルは光書込み形感熱発色薄膜60及び画
素電極61を備えたガラス基板62と、画素電極63を
備えたガラス基板64とをシール材65で挟持し、その
間隙にTN液晶66を封入し、さらにガラス基板表面に
平行ニコル状態の偏光板67.68を接着した構造をも
ち、作製方法は実施例1とほぼ同じである。
Example 2 Display device equipped with a TN liquid crystal cell In this example, a color liquid crystal display device equipped with a TN liquid crystal cell was created. Its configuration is shown in Figure 4. As is clear from the figure,
This TN liquid crystal cell has a glass substrate 62 equipped with an optically written thermosensitive coloring thin film 60 and a pixel electrode 61, and a glass substrate 64 equipped with a pixel electrode 63, which are sandwiched between sealing materials 65, and a TN liquid crystal 66 is sealed in the gap between them. Furthermore, it has a structure in which polarizing plates 67 and 68 in a parallel Nicol state are adhered to the surface of a glass substrate, and the manufacturing method is almost the same as in Example 1.

カラー表示は第1図に示すGH液晶セルと同様、ガラス
基板64側から入射した白色光のガラス基板62側への
透過光を見ることにより実現される。光書込み形感熱発
色薄膜への色パターンの光書込みは、第3図に示すGH
液晶セル同様、液晶セルの組立後、所定の画素電極に電
圧を印加した状態で行う。しかしTN液晶の場合、白(
透明)/黒表示は2枚の偏光板67.68を光が透過す
るか否かを原理としているため、所定の領域への光書込
みも2枚の偏光板を透過した光によって行う必要がある
Similar to the GH liquid crystal cell shown in FIG. 1, color display is achieved by observing the white light incident from the glass substrate 64 side and transmitted to the glass substrate 62 side. The optical writing of a color pattern on an optical writing type thermosensitive coloring thin film is carried out using the GH shown in Fig. 3.
Similar to the liquid crystal cell, the measurement is performed with a voltage applied to a predetermined pixel electrode after the liquid crystal cell is assembled. However, in the case of TN liquid crystal, white (
Transparent)/black display is based on the principle of whether or not light passes through the two polarizing plates 67 and 68, so optical writing to a predetermined area must also be performed using light that has passed through the two polarizing plates. .

そこで第4図に示すように、偏光板68の外側に光反射
板69を設け、その反射光が所望の光吸収剥膜上に焦点
を結ぶようにする。これにより電圧が印加されていない
画素電極を透過した光は偏光板68で吸収され、電圧印
加画素電極に対応する光書込み形感熱発色薄膜の所定領
域に、画素電極パターンと自己整合した色パターンを形
成できる。なお光反射板は透過形液晶表示装置の場合に
は除去する必要があるが、反射形液晶表示装置の場合に
戒        は光拡散反射板として兼用すること
もできる。
Therefore, as shown in FIG. 4, a light reflecting plate 69 is provided outside the polarizing plate 68 so that the reflected light is focused on a desired light-absorbing film. As a result, the light transmitted through the pixel electrode to which no voltage is applied is absorbed by the polarizing plate 68, and a color pattern that is self-aligned with the pixel electrode pattern is created in a predetermined area of the optically writable thermosensitive coloring thin film corresponding to the voltage-applied pixel electrode. Can be formed. Note that the light reflecting plate must be removed in the case of a transmissive liquid crystal display device, but in the case of a reflective liquid crystal display device, the light reflecting plate can also be used as a light diffusing and reflecting plate.

11          以上説明したように、本発明
の特徴は、液晶セルの組立後に液晶セルを動作させなが
ら、光書込み形感熱発色薄膜の所定位置に色パターンを
形成することにある。従って、ここで例示した実施例は
典型的な例であり、本発明の趣旨に沿ってさまざまな変
形が可能である。例えば、不透明基板を用いること、光
書込み形感熱発色薄膜の形成位置を画素電極と液晶との
間あるいは液晶と反対側のガラス基板面上に設けること
もできる。また光書込み形感熱発色薄膜の膜構成もここ
に示した以外の周知の材料を利用することもでき、さら
に発色数、発色の種類も適当に選ぶことができる。
11 As explained above, the feature of the present invention is that a color pattern is formed at a predetermined position of an optically writable thermosensitive coloring thin film while operating a liquid crystal cell after assembly of the liquid crystal cell. Therefore, the embodiment illustrated here is a typical example, and various modifications are possible in accordance with the spirit of the present invention. For example, an opaque substrate may be used, and the optically written thermosensitive coloring thin film may be formed between the pixel electrode and the liquid crystal or on the surface of the glass substrate opposite to the liquid crystal. Furthermore, the film structure of the optically writable thermosensitive coloring thin film can also be made of well-known materials other than those shown here, and the number of colors and types of colors can also be appropriately selected.

名月Ω±1 以上詳しく説明したように、本発明を用いれば、多色の
カラーフィルタの形成において、従来必要であったフォ
ト工程を含む複雑な工程が一切不要となり、製造歩留り
の上昇と工程数の大幅な削減が達成でき、装置の製造コ
ストを低減化することが可能となる。
Meigetsu Ω±1 As explained in detail above, if the present invention is used to form multicolor color filters, there will be no need for any complicated processes including the photo process that were conventionally necessary, and the manufacturing yield will increase and the process will be improved. A significant reduction in the number of devices can be achieved, making it possible to reduce the manufacturing cost of the device.

またカラーフィルタの色パターンと対向する画    
   1素電極パターンとは自己整合されているため、
従来必須であった色パターンと対向する画素電極との厳
密な位置合せが不要となり、製造工程の簡単化、迅速化
ができるとともに、色にじみや色ずれの原因が除去され
良好なカラー表示を実現できる利点がある。
Also, the image opposite to the color pattern of the color filter
Since it is self-aligned with the single element electrode pattern,
Strict alignment between the color pattern and the opposing pixel electrode, which was previously required, is no longer required, simplifying and speeding up the manufacturing process, and eliminating the causes of color bleeding and color misalignment, resulting in good color display. There are advantages that can be achieved.

これらの効果は、特に画素電極の微細化と基板の大面積
化による高性能カラー液晶表示装置を実現する上で極め
て有効である。
These effects are extremely effective, especially in realizing a high-performance color liquid crystal display device by miniaturizing pixel electrodes and increasing the area of substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のカラー液晶表示装置の断面
図であり1 、第2図は第11fflのカラーフィルタに適用した光
書込み形感熱発色薄膜の構造を示す図であり、第3図は
第2図の光書込み形感熱発色薄膜を応用したカラー液晶
表示装置の製造方法を説明するための図であり、 第4図は本発明の別の実施例としてのTN液晶セルを備
えたカラー液晶表示装置を説明するための図であり、 第5図は従来の代表的なカラー液晶表示装置の模式的な
断面図であり、 第6図、第7図は従来のカラーフィルタの構造及びその
最終製造工程を示す断面図である。 (主な参照番号) 1.2.13.21.22.50.53.62.64 
 ガラス基板、3.423.24.52.54.61.
63  画素電極、6.25 カラーフィルター、 51.60  光書込み感熱発色薄膜、5.26.57
.66  液晶
FIG. 1 is a cross-sectional view of a color liquid crystal display device according to an embodiment of the present invention, and FIG. The figure is a diagram for explaining a method of manufacturing a color liquid crystal display device to which the optically written thermosensitive coloring thin film of FIG. 2 is applied, and FIG. FIG. 5 is a schematic cross-sectional view of a typical conventional color liquid crystal display device, and FIGS. 6 and 7 show the structure and structure of a conventional color filter. It is a sectional view showing the final manufacturing process. (Main reference number) 1.2.13.21.22.50.53.62.64
Glass substrate, 3.423.24.52.54.61.
63 Pixel electrode, 6.25 Color filter, 51.60 Optical writing thermosensitive coloring thin film, 5.26.57
.. 66 LCD

Claims (5)

【特許請求の範囲】[Claims] (1)上下2枚の基板と、夫々該基板の対向する面上に
設けられ、少なくとも一方が透明導電膜で形成された2
つの画素電極と、該2つの画素電極間に挟持された液晶
と、前記画素電極の一方に近接して備けられたカラーフ
ィルタとを具備するカラー液晶表示装置において、 前記カラーフィルタは光書込み形の感熱発色薄膜で形成
されており、かつ前記画素電極のパターンと整合した色
パターンを有していることを特徴とするカラー液晶表示
装置。
(1) Two upper and lower substrates, two substrates each provided on opposing surfaces of the substrates, at least one of which is formed of a transparent conductive film.
A color liquid crystal display device comprising: one pixel electrode, a liquid crystal sandwiched between the two pixel electrodes, and a color filter provided close to one of the pixel electrodes, wherein the color filter is of an optical writing type. 1. A color liquid crystal display device, characterized in that it is formed of a thermosensitive coloring thin film and has a color pattern that matches the pattern of the pixel electrode.
(2)前記光書込み形の感熱発色薄膜は、光吸収剤膜と
該光吸収剤膜にそれぞれ隣接した発色剤膜及び顕色剤膜
の複数の組合せよりなることを特徴とする特許請求の範
囲第(1)項記載のカラー液晶表示装置。
(2) The optical writing type thermosensitive color forming thin film is comprised of a plurality of combinations of a light absorber film and a color former film and a color developer film adjacent to the light absorber film, respectively. The color liquid crystal display device according to item (1).
(3)上下2枚の基板と、夫々該基板の対向する面上に
設けられ、少なくとも一方が透明導電膜で形成された2
つの画素電極と、該2つの画素電極間に挟持された液晶
と、前記画素電極の一方に近接して備けられたカラーフ
ィルタとを具備するカラー液晶表示装置の製造方法にお
いて、 第1の基板上に光吸収剤膜と、該光吸収剤膜に隣接した
発色剤膜及び顕色剤膜の複数の組合せよりなる光書込み
形の感熱発色薄膜を堆積し、さらに該積層堆積膜上に透
明導電膜を堆積し、必要に応じて該第1の画素電極に所
定のパターンを形成する工程と、 該第1の基板と、第2の画素電極パターンが形成された
第2の基板とを隔置して液晶を封入し液晶セルを形成す
る工程と、 前記第1及び第2の画素電極間に電圧を印加することに
より、所定の液晶セルのみを光透過状態にし、該液晶セ
ル側から前記光書込み形の感熱発色薄膜中の所定の光吸
収剤膜に吸収される光を基板全面に照射して、前記所定
の液晶セルの画素電極パターンに整合した前記光書込み
形の感熱発色薄膜の領域を所定の色に発色させる工程、 を含むことを特徴とする上記カラー液晶表示装置の製造
方法。
(3) Two upper and lower substrates, each provided on the opposing surface of the substrate, at least one of which is formed of a transparent conductive film.
A method for manufacturing a color liquid crystal display device comprising: one pixel electrode, a liquid crystal sandwiched between the two pixel electrodes, and a color filter provided close to one of the pixel electrodes, comprising: a first substrate; A photo-writing type heat-sensitive coloring thin film is deposited on top of the layered film, which is composed of a plurality of combinations of a light absorber film, a color former film and a color developer film adjacent to the light absorber film, and a transparent conductive thin film is further deposited on the laminated deposited film. depositing a film and forming a predetermined pattern on the first pixel electrode as necessary; separating the first substrate and a second substrate on which a second pixel electrode pattern is formed; and applying a voltage between the first and second pixel electrodes to make only a predetermined liquid crystal cell into a light transmitting state, and transmitting the light from the liquid crystal cell side. The entire surface of the substrate is irradiated with light that is absorbed by a predetermined light absorbing agent film in the writing type thermosensitive coloring thin film, so that a region of the photowriting type thermosensitive coloring thin film that matches the pixel electrode pattern of the predetermined liquid crystal cell is exposed. The method for manufacturing a color liquid crystal display device as described above, comprising the step of developing a predetermined color.
(4)前記所定の光吸収剤膜に吸収される光は、焦点が
該所定の光吸収剤膜の位置に合った集束光であることを
特徴とする特許請求の範囲第(3)項記載のカラー液晶
表示装置の製造方法。
(4) The light absorbed by the predetermined light absorbent film is a focused light whose focus is aligned with the position of the predetermined light absorbent film. A method for manufacturing a color liquid crystal display device.
(5)前記光書込み形感熱発色膜の複数の光吸収剤膜は
、それぞれ異なる光吸収波長を有し、所定の光吸収剤膜
に吸収される光は、それぞれ所定の光吸収剤膜に対応す
る吸収波長の光であることを特徴とする特許請求の範囲
第(3)項記載のカラー液晶表示装置の製造方法。
(5) The plurality of light absorbent films of the optical writing type thermosensitive coloring film each have a different light absorption wavelength, and the light absorbed by a predetermined light absorbent film corresponds to each predetermined light absorbent film. 3. The method of manufacturing a color liquid crystal display device according to claim 3, wherein the light has an absorption wavelength of .
JP59220283A 1984-10-19 1984-10-19 Color liquid crystal display device and its production Pending JPS6198331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220283A JPS6198331A (en) 1984-10-19 1984-10-19 Color liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220283A JPS6198331A (en) 1984-10-19 1984-10-19 Color liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPS6198331A true JPS6198331A (en) 1986-05-16

Family

ID=16748741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220283A Pending JPS6198331A (en) 1984-10-19 1984-10-19 Color liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPS6198331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829748A2 (en) * 1996-09-13 1998-03-18 Sony Corporation Reflective guest-host liquid-crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829748A2 (en) * 1996-09-13 1998-03-18 Sony Corporation Reflective guest-host liquid-crystal display device
EP0829748A3 (en) * 1996-09-13 1999-12-15 Sony Corporation Reflective guest-host liquid-crystal display device

Similar Documents

Publication Publication Date Title
JP4402358B2 (en) Color image display panel and driving method thereof
JP3714044B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2000267081A (en) Liquid crystal display device
JP3296719B2 (en) Color liquid crystal display device and method of manufacturing the color liquid crystal display device
JPH06294952A (en) Reflection type color liquid crystal display
JPH05241165A (en) Liquid crystal display device and its production
JP2002055350A (en) Structure of liquid crystal display and method for forming the same
JP4776915B2 (en) Display panel, manufacturing method thereof, and liquid crystal display device having the same
JP4700321B2 (en) Liquid crystal display panel, liquid crystal display device having the same, and method for manufacturing liquid crystal display panel
JP2004286825A (en) Flat panel display device
TWI280439B (en) Liquid crystal display device
JPS61121033A (en) Liquid crystal color display device
JP3290379B2 (en) Display device and manufacturing method thereof
KR20070065065A (en) Method for manufacturing transflective type liquid crystal display device
JPS6198331A (en) Color liquid crystal display device and its production
JPH1068967A (en) Display device
JPS61231586A (en) Color liquid crystal display unit
JPS61149984A (en) Liquid crystal color display unit
JPS61138233A (en) Liquid-crystal color display device
JP2537911B2 (en) Projection type liquid crystal display panel
JP3261117B2 (en) Color display device
JPH06208135A (en) Liquid crytal display device
JPH09251155A (en) Reflection type display device
JPH1054996A (en) Laminated liquid crystal display element and production of active matrix substrate used for the element
JP2934359B2 (en) Display device