JP3290379B2 - Display device and manufacturing method thereof - Google Patents

Display device and manufacturing method thereof

Info

Publication number
JP3290379B2
JP3290379B2 JP16174597A JP16174597A JP3290379B2 JP 3290379 B2 JP3290379 B2 JP 3290379B2 JP 16174597 A JP16174597 A JP 16174597A JP 16174597 A JP16174597 A JP 16174597A JP 3290379 B2 JP3290379 B2 JP 3290379B2
Authority
JP
Japan
Prior art keywords
substrate
pixel electrode
liquid crystal
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16174597A
Other languages
Japanese (ja)
Other versions
JPH1115012A (en
Inventor
政彦 秋山
豊 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16174597A priority Critical patent/JP3290379B2/en
Publication of JPH1115012A publication Critical patent/JPH1115012A/en
Application granted granted Critical
Publication of JP3290379B2 publication Critical patent/JP3290379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の表示セルを
積層した表示装置及びその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a display device in which a plurality of display cells are stacked and a method of manufacturing the same.

【0002】[0002]

【従来の技術】液晶ディスプレイは、薄型で低消費電力
であり、ノート型パソコンなどに広く用いられている。
特に消費電力が小さいことが他のCRT、プラズマディ
スプレイなどのディスプレイと比べて優れた特徴であ
り、今後は携帯情報機器への応用が期待されている。携
帯機器の場合、ディスプレイの消費電力が500mW以
下、できれば数mWと小さいことが望ましい。この要求
に対して、従来はTN型液晶の単純マトリクス型でバッ
クライトが不要で消費電力の小さい反射型を用いてき
た。しかし、TN型では偏光板が必要であり反射率が3
0%程度と暗いこと、単純マトリクス型では画素数を増
やすとコントラストが下がりさらに見にくくなる等の問
題がある。そこで、液晶表示に偏光板を用いないPCG
H(相変化ゲストホスト型)モードを用いてアクティブ
マトリクスによる駆動を行うことにより、反射率が高
く、コントラストも高い表示を得ることが試みられてい
る。一方、反射型液晶表示装置で、カラー表示を実現す
るには、印加電圧により反射波長が異なるECB方式が
あるが、表示可能な色範囲が狭い問題がある。色再現性
を上げるために、RGBカラーフィルタを平面的に配置
して用いて液晶を光学的なスイッチにする方式がある。
2. Description of the Related Art Liquid crystal displays are thin and have low power consumption, and are widely used in notebook computers and the like.
In particular, low power consumption is an excellent feature compared to other displays such as CRTs and plasma displays, and is expected to be applied to portable information devices in the future. In the case of a portable device, it is desirable that the power consumption of the display is as low as 500 mW or less, preferably as small as several mW. In response to this requirement, a reflection type of a simple matrix type of TN type liquid crystal which does not require a backlight and has low power consumption has been conventionally used. However, the TN type requires a polarizing plate and the reflectance is 3
There is a problem that it is as dark as about 0%, and in the simple matrix type, when the number of pixels is increased, the contrast is lowered and the image is more difficult to see. Therefore, PCG that does not use a polarizing plate for liquid crystal display
Attempts have been made to obtain a display with high reflectivity and high contrast by driving with an active matrix using the H (phase change guest host type) mode. On the other hand, in order to realize color display in a reflection type liquid crystal display device, there is an ECB method in which a reflection wavelength varies depending on an applied voltage, but there is a problem that a displayable color range is narrow. In order to improve color reproducibility, there is a method in which RGB color filters are arranged in a plane and liquid crystal is used as an optical switch.

【0003】図12にこの方式による従来例の構成を示
す。アレイ基板131上には反射型電極133が形成さ
れており、これをTFT137によって電圧を印加でき
る様になっている。このアレイ基板131とゲストホス
ト液晶134を介して対向基板132が設置されてお
り、その基板132表面にはゲストホスト液晶134に
電圧を印加するためのITOの対向電極135とカラー
フィルター136が形成されている。
FIG. 12 shows a configuration of a conventional example using this method. A reflective electrode 133 is formed on the array substrate 131, and a voltage can be applied to the reflective electrode 133 by a TFT 137. A counter substrate 132 is provided via the array substrate 131 and the guest host liquid crystal 134. On the surface of the substrate 132, a counter electrode 135 of ITO and a color filter 136 for applying a voltage to the guest host liquid crystal 134 are formed. ing.

【0004】この液晶表示装置は、原理的にはフルカラ
ーが表示できるが、並置混色であるため3原色が1/3
の面積でしか反射せず、光の利用効率が悪く暗い画面し
かできない問題があった。光利用効率を向上するために
シアン・マゼンタ・イエローの3層構造で減法混色とす
ればよいことは知られているが、画素ごとに3層に電圧
を印加して液晶を駆動するには各液晶層に独立して電圧
を印加する必要から電極構造等が複雑で形成方法等が難
しくコストアップとなり、また視差が発生する問題があ
った。
Although this liquid crystal display device can display full color in principle, the three primary colors are reduced to 1 / because of the juxtaposed color mixture.
There is a problem that light is reflected only in a small area, and light utilization efficiency is poor, and only a dark screen can be formed. It is known that subtractive color mixing may be performed with a three-layer structure of cyan, magenta, and yellow in order to improve light use efficiency. However, in order to drive a liquid crystal by applying a voltage to three layers for each pixel, Since it is necessary to apply a voltage independently to the liquid crystal layer, the electrode structure and the like are complicated, the formation method and the like are difficult, the cost is increased, and there is a problem that parallax is generated.

【0005】[0005]

【発明が解決しようとする課題】従来の液晶表示装置
は、並置混色であるため光の利用効率が悪く暗いと言う
問題があった。また、シアン・マゼンタ・イエローの3
層構造で減法混色するものでは、その複雑な構造に起因
して視差等が発生する問題があった。
The conventional liquid crystal display device has a problem that the efficiency of use of light is poor and the image is dark because of the juxtaposed color mixture. Also, 3 colors of cyan, magenta and yellow
In the case of subtractive color mixing in a layer structure, there is a problem that parallax and the like occur due to the complicated structure.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、液晶層を多層にする際に基板の厚さが厚いことに
よる視差が発生して見にくくなることおよび高精細にで
きないことを解消し、高画質な液晶表示装置を実現する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and solves the problem that when a liquid crystal layer is formed into multiple layers, parallax due to a large thickness of a substrate makes it difficult to view and high definition cannot be achieved. It is another object of the present invention to realize a high-quality liquid crystal display device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、上面に画素電極及びこの画素電極に電圧
を印加する非線形素子が形成された第1の基板と、この
第1の基板上に設けられ、電位変動によって光の透過量
或いは発光量が制御される第1の媒体と、この第1の媒
体上に設けられ、下面に対向電極が形成され、上面に画
素電極及びこの画素電極に電圧を印加する非線形素子が
形成された第2の基板と、この第2の基板上に設けら
れ、電位変動によって光の透過量或いは発光量が制御さ
れる第2の媒体と、この第2の媒体上に設けられ、上面
及び下面に対向電極が形成された第3の基板と、この第
3の基板上に設けられ、電位変動によって光の透過量或
いは発光量が制御される第3の媒体と、この第3の媒体
上に設けられ、下面に画素電極及びこの画素電極に電圧
を印加する非線形素子が形成された第4の基板とを具備
し、前記第1の基板及び前記第4の基板は、前記第2の
基板及び前記第3の基板よりも厚いことを特徴とする表
示装置を提供する。
In order to solve the above-mentioned problems, the present invention provides a first substrate on which a pixel electrode and a non-linear element for applying a voltage to the pixel electrode are formed on an upper surface;
A first medium provided on a first substrate, the amount of light transmission or the amount of light emission being controlled by a potential change, and the first medium
Provided on the body, a counter electrode is formed on the lower surface, and an image is formed on the upper surface.
The elementary electrode and the nonlinear element for applying a voltage to this pixel electrode
A second substrate formed on the second substrate;
The amount of light transmitted or emitted is controlled by the potential fluctuation.
A second medium provided on the second medium and an upper surface provided on the second medium.
And a third substrate having a counter electrode formed on the lower surface thereof;
3 is provided on the substrate 3 and the amount of transmitted light or
Or a third medium whose light emission amount is controlled, and the third medium
A pixel electrode on the lower surface and a voltage applied to this pixel electrode.
And a fourth substrate on which a non-linear element for applying a voltage is applied.
The first substrate and the fourth substrate are provided in the second substrate.
A table characterized by being thicker than the substrate and the third substrate.
An indication device is provided .

【0008】また、本発明は、第1の基板表面に画素電
極及びこの画素電極に電圧を印加する非線形素子を形成
する工程と、第2の基板表面に対向電極を形成する工程
と、前記第1の基板の前記画素電極及び前記非線形素子
を形成した側の面と前記第2の基板の前記対向電極を形
成した側の面とを貼りあわせてセルを形成する工程と、
前記セルの両面を研磨して薄くする工程と、研磨した前
記セルの両面に対向電極を形成する工程と、第3の基板
及び第4の基板の表面に画素電極及びこの画素電極に電
圧を印加する非線形素子を形成する工程と、前記第3の
基板及び前記第4の基板の前記画素電極及び前記非線形
素子を形成した側の面を、前記対向電極を形成した前記
セルを挟んで貼りあわせる工程と、前記第1の基板と前
記第2の基板の間に第1の液晶層を注入する工程と、前
記第3の基板と前記セルの間に第2の液晶層を注入する
工程と、前記第4の基板と前記セルの間に第3の液晶層
を注入する工程とを具備することを特徴とする表示装置
の製造方法を提供する。
[0008] The present invention also provides a liquid crystal display having a pixel electrode on a surface of a first substrate.
Form a non-linear element that applies voltage to the pole and this pixel electrode
And forming an opposing electrode on the surface of the second substrate
And the pixel electrode and the non-linear element of the first substrate
And the counter electrode of the second substrate are formed
A step of forming a cell by bonding the formed side to the surface,
A step of polishing both sides of the cell to make it thinner and before polishing
Forming a counter electrode on both sides of the cell, and a third substrate
And a pixel electrode on the surface of the fourth substrate and an electrode
Forming a non-linear element for applying pressure;
The pixel electrode of the substrate and the fourth substrate and the non-linear
The surface on which the element is formed is the same as the surface on which the counter electrode is formed.
Adhering the cell and sandwiching the first substrate
Injecting a first liquid crystal layer between the second substrates;
Injecting a second liquid crystal layer between the third substrate and the cell
And a third liquid crystal layer between the fourth substrate and the cell.
And a step of injecting.
And a method for producing the same.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】ここで、非線形素子とはトランジスタ、ダ
イオード、微小真空管等の能動素子の他に非線形抵抗素
子(メタル- 絶縁膜−メタル構造、トンネルダイオード
など)やこれらを複合化した素子(back-to-backダイオ
ードなど)を挙げる事ができる。また、非線型素子によ
って光の透過量が制御される媒体として液晶等を挙げる
事ができる。また発光量が制御される媒体としてはフィ
ールドエミッション型表示装置における蛍光体を挙げる
ことができる。
Here, the non-linear element is not only an active element such as a transistor, a diode or a micro vacuum tube, but also a non-linear resistance element (metal-insulating film-metal structure, a tunnel diode, etc.) or an element obtained by combining these elements (back-to-back). -back diode etc.). Further, a liquid crystal or the like can be cited as a medium whose light transmission amount is controlled by the non-linear element. As a medium whose light emission amount is controlled, a phosphor in a field emission display device can be exemplified.

【0014】[0014]

【発明の実施の形態】本発明では、表示を司る媒体例え
ば液晶層、蛍光体層等が3層以上重なっており、液晶
(表示)層の間の隔壁となる基板を有した構造におい
て、液晶(表示)層を挟んだ2つの基板の一方には非線
形素子が基板の中間液晶(表示)層側に設けられ、他方
の基板の中間液晶(表示)層側と反対側には非線形素子
が設けられていないことを骨子とする。この際、特に中
間の液晶層をはさむ基板同士は周辺部の他にセル内部で
接合されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a liquid crystal display device has a structure in which three or more liquid crystal layers, phosphor layers, etc., which supervise display, are overlapped with each other and have a substrate serving as a partition between liquid crystal (display) layers. On one of the two substrates with the (display) layer interposed, a nonlinear element is provided on the intermediate liquid crystal (display) layer side of the substrate, and on the other substrate on the opposite side to the intermediate liquid crystal (display) layer side. The main thing is not being done. At this time, especially the substrates sandwiching the intermediate liquid crystal layer are joined inside the cell in addition to the peripheral portion.

【0015】さらに、非線形素子が設けられた基板とこ
れに対向する基板を貼りあわせる工程と、その基板対の
少なくとも1面を削って基板を薄くする工程と、貼りあ
わせた基板対の少なくとも一方の面に別の非線形素子を
設けた基板を対向させる工程を具備したことを製造方法
の骨子とする。本発明によれば、液晶層などの媒体を有
するセルを多層にする際に、中間の隔壁となる基板、特
に非線形素子を設けた基板の厚さを薄くでき、視差のな
い表示が得られる。さらに基板を薄くしても製造しやす
く、壊れにくい構造を得ることができる。
Further, a step of bonding the substrate provided with the non-linear element and a substrate facing the non-linear element, a step of cutting at least one surface of the substrate pair to make the substrate thinner, and a step of bonding at least one of the bonded substrate pair. The main point of the manufacturing method is to include a step of facing a substrate provided with another nonlinear element on a surface. According to the present invention, when a cell having a medium such as a liquid crystal layer is formed into a multilayer, the thickness of a substrate serving as an intermediate partition wall, in particular, a substrate provided with a nonlinear element can be reduced, and a display without parallax can be obtained. Furthermore, even if the substrate is made thin, it is easy to manufacture and a structure that is not easily broken can be obtained.

【0016】以下、本発明の詳細を実施例に基づいて説
明する。 (実施例1)図1に本発明の実施例1に係る液晶表示装
置の断面図を示す。図2に本実施例の製造工程を示す。
以下、図2に沿って製造工程を説明する。ガラスあるい
はプラスチック等の基板26にTFT8等の非線形素子
および画素電極9を一対で2次元配列したマトリクス状
に形成する。図では通常の液晶表示装置で具備する配
線、補助容量などを省略し、TFT8と画素電極9のみ
で構造物を代表させた。このとき、非線形素子を形成す
るのにマスクズレ等の問題の生じない十分な厚さの基板
を用いることができる。ここでは1.1mm 厚を用いた。ア
レイの作成にはゲート電極、ゲート絶縁膜、半導体層、
ソース、 ドレイン電極、走査線、信号線等を成膜、パタ
ーニングするが、特にゲート絶縁膜や半導体膜の形成に
はCVD法など200〜350℃程度の熱工程を通り、
また膜の形成で基板に応力がかかり、基板が反ったり、
伸縮したりするために基板の厚さは薄くすると基板搬送
が出来なくなったり、パターン合せの精度が低下した
り、基板が破損したりする問題があってこれを解消する
ためにガラス基板であれば 0.5mm〜 3mmの厚
さが必要となる。TFTのチャネル形成領域に使用する
半導体層はアモルファスシリコン、多結晶シリコン、な
どが利用でき、ゲート電極、ソース・ドレイン電極等に
はMoW,Ta,Cr,Al、Cu等やこれらの合金、
積層膜などを用いることができる。TFT以外にMI
M、強誘電体などの2端子非線形素子でもよく、製造方
法も限定されることはない。その他、基板26とTFT
8の間にアンダーコート層を設けたり、画素電極9をT
FT8、配線等の上に設けた絶縁膜の上に設けて開口率
を上げる構造やTFT8上や画素電極9周囲に遮光層を
設けた構造などを用いることもできる。この様なアレイ
基板は後述する最上或いは最下に位置するの別のTFT
基板でも同様である。この基板に対向させたガラスある
いはプラスチック等の基板27を貼りあわせる。
Hereinafter, the present invention will be described in detail based on embodiments. (Embodiment 1) FIG. 1 is a sectional view of a liquid crystal display device according to Embodiment 1 of the present invention. FIG. 2 shows the manufacturing process of this embodiment.
Hereinafter, the manufacturing process will be described with reference to FIG. A non-linear element such as a TFT 8 and a pixel electrode 9 are formed in a matrix two-dimensionally arranged in pairs on a substrate 26 made of glass or plastic. In the figure, wirings, auxiliary capacitors, and the like provided in a normal liquid crystal display device are omitted, and only the TFT 8 and the pixel electrode 9 represent a structure. At this time, a substrate having a sufficient thickness that does not cause a problem such as mask misalignment to form a nonlinear element can be used. Here, a thickness of 1.1 mm was used. To create an array, the gate electrode, gate insulating film, semiconductor layer,
The source and drain electrodes, scanning lines, signal lines, and the like are formed and patterned. In particular, the gate insulating film and the semiconductor film are formed through a heat process at about 200 to 350 ° C. such as a CVD method.
In addition, stress is applied to the substrate by the formation of the film, and the substrate warps,
If the thickness of the substrate is reduced because it expands or contracts, the substrate can not be transported, the accuracy of pattern alignment is reduced, or the substrate is damaged. A thickness of 0.5 mm to 3 mm is required. A semiconductor layer used for a channel formation region of a TFT can be made of amorphous silicon, polycrystalline silicon, or the like. For a gate electrode, a source / drain electrode, etc., MoW, Ta, Cr, Al, Cu, or an alloy thereof,
A stacked film or the like can be used. MI other than TFT
A two-terminal nonlinear element such as M or ferroelectric may be used, and the manufacturing method is not limited. In addition, substrate 26 and TFT
8, an undercoat layer may be provided between the
A structure provided on the insulating film provided on the FT 8 or the wiring to increase the aperture ratio, a structure provided with a light shielding layer on the TFT 8 or around the pixel electrode 9 and the like can also be used. Such an array substrate is another TFT located at the top or bottom, which will be described later.
The same applies to the substrate. A substrate 27 made of glass, plastic, or the like is attached to the substrate.

【0017】対向基板27の表面にはITOなどの透明
導電膜10が設けられている。貼りあわせには基板27
の周辺部に接着剤からなるシール剤22を印刷法、ディ
スペンス法などで形成し、基板間のギャップを決めるス
ペーサ(図示せず)を散布してから重ね合せて温度を上
げて接着し組み立てた。スペーサとしてはこのようにセ
ル組み立ての際に散布する方法の他に、一方、あるいは
両方の基板に所定の高さの突起を設けてこれをギャップ
を決めるスペーサとすることができる。なお、対向電極
の導通を得るために対向電極と非線形素子の基板の間に
銀ペーストなどによるトランスファー電極(図示せず)
を形成している。19はTFT8に接続した外部接続電
極である(図2(a))。
On the surface of the opposite substrate 27, a transparent conductive film 10 such as ITO is provided. Substrate 27 for bonding
A sealant 22 made of an adhesive is formed on the periphery of the substrate by a printing method, a dispensing method, or the like, and a spacer (not shown) for determining a gap between the substrates is sprayed, and then superposed and bonded at an increased temperature to assemble. . As a spacer, in addition to the method of dispersing at the time of assembling a cell, a protrusion having a predetermined height may be provided on one or both substrates, and this may be used as a spacer for determining a gap. A transfer electrode (not shown) made of silver paste or the like is provided between the counter electrode and the substrate of the non-linear element in order to obtain conduction of the counter electrode.
Is formed. Reference numeral 19 denotes an external connection electrode connected to the TFT 8 (FIG. 2A).

【0018】次に液晶11を注入して注入口を紫外線硬
化樹脂(図示せず)で封止した。液晶はゲストホスト型
でシアン色素を入れている。液晶としてはマイクロカプ
セル状のものでもよく、PDLCや反強誘電性液晶、コ
レステリック液晶、ホログラフィックPDLCなどでも
よく、注入せずに塗布や紫外線硬化などの手法で形成す
ることもできる(図2(b))。
Next, the liquid crystal 11 was injected, and the injection port was sealed with an ultraviolet curing resin (not shown). The liquid crystal is a guest-host type and contains a cyan dye. The liquid crystal may be in the form of microcapsules, PDLC, antiferroelectric liquid crystal, cholesteric liquid crystal, holographic PDLC, or the like, and may be formed by coating or ultraviolet curing without injection (FIG. 2 ( b)).

【0019】その後、外部接続電極19等の基板研磨工
程における保護膜としてのカバー201をノボラック樹
脂、アクリル樹脂、PVC(塩化ビニール)、PETな
ど、で形成する。本実施例ではフォトレジストと同じ樹
脂を塗布して80℃で加熱して溶剤を飛ばした。材料は
他の樹脂でもよく、フィルムを貼ることでもよい。続い
て、セルの両面を研磨した。機械研磨によるもので1.
1mm厚から荒く0.5mmまで削り、その後0.2m
mまで精密研磨した。研磨の方法は、この他にエッチン
グ液を用いて化学研磨で行うことも出来る。また、化学
研磨後に機械研磨を行うなど、両者の併用も可能であ
る。化学研磨の場合、ガラス基板ではふっ酸を用い、流
速や濃度を制御して均一に研磨できる。化学研磨で0.
1mmまで研磨した場合でも、基板が2 枚貼り合わせて
あることから、機械強度は一枚で2倍の厚さを持ったも
のよりも強くなっており、工程を進めることが可能であ
る(図2(c))。
Thereafter, a cover 201 as a protective film in a substrate polishing step for the external connection electrodes 19 and the like is formed of novolak resin, acrylic resin, PVC (vinyl chloride), PET, or the like. In this example, the same resin as the photoresist was applied and heated at 80 ° C. to remove the solvent. The material may be another resin, or a film may be applied. Subsequently, both sides of the cell were polished. It is based on mechanical polishing.
From 1mm thickness to rough 0.5mm, then 0.2m
m. The polishing method can also be performed by chemical polishing using an etchant. Further, both can be used in combination, such as performing mechanical polishing after chemical polishing. In the case of chemical polishing, a glass substrate can be uniformly polished by using hydrofluoric acid and controlling the flow rate and concentration. 0 by chemical polishing.
Even when the substrate is polished to 1 mm, the mechanical strength is stronger than that of a single substrate having twice the thickness because two substrates are bonded together, and the process can be advanced (Fig. 2 (c)).

【0020】この後に、セルの両面に対向電極4、15
をITOで形成する。なお、図2(c)では研磨前の基
板寸法が最終寸法と一致しているが、研磨前は最終寸法
よりも大きな基板とし、研磨後にスクライブ、ブレーク
により所定の大きさに切出すようにすることも可能であ
る。その場合はカバーのフィルムを研磨面側まで折り返
すことが出来るため特に化学研磨の際の作業性が向上す
る。また、周辺に厚さの厚い領域ができるため、強度が
より向上する。対向電極4、15を形成後に切出すよう
にすることもできる(図2(d))。
Thereafter, opposing electrodes 4 and 15 are provided on both sides of the cell.
Is formed of ITO. In FIG. 2C, the substrate dimensions before polishing match the final dimensions, but before polishing, the substrate is larger than the final dimensions, and after polishing, the substrate is cut into a predetermined size by scribing or breaking. It is also possible. In that case, since the film of the cover can be folded back to the polished surface side, the workability particularly during chemical polishing is improved. Further, since a thick region is formed around the periphery, the strength is further improved. It is also possible to cut out after forming the counter electrodes 4 and 15 (FIG. 2D).

【0021】この後に、アレイ基板1、12を中間のセ
ルを挟むように組み立てる。アレイ基板1はTFT2,
画素電極3等が設けられているが、画素電極3は反射板
を兼ねている。具体的には層間絶縁膜17をアクリル樹
脂、ポリイミド、BCBなどで形成し、さらにその表面
に適当な凹凸を形成してから、Alなどの金属をスパッ
タ法などで堆積して画素電極3をパターニングして形成
する。層間絶縁膜17には図示されていないスルーホー
ルがあってTFT2のドレイン電極と画素電極3が接続
している。画素電極3はTFT2や配線などの上を覆っ
て広い開口率を得ている。一方、アレイ基板12のTF
T13、画素電極14は基板6上のものと基本的には同
一で良い。尚、TFT8の上には黒色レジスト(黒色顔
料を分散させたアクリル樹脂など)などの遮光層(図示
せず)を形成している(図2(e))。
Thereafter, the array substrates 1 and 12 are assembled so as to sandwich the intermediate cell. The array substrate 1 has TFT2,
Although the pixel electrode 3 and the like are provided, the pixel electrode 3 also serves as a reflector. Specifically, the interlayer insulating film 17 is formed of acrylic resin, polyimide, BCB, or the like, and after forming appropriate irregularities on the surface thereof, a metal such as Al is deposited by a sputtering method or the like to pattern the pixel electrode 3. Formed. The interlayer insulating film 17 has a through hole (not shown), and the drain electrode of the TFT 2 and the pixel electrode 3 are connected. The pixel electrode 3 has a wide aperture ratio by covering the TFT 2 and the wiring. On the other hand, the TF of the array substrate 12
T13 and the pixel electrode 14 may be basically the same as those on the substrate 6. A light-shielding layer (not shown) such as a black resist (eg, an acrylic resin in which a black pigment is dispersed) is formed on the TFT 8 (FIG. 2E).

【0022】この後に液晶層5、16を注入して完成す
る。液晶層16はマゼンタ、液晶層5はイエローとし
た。なお、シール部21で基板6の外部配線電極19の
下にもシールを設けることにより、電極19にACFで
熱圧着してフレキ配線やTABICなどを接続する際に
強化されるのでよい。なお、液晶セルには配向膜を設け
ることは当然行われる。本実施例では垂直配向膜を設
け、透過状態での透過率を改善するために液晶分子の垂
直方向配向時の界面での垂直配向度を向上し、かつ吸収
状態での吸収率を改善しながらヒステリシスが出ないよ
うにする、との効果を得るためにネガ型の液晶とカイラ
ル材を入れて電圧印加時のセルギャップdと螺旋ピッチ
pの比、d/pを0.5〜0.8としている(図3)。
Thereafter, the liquid crystal layers 5 and 16 are injected to complete the process. The liquid crystal layer 16 was magenta, and the liquid crystal layer 5 was yellow. By providing a seal under the external wiring electrode 19 of the substrate 6 with the seal portion 21, the seal may be strengthened when the flexible wiring or the TABIC is connected to the electrode 19 by thermocompression bonding with ACF. In addition, it is natural to provide an alignment film in the liquid crystal cell. In this embodiment, a vertical alignment film is provided to improve the degree of vertical alignment at the interface during the vertical alignment of liquid crystal molecules in order to improve the transmittance in the transmission state, and to improve the absorptance in the absorption state. To obtain the effect of preventing the occurrence of hysteresis, a negative type liquid crystal and a chiral material are put, and the ratio of cell gap d to helical pitch p when voltage is applied, d / p is 0.5 to 0.8. (FIG. 3).

【0023】以上の工程で、中間の液晶層11を注入し
てから研磨工程に進めたが、注入せずに3層セルを組み
立てた後に注入することも可能である。このようにして
得られた3層液晶セルは、中間基板となる基板6、7が
0.2mm〜0.1mmと薄くすることができ、画素ピ
ッチが0.1mm 〜0.3mmの場合でも視差ずれが
視認されないか気にならないレベルとなり、高画質な反
射型カラー液晶表示装置を得ることができた。特に画素
ピッチが細かい場合に有効であった。
In the above steps, the intermediate liquid crystal layer 11 is injected, and then the polishing process is performed. However, the injection can be performed after the three-layer cell is assembled without injection. In the three-layer liquid crystal cell obtained in this manner, the substrates 6 and 7 serving as the intermediate substrates can be made as thin as 0.2 mm to 0.1 mm, and the parallax can be obtained even when the pixel pitch is 0.1 mm to 0.3 mm. The deviation was at a level that was not noticeable or noticeable, and a high-quality reflective color liquid crystal display device could be obtained. This is particularly effective when the pixel pitch is small.

【0024】また、図1〜3の実施例1の場合、アレイ
基板上から見て(図の紙面上側或いは下側から見るこ
と)、TFTが下向き、中間基板でTFTが上向きとな
り、それぞれ配線、画素等のパターンが異なり、また反
射電極のある基板1も別のパターンとなりパターンがず
れた(あるいは回転した)場合のモアレの見え方が問題
になるが、画素電極が重なるためモアレの見え方が軽減
できる効果がある。さらに、図4に示すように基板6に
設けた遮光層401を画素周辺の配線上にも形成するこ
とで表面反射が小さくなり、基板12と基板6のパター
ンの間のモアレ、基板6と基板1の間のモアレをほぼな
くすことができ、同時に基板1と基板12のパターンの
間を斜光することになって両者の間のモアレも発生しな
いようにできるが、基板6、7の厚さが薄くすることで
斜光層の幅が小さくできて画面の明るさを明るくでき
る。したがって高画質な反射型液晶表示装置を実現でき
る。液晶層5、11、16は各層ごとにさらに2層に分
けてそれぞれ配向を変えることもできる。その場合、2
層に分ける境界には1〜20μm の有機樹脂等を用い、
2層の吸収状態での配向を直交させる、あるいは逆方向
に捻じることで1層目で吸収されなかった光(偏光)を
2層目で吸収させることができる。このようにすること
で吸収効率が向上し、色素の濃度が低くて透過状態での
透過率が高く、かつコントラスト比が高く出来ることか
ら反射型として高コントラスト、高反射率で視差ずれの
ない高精細のLCDが実現できる。
In the case of the first embodiment shown in FIGS. 1 to 3, when viewed from above the array substrate (as viewed from above or below the drawing), the TFT is directed downward, and the TFT is directed upward on the intermediate substrate. The pattern of the pixels and the like is different, and the substrate 1 having the reflective electrode is also a different pattern. The problem of the appearance of moire when the pattern is shifted (or rotated) is a problem. There is an effect that can be reduced. Further, as shown in FIG. 4, by forming the light-shielding layer 401 provided on the substrate 6 also on the wiring around the pixels, the surface reflection is reduced, and the moire between the patterns of the substrate 12 and the substrate 6, the substrate 6 and the substrate 1 can be almost eliminated, and at the same time, the pattern between the substrate 1 and the substrate 12 obliquely emits light so that no moiré occurs between them. By reducing the thickness, the width of the oblique light layer can be reduced, and the brightness of the screen can be increased. Therefore, a high-quality reflective liquid crystal display device can be realized. Each of the liquid crystal layers 5, 11, and 16 can be further divided into two layers and the alignment can be changed. In that case, 2
Use a 1-20μm organic resin or the like as the boundary for dividing into layers.
Light (polarized light) not absorbed by the first layer can be absorbed by the second layer by making the orientation in the absorption state of the two layers orthogonal or twisting in the opposite direction. By doing so, the absorption efficiency is improved, the density of the dye is low, the transmittance in the transmission state is high, and the contrast ratio can be high, so that the reflection type is high in contrast, high in reflectance and free from parallax displacement. A fine LCD can be realized.

【0025】(実施例2)図5に本実施例の実施例2に
係る液晶表示装置を示す。実施例1との差違は図1にお
けるの中間基板のTFTの向きが異なっている点であ
る。その他の点は実施例1と同一である。その他は実施
例1と同一である。以下の実施例の説明は、実施例1と
同一部分は同一番号を付しその詳細を省略する。また、
実施例1と同一製造工程の詳細な説明も省略する。基板
12と同じ向きのTFTアレイとなっている。これによ
り、実施例1と同一の効果を奏することに加え、基板6
と基板12のパターンを同一にすることができ、生産性
が向上する効果がある。
(Embodiment 2) FIG. 5 shows a liquid crystal display device according to Embodiment 2 of the present embodiment. The difference from the first embodiment is that the direction of the TFT on the intermediate substrate in FIG. 1 is different. Other points are the same as the first embodiment. Others are the same as the first embodiment. In the following description of the embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the details thereof are omitted. Also,
A detailed description of the same manufacturing steps as in Example 1 is also omitted. The TFT array has the same orientation as the substrate 12. Thereby, in addition to the same effects as in the first embodiment, the substrate 6
And the pattern of the substrate 12 can be made the same, which has the effect of improving productivity.

【0026】(実施例3)図6に実施例3を示す。実施
例1と異なる点は、中央のセル内部に基板6、7の間の
距離を固定する接着部301があることで、その他の点
については実施例1と同一である。
Third Embodiment FIG. 6 shows a third embodiment. The difference from the first embodiment is that an adhesive portion 301 for fixing the distance between the substrates 6 and 7 is provided inside the central cell, and the other points are the same as the first embodiment.

【0027】図6に示すごとく、各画素に(図ではTF
T上に)接着部301を設けた。以上の実施例3の構成
によって、実施例1と同一の効果を奏することに加え、
セルの強度が向上し研磨時の基板の変形量を少なくでき
るために基板6、7の厚さを例えば0.1mm以下に実
施例1と比べてより薄くできるようになった。接着部は
熱硬化、紫外線硬化樹脂等で形成できる。また、表面に
接着層を設けたスペーサとしてもよい。接着部は数画素
ごとに設けてもよい。
As shown in FIG. 6, each pixel (TF in the figure)
An adhesive portion 301 was provided (on T). With the configuration of the third embodiment, the same effects as those of the first embodiment can be obtained.
Since the strength of the cell is improved and the amount of deformation of the substrate during polishing can be reduced, the thickness of the substrates 6 and 7 can be reduced to, for example, 0.1 mm or less as compared with the first embodiment. The bonding portion can be formed of a thermosetting or ultraviolet curing resin. Further, a spacer having an adhesive layer on the surface may be used. The bonding portion may be provided every several pixels.

【0028】(実施例4)図7(a)、図7(b)は実
施例4を示す。本実施例が実施例1と異なる点は、図2
のプロセスで積層セルを作成した後、図7(b)に示す
ごとくさらに基板を研磨することである。保護部401
は樹脂やフィルムなどで形成され、基板402aの裏面
を研磨することで薄いアレイ基板402bを得た。基板
402bの画素電極3は透明導電膜であるITOで形成
され、基板6 、 12と同様な構成とすることができる。
このようにすれば、実施例1と同様の効果を奏すること
に加え、さらに、別のアレイ基板を貼り付けて4層目の
液晶セルを作成することができ、従ってカラーを出すC
MY液晶層と黒表示をする黒色色素を用いた液晶層を作
ることにより、CMYでは色相がずれたり吸収が不足し
たりする問題が改善されて黒白のコントラストが高く文
字など黒表示の視認性を上げることができる効果を得
る。これは図7のアレイ基板の薄板化の結果得られる1
つの実施例である。
(Embodiment 4) FIGS. 7A and 7B show Embodiment 4. FIG. This embodiment is different from the first embodiment in that FIG.
After forming a stacked cell by the above process, the substrate is further polished as shown in FIG. Protector 401
Was formed of a resin, a film, or the like, and a thin array substrate 402b was obtained by polishing the back surface of the substrate 402a. The pixel electrode 3 of the substrate 402b is formed of ITO, which is a transparent conductive film, and can have the same configuration as the substrates 6 and 12.
In this way, in addition to the same effect as in the first embodiment, a fourth-layer liquid crystal cell can be formed by attaching another array substrate.
By making the MY liquid crystal layer and a liquid crystal layer using a black pigment for displaying black, the problems of hue shift and insufficient absorption are improved in CMY, and the contrast of black and white is high, and the visibility of black display such as characters is improved. Get an effect that can be raised. This is obtained as a result of the thinning of the array substrate in FIG.
This is one embodiment.

【0029】(実施例5)図8は実施例5を示してい
る。すなわち、セルの外部に反射板404を設けて反射
型液晶表示装置とするとともにこれを半透過層とするこ
とで、バックライト403からの光を照射して透過型で
見ることも出来る構成が得られる。他の構成は、 実施例
4と同一である。この実施例では、 外部反射板とする際
に基板402bの厚さが薄いことで文字浮きという視差
ずれがなく、あるいは軽減されて高精細で高画質な液晶
表示装置を実現することができる。同時に周囲が暗い場
合にバックライトを点灯することで映像を見ることがで
き、携帯情報機器の使い勝手を向上させることができ
る。
(Embodiment 5) FIG. 8 shows a fifth embodiment. That is, by providing the reflection type liquid crystal display device by providing the reflection plate 404 outside the cell and forming the reflection type liquid crystal display device as a semi-transmissive layer, it is possible to obtain a configuration in which light from the backlight 403 can be irradiated and viewed in a transmission type. Can be Other configurations are the same as those of the fourth embodiment. In this embodiment, when the external reflector is used as the substrate 402b, the thickness of the substrate 402b is thin, so that a parallax shift such as floating characters can be prevented or reduced, and a high-definition and high-quality liquid crystal display device can be realized. At the same time, when the surroundings are dark, the backlight can be turned on so that an image can be viewed, and the usability of the portable information device can be improved.

【0030】図8では片側のアレイを研磨したが、基板
12を含めて両方とも研磨することもできる。上部には
ペン入力の機能を付加することでペンと画像の視差ずれ
が軽減される効果が得られる。ペン入力は外部に感圧タ
ブレットを貼り付けることもできるし、アレイ基板に信
号を供給ないしは検知する機能を持たせることでも実現
できる。いずれの場合も前述のように視差ずれがほとん
どなくすることができる。
Although the array on one side is polished in FIG. 8, both the array and the substrate 12 can be polished. By adding a pen input function to the upper part, the effect of reducing parallax between the pen and the image can be obtained. The pen input can be realized by attaching a pressure-sensitive tablet to the outside, or by providing a function of supplying or detecting a signal to the array substrate. In any case, parallax displacement can be almost eliminated as described above.

【0031】(実施例6)図9に実施例6の断面図を、
図10にその一部分の製造工程順の断面図を示す。
(Embodiment 6) FIG. 9 is a sectional view of Embodiment 6.
FIG. 10 is a cross-sectional view of a part thereof in the order of the manufacturing process.

【0032】アレイ基板801aとアレイ基板12を薄
膜層の対向基板701を挟むように貼り合せてセルを作
る(図10(a))。対向基板701は透明導電体でで
きており、対向電極を兼ねている。基板801bの厚さ
は0.1mm以下と薄く削っている。対向基板701は
両面にITOが形成されたPETフィルムとしてもよ
い。要は基板として最初から薄いフィルム状のものを2
枚のアレイ基板で挟んでセルを作ればどのような基板7
01として作製することができる。セルができた後にア
レイ基板801を研磨して基板6が形成される。このよ
うにして液晶表示装置を得る。本実施例は実施例1と同
様の効果を奏することに加え、 あらかじめ薄膜層の薄い
対向基板を用いているため、視差ずれが低減できるとと
もにアレイ基板801を研磨する際に強度が保てるため
薄いアレイ基板を得ることができる。
The array substrate 801a and the array substrate 12 are bonded together so as to sandwich the counter substrate 701 of a thin film layer to form a cell (FIG. 10A). The counter substrate 701 is made of a transparent conductor and also serves as a counter electrode. The thickness of the substrate 801b is as thin as 0.1 mm or less. The opposing substrate 701 may be a PET film having ITO formed on both sides. In short, a thin film-shaped substrate should be used from the beginning.
What kind of substrate 7 can be made by sandwiching cells between two array substrates
01. After the cells are formed, the array substrate 801 is polished to form the substrate 6. Thus, a liquid crystal display device is obtained. In this embodiment, in addition to the same effects as those of the first embodiment, since a counter substrate having a thin thin film layer is used in advance, parallax shift can be reduced, and strength can be maintained when the array substrate 801 is polished. A substrate can be obtained.

【0033】(実施例7)この実施例が、実施例1と異
なる点は表示装置が液晶表示装置ではなくフィールドエ
ミッション型表示装置にした点である。図11に断面構
造を示した。中間のセル205は、対向基板107とア
レイ基板106で主として構成される。これらの基板も
実施例1と同様にガラスあるいはプラスチック等を使用
する。この基板106、107の間にはマイクロエミッ
タ109、対向電極110、ゲート電極201、発光の
媒体としての赤色用の蛍光体202、隣接画素との分離
を図るための側壁200等で1つの画素が構成されてい
る。このマイクロエミッタ109は画素電極として働く
と共に、ゲート電極201、対向電極110とを加えた
1セットとして真空管としての機能を有するもので非線
型素子としても動作する。この様なフィールドエミッシ
ョン型表示装置も液晶表示装置と同様に2枚の基板10
6、107を使用しこの基板106、107に挟持した
真空或いは希ガス203中に電子を飛ばして発光の媒体
である蛍光体202に当てて発光させる原理で表示する
ことができる。この1枚のR用セル205と同様の構造
で蛍光体を変えたG用セル204、B用セル206の各
セルを3枚重ねてカラー表示可能な表示装置を構成す
る。
Embodiment 7 This embodiment is different from Embodiment 1 in that the display device is not a liquid crystal display device but a field emission type display device. FIG. 11 shows a cross-sectional structure. The intermediate cell 205 mainly includes the counter substrate 107 and the array substrate 106. These substrates also use glass or plastic, as in the first embodiment. Between the substrates 106 and 107, one pixel is formed by a microemitter 109, a counter electrode 110, a gate electrode 201, a red phosphor 202 as a light emitting medium, a side wall 200 for separating the adjacent pixels, and the like. It is configured. The microemitter 109 functions as a pixel electrode and has a function as a vacuum tube as a set including the gate electrode 201 and the counter electrode 110, and also operates as a non-linear element. Such a field emission type display device also has two substrates 10 like the liquid crystal display device.
The display can be performed based on the principle that electrons are emitted into a vacuum or a rare gas 203 sandwiched between the substrates 106 and 107 and emitted to the phosphor 202 as a light emitting medium. The G cell 204 and the B cell 206 having the same structure as that of the single R cell 205 but having different phosphors are stacked in three to constitute a display device capable of color display.

【0034】勿論、中間のセル205の基板は、実施例
1と同様の製造工程を経て形成されるもので、2枚の基
板106、107の貼り合わせ終了後に研磨して薄くし
ている。その後も、基板の貼り合わせについては実施例
1と同様で、中間のセル205に対向してアレイ基板1
12、101を貼り合わせてそれぞれG用セル204、
B用セル206を形成する。このようなフィールドエミ
ッション型表示装置においても、実施例1と同様な効果
を奏する。つまり、積層したセルを非線形素子で駆動し
ても中間基板の厚さを薄くすることができために視差ず
れの少ない高精細、高画質な表示装置を実現できるので
ある。その他本発明の趣旨を逸脱しない範囲で種々に変
形することができる。
Of course, the substrate of the intermediate cell 205 is formed through the same manufacturing process as in the first embodiment, and is polished and thinned after the two substrates 106 and 107 have been bonded. Thereafter, the bonding of the substrates is the same as in the first embodiment, and the array substrate 1 is opposed to the intermediate cell 205.
12 and 101 are bonded to each other,
A cell 206 for B is formed. In such a field emission type display device, the same effect as that of the first embodiment can be obtained. That is, even when the stacked cells are driven by the nonlinear elements, the thickness of the intermediate substrate can be reduced, so that a high-definition and high-quality display device with little parallax displacement can be realized. In addition, various modifications can be made without departing from the spirit of the present invention.

【0035】[0035]

【発明の効果】本発明により、中間基板の厚さを薄くす
ることができるため、視差ずれの少ない高精細、高画質
な表示装置を実現できる。
According to the present invention, since the thickness of the intermediate substrate can be reduced, a high-definition and high-quality display device with little parallax displacement can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1に係る液晶セルの断面図FIG. 1 is a cross-sectional view of a liquid crystal cell according to a first embodiment of the present invention.

【図2】 本発明の実施例1に係るプロセス順の断面図FIG. 2 is a sectional view in a process order according to the first embodiment of the present invention.

【図3】 本発明の実施例1に係るプロセス順の断面図FIG. 3 is a sectional view in a process order according to the first embodiment of the present invention.

【図4】 本発明の実施例1に係る液晶セルの変形例の
断面図
FIG. 4 is a sectional view of a modified example of the liquid crystal cell according to the first embodiment of the present invention.

【図5】 本発明の実施例2に係る液晶セルの変形例の
断面図
FIG. 5 is a sectional view of a modification of the liquid crystal cell according to the second embodiment of the present invention.

【図6】 本発明の実施例3に係る液晶セルの断面図FIG. 6 is a sectional view of a liquid crystal cell according to a third embodiment of the present invention.

【図7】 本発明の実施例4に係るプロセス順の断面図FIG. 7 is a sectional view in a process order according to a fourth embodiment of the present invention.

【図8】 本発明の実施例5に係る液晶セルの断面図FIG. 8 is a sectional view of a liquid crystal cell according to a fifth embodiment of the present invention.

【図9】 本発明の実施例6に係る液晶セルの断面図FIG. 9 is a sectional view of a liquid crystal cell according to Embodiment 6 of the present invention.

【図10】 本発明の実施例6に係る液晶セルの製造工
程順の断面図
FIG. 10 is a sectional view of a liquid crystal cell according to a sixth embodiment of the present invention in the order of manufacturing steps.

【図11】 本発明の実施例7のフィールドエミッショ
ン型表示装置の断面図
FIG. 11 is a sectional view of a field emission display device according to a seventh embodiment of the present invention.

【図12】 従来の反射型液晶表示装置の例を断面図FIG. 12 is a cross-sectional view illustrating an example of a conventional reflective liquid crystal display device.

【符号の説明】[Explanation of symbols]

1基板 2TFT 3画素電極 4対向電極 5液晶層 6基板 11液晶層 12基板 13TFT 14画素電極 15対向電極 16液晶層 17層間絶縁膜 18引き出し電極 1 substrate 2 TFT 3 pixel electrode 4 counter electrode 5 liquid crystal layer 6 substrate 11 liquid crystal layer 12 substrate 13 TFT 14 pixel electrode 15 counter electrode 16 liquid crystal layer 17 interlayer insulating film 18 extraction electrode

フロントページの続き (56)参考文献 特開 平8−248449(JP,A) 特開 平7−294955(JP,A) 特開 平8−328031(JP,A) 特開 平5−61011(JP,A) 特開 平7−43696(JP,A) 特開 昭52−31757(JP,A) 特開 平10−48661(JP,A) 特開 平1−309024(JP,A) 特表 平3−501064(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1347 G02F 1/1333 G02F 1/1362 G02F 1/1343 Continuation of front page (56) References JP-A-8-248449 (JP, A) JP-A-7-294955 (JP, A) JP-A-8-328031 (JP, A) JP-A-5-61011 (JP) JP-A-7-43696 (JP, A) JP-A-52-31757 (JP, A) JP-A-10-48661 (JP, A) JP-A-1-309024 (JP, A) 3-501064 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1347 G02F 1/1333 G02F 1/1362 G02F 1/1343

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上面に画素電極及びこの画素電極に電圧
を印加する非線形素子が形成された第1の基板と、 この第1の基板上に設けられ、 電位変動によって光の透
過量或いは発光量が制御される第1の媒体と、 この第1の媒体上に設けられ、下面に対向電極が形成さ
れ、上面に画素電極及びこの画素電極に電圧を印加する
非線形素子が形成された第2の基板と、 この第2の基板上に設けられ、電位変動によって光の透
過量或いは発光量が制御される第2の媒体と、 この第2の媒体上に設けられ、上面及び下面に対向電極
が形成された第3の基板と、 この第3の基板上に設けられ、電位変動によって光の透
過量或いは発光量が制御される第3の媒体と、 この第3の媒体上に設けられ、下面に画素電極及びこの
画素電極に電圧を印加する非線形素子が形成された第4
の基板とを具備し、 前記第1の基板及び前記第4の基板は、前記第2の基板
及び前記第3の基板 よりも厚いことを特徴とする表示装
置。
A first substrate on which a pixel electrode and a non-linear element for applying a voltage to the pixel electrode are formed on an upper surface, and a light transmission amount or a light emission amount provided on the first substrate due to a potential change. And a first medium provided on the first medium, and a counter electrode formed on a lower surface of the first medium.
And apply a voltage to the pixel electrode and the pixel electrode on the upper surface.
A second substrate on which the non-linear element is formed, and a second substrate provided on the second substrate, which transmits light due to potential fluctuation.
A second medium whose excess or light emission amount is controlled , and opposing electrodes provided on the second medium and having upper and lower surfaces
And a third substrate on which the light-transmitting light is provided due to a potential change.
A third medium whose excess or emission amount is controlled , and a pixel electrode and a third electrode provided on the third medium,
Fourth, in which a non-linear element for applying a voltage to the pixel electrode is formed.
Comprising a substrate, said first substrate and said fourth substrate, said second substrate
And a display device which is thicker than the third substrate .
【請求項2】 第1の基板表面に画素電極及びこの画素
電極に電圧を印加する非線形素子を形成する工程と、 第2の基板表面に対向電極を形成する工程と、 前記第1の基板の前記画素電極及び前記非線形素子を形
成した側の面と前記第2の基板の前記対向電極を形成し
た側の面とを貼りあわせてセルを形成する工程と、 前記セルの両面を研磨して薄くする工程と、 研磨した前記セルの両面に対向電極を形成する工程と、 第3の基板及び第4の基板の表面に画素電極及びこの画
素電極に電圧を印加する非線形素子を形成する工程と、 前記第3の基板及び前記第4の基板の前記画素電極及び
前記非線形素子を形成し た側の面を、前記対向電極を形
成した前記セルを挟んで貼りあわせる工程と、 前記第1の基板と前記第2の基板の間に第1の液晶層を
注入する工程と、 前記第3の基板と前記セルの間に第2の液晶層を注入す
る工程と、 前記第4の基板と前記セルの間に第3の液晶層を注入す
工程とを具備することを特徴とする表示装置の製造方
法。
A step of forming a pixel electrode on the surface of the first substrate and a non-linear element for applying a voltage to the pixel electrode ; a step of forming a counter electrode on the surface of the second substrate; Forming the pixel electrode and the non-linear element
Forming the opposite electrode of the second substrate
Forming a cell by bonding the surface side was a step of thinning by polishing both sides of the cell, forming a counter electrode on both sides of the polished the cell, the third substrate and the 4 and a pixel electrode on the surface of the substrate 4.
Forming a non-linear element for applying a voltage to the elementary electrode; and forming the pixel electrode and the pixel electrode on the third substrate and the fourth substrate.
The surface on the side where the nonlinear element is formed is formed with the counter electrode.
Bonding the formed cell and sandwiching the first liquid crystal layer between the first substrate and the second substrate.
Injecting a second liquid crystal layer between the third substrate and the cell.
And that step, to inject a third liquid crystal layer between the fourth substrate and the cell
Method of manufacturing a display device characterized by comprising the that step.
JP16174597A 1997-06-19 1997-06-19 Display device and manufacturing method thereof Expired - Fee Related JP3290379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16174597A JP3290379B2 (en) 1997-06-19 1997-06-19 Display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16174597A JP3290379B2 (en) 1997-06-19 1997-06-19 Display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1115012A JPH1115012A (en) 1999-01-22
JP3290379B2 true JP3290379B2 (en) 2002-06-10

Family

ID=15741088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16174597A Expired - Fee Related JP3290379B2 (en) 1997-06-19 1997-06-19 Display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3290379B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274633B2 (en) 2006-03-14 2012-09-25 Sony Corporation Display device comprising a protective fixing member disposed only about a periphery of a semiconductor chip wherein a top side and a bottom side are co-planar with a respective top side and a bottom side of the semiconductor chip
CN101739987B (en) * 2008-11-10 2013-06-26 Nlt科技股份有限公司 Liquid crystal display device, liquid crystal display control device, electronic device, and liquid crystal display method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788349B1 (en) * 1999-01-08 2002-08-09 Thomson Csf METHOD FOR PRODUCING A LIQUID CRYSTAL CELL, LIQUID CRYSTAL CELL AND CHIP CARD INCLUDING SUCH A CELL
GB2405542A (en) * 2003-08-30 2005-03-02 Sharp Kk Multiple view directional display having display layer and parallax optic sandwiched between substrates.
JP2005077945A (en) * 2003-09-02 2005-03-24 Toshiba Matsushita Display Technology Co Ltd Method for manufacturing display device
JP2007219403A (en) * 2006-02-20 2007-08-30 Nanox Corp Reflection type color liquid crystal display device and its manufacturing method
JP2009122474A (en) * 2007-11-16 2009-06-04 Mitsubishi Electric Corp Liquid crystal display device and its manufacturing method
JP5285336B2 (en) * 2008-06-13 2013-09-11 セイコーインスツル株式会社 Manufacturing method of display element
JP5813434B2 (en) 2011-09-22 2015-11-17 株式会社ジャパンディスプレイ Liquid crystal display
JP6983539B2 (en) * 2017-05-26 2021-12-17 株式会社ジャパンディスプレイ Display device
GB2568240B (en) 2017-11-03 2023-01-25 Flexenable Ltd Method of producing liquid crystal devices comprising a polariser component between two lc cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274633B2 (en) 2006-03-14 2012-09-25 Sony Corporation Display device comprising a protective fixing member disposed only about a periphery of a semiconductor chip wherein a top side and a bottom side are co-planar with a respective top side and a bottom side of the semiconductor chip
US9091893B2 (en) 2006-03-14 2015-07-28 Japan Display Inc. Method of manufacturing a display device comprising a step of simultaneously polishing a second substrate and a semiconductor chip to have the same thickness as each other
CN101739987B (en) * 2008-11-10 2013-06-26 Nlt科技股份有限公司 Liquid crystal display device, liquid crystal display control device, electronic device, and liquid crystal display method

Also Published As

Publication number Publication date
JPH1115012A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US5625474A (en) Full-color liquid crystal display device and fabrication process therefor
JP3566028B2 (en) Liquid crystal display device and method of manufacturing the same
US7480018B2 (en) Color filter substrate, method for manufacturing the same, liquid crystal display panel, and electronic equipment
US6067134A (en) Stacked cell liquid crystal display device with connectors piercing though upper cells
JP4142058B2 (en) Electro-optical device and electronic apparatus
JP3697173B2 (en) Liquid crystal device and electronic device
JP2000267081A (en) Liquid crystal display device
JPH0736060A (en) Reflection type display device
JP3290379B2 (en) Display device and manufacturing method thereof
JP4776915B2 (en) Display panel, manufacturing method thereof, and liquid crystal display device having the same
KR100488840B1 (en) Liquid crystal device and electronic equipment
US20050157231A1 (en) Transflective mode liquid crystal display
JP2004354507A (en) Electrooptical device, electronic appliance, and method for manufacturing electrooptical device, and method for manufacturing electronic appliance
KR20050000447A (en) liquid crystal display devices
KR100853779B1 (en) Liquid Crystal Display device and Method for Manufacturing the same
JP3299917B2 (en) Liquid crystal display
WO2022241763A1 (en) Array substrate, opposite substrate and display panel
US20240105897A1 (en) Display device, method of manufacturing the same and tiled display device including the same
JP2005284139A (en) Display device and its manufacturing method
JP4258231B2 (en) Electro-optical device and electronic apparatus using the same
KR101044372B1 (en) A display panel using the flexibility of metal thin film and the fabrication method thereof
JP4466044B2 (en) Electro-optical device substrate, electro-optical device, electronic equipment
JP2007121326A (en) Electrooptical device and electronic appliance
JPH08220552A (en) Liquid crystal display panel and liquid crystal display devic
JPH04260021A (en) Manufacture of liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees