JPS6197964A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6197964A
JPS6197964A JP21991284A JP21991284A JPS6197964A JP S6197964 A JPS6197964 A JP S6197964A JP 21991284 A JP21991284 A JP 21991284A JP 21991284 A JP21991284 A JP 21991284A JP S6197964 A JPS6197964 A JP S6197964A
Authority
JP
Japan
Prior art keywords
layer
charge
silicon layer
source region
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21991284A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nihei
仁平 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21991284A priority Critical patent/JPS6197964A/en
Publication of JPS6197964A publication Critical patent/JPS6197964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • H01L29/78657SOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To feed any charge immediately to a source region preventing mainly threshold value fluctuation from happening by a method wherein a conductive layer is provided mounting both on the source region and a channel region not to accumulate the charge in a semiconductor layer supplied therefor by charge pumping action. CONSTITUTION:A high melting point metallic layer 22 coming into contact with the surface of sapphire 21 is provided mounting both on N<+> type source region 25 and a silicon layer 27 to be formed into a channel region. Any charge supplied for the silicon layer 27 by charge pumping action may be fed immediately to the source region 25 through the existing high melting point metallic layer 22. Through these procedures, no charge may be accumulated in the silicon layer 27 preventing any threshold value fluctuation due to the substrate bias effect from happening.

Description

【発明の詳細な説明】 〔兄明の技術分野〕 本発明は半導体装置に関し、特にサファイア等の絶縁性
基板上に設けられた島状の半纏体層に改良を加えた5O
8(Silicon On 5appira)構造のM
OS ! トランジスタに係わる。
[Detailed Description of the Invention] [Technical Field of Brother Mei] The present invention relates to a semiconductor device, and in particular to a 5O semiconductor device which is an improved island-shaped semi-solid layer provided on an insulating substrate such as sapphire.
8 (Silicon On 5appira) structure M
OS! Related to transistors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、SO8とかSOIと呼ばれている絶縁性基
板の上にシリコンを気相成長させた基板を用いてMO8
集積回路を製造されている。この場合、基板が絶縁され
ているため、完全な?イソレーションができ丞板に関係
した容量や寄生効果を大幅に低減することができ、高速
、かつ高性能な素子を得ることができるとされていた。
As is well known, MO8 is produced using an insulating substrate called SO8 or SOI, in which silicon is grown in vapor phase.
Integrated circuits are manufactured. In this case, since the board is insulated, is it complete? It was believed that isolation could be achieved and the capacitance and parasitic effects related to the plate could be significantly reduced, making it possible to obtain high-speed, high-performance devices.

しかしながら、素子を微細化し、高速動作を行なわせた
場合、SO8構造のMO8型トランノスタにおいては、
これに固有なテヤーノポンピング作用が起こり、絶縁性
基板を用いたことによる高速動作が損なわれることが明
らかになった(Charge pumplng in 
508−MOS Transistora+N、5aa
aki、IE3.  tranm−ED、11otED
−28,NOI  p48゜1981.1゜以下、テヤ
ーノボンビング作用とその影響について第2図き参照し
て説明する。
However, when the element is miniaturized and operated at high speed, in the MO8 type trannostar with SO8 structure,
It has become clear that a unique Teyano pumping effect occurs, impairing the high-speed operation achieved by using an insulating substrate (Charge pumping in
508-MOS Transistora+N, 5aa
aki, IE3. tranm-ED, 11otED
-28, NOI p48゜1981.1゜The Teyano bombing action and its influence will be explained below with reference to Figure 2.

図中の1は、サファイアである。このサファイアl上に
は例えばplの半纏体層2が設けられ、該半纏体層2に
N+型のソース領域3、ドレイン狽域4が夫々離間して
設けられている。前記半導体層2上には、ゲート酸化膜
5を介してゲート電極6が設けられている。
1 in the figure is sapphire. On this sapphire l, a semi-enveloped layer 2 of, for example, pl is provided, and an N+ type source region 3 and a drain entrapment region 4 are provided in the semi-enveloped layer 2, spaced apart from each other. A gate electrode 6 is provided on the semiconductor layer 2 with a gate oxide film 5 interposed therebetween.

こうした構造のMO8型トラ/ノスタにおいて、ゲート
・ぐルスV。があるf直よシ大きくなると、チャネルを
形成しているソース、ドレイン領域3゜4とゲート酸化
膜5の界面にホール7が流れる。
In the MO8 type Tora/Nosta with this structure, Gate Gurus V. When f becomes larger than a certain value, holes 7 flow to the interface between the source and drain regions 3.4 forming a channel and the gate oxide film 5.

そして、その後r−)電極6がOvになシチャネルがオ
フされるとホール7が半導体層2に注入される、いわゆ
るチャージポンピング作用が生じる。その結果、注入さ
れたホール7によジンース、ドレイン領域3.4は逆バ
イアスさヘテヤーノの蓄積が起こって半導体Jlj8の
電位が上昇する。これにより、トランジスタのしきい値
vthの変化(基板バイアス効果)が引起こされる。こ
の効果は、ゲート長が短縮されてトランジスタが微細化
されるに伴い半導体層8の不純物一度が制くした場合、
特に顕著にあられれる。従って、例えばSO8構造のM
O8型トランジスタでCMOSインバータ回路等を構成
し、そのゲート艮を縮小してもその遅延時間はチャーツ
ボ/ピング作用に起因した基板バイアス効果のためほと
んど改畳されない。
Thereafter, when the r-) electrode 6 becomes Ov and the channel is turned off, holes 7 are injected into the semiconductor layer 2, resulting in a so-called charge pumping effect. As a result, the injected holes 7 cause accumulation of reverse bias in the drain region 3.4, and the potential of the semiconductor Jlj8 increases. This causes a change in the threshold voltage vth of the transistor (substrate bias effect). If this effect is suppressed once the impurities in the semiconductor layer 8 are suppressed as the gate length is shortened and transistors are miniaturized,
Especially noticeable. Therefore, for example, M of SO8 structure
Even if a CMOS inverter circuit or the like is configured with O8 type transistors and the gate size thereof is reduced, the delay time is hardly changed due to the substrate bias effect caused by the chartrebo/ping effect.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、チャージポ
ンピング作用を抑制し、基板バイアス効果によるしきい
値変動を阻止し得る高速動作化、微細化可能な半導体装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor device that can operate at high speed and be miniaturized, which can suppress the charge pumping effect and prevent threshold fluctuations due to the substrate bias effect. .

〔発明の概要〕[Summary of the invention]

本発明は、ソース領域とチャネル領域にまたがるように
4篭層を設け、これによりチャージポンピング作用で半
導体層に注入されたチャージをそこに蓄積させることな
く、速やかにソース領域に引き出し、もって主としてし
きい値変動の阻止を図ったことを骨子とする。
The present invention provides four cage layers spanning the source region and the channel region, whereby charges injected into the semiconductor layer by a charge pumping action are quickly drawn out to the source region without being accumulated there. The main idea is to prevent threshold fluctuations.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例に係るSOS構造のMO8型ト
ランジスタを製造工程順に第1図(、)〜(d) t−
参照して説明する。
1(a) to (d) t-
Refer to and explain.

〔1〕まず、絶縁性基板としてのサファイア2ノ上にW
(タングステン)やMo(モリブデンノ等の高融点金属
をス・セッタリング法等によシ薄ぐ(数100X以下)
蒸着した。つづいて、写真蝕刻技術及びエツチング技術
によシ、所定形状の4電層としての高融点金属層22を
形成した(第1図(、)図示)。次いで、サファイア2
1全面にシリコンを気相成長法などにより堆積し九この
結果、高融金属層22上には多結晶シリコン層23が形
成され、かつ前記金属層22を除くサファイア2ノ上に
はシリコン層24が形成された(第1図(b)図示)。
[1] First, W is placed on sapphire 2 as an insulating substrate.
High melting point metals such as (tungsten) and Mo (molybdenum) are diluted (several 100X or less) by the S-setterling method, etc.
Deposited. Subsequently, a high melting point metal layer 22 as a tetraelectric layer having a predetermined shape was formed by photolithography and etching (as shown in FIG. 1(,)). Next, Sapphire 2
As a result, a polycrystalline silicon layer 23 is formed on the high-melting metal layer 22, and a silicon layer 24 is formed on the sapphire 2 excluding the metal layer 22. was formed (as shown in FIG. 1(b)).

〔11」次に、前記多結晶シリコ/層23をレーデアニ
ール及びEBアニール等のアニール技術により準結晶化
し、シリコン層とした(第1図(c)図示)。つづいて
、前記シリコン層24を周知の仮術により島状とした。
[11] Next, the polycrystalline silicon/layer 23 was quasi-crystalized by an annealing technique such as radar annealing and EB annealing to form a silicon layer (as shown in FIG. 1(c)). Subsequently, the silicon layer 24 was formed into an island shape using a well-known temporary technique.

次いで、この島状のシリコン層24にN+型のソース、
ドレイン領域25.26を形成した。この際、ソース領
域25は、前記金属)tg22がソース領域25とチャ
ネル領域を形成するシリコン層27にまたがるように位
置合わせした。この位置合わせは、従来のアライメント
技術で容易に行なうことができる。しかる後、チャネル
領域上にゲートe化膜28を介してゲート電極29を形
成し、所望のSO8構造のMO8型トランジスタを製造
した(第1図(d)図示〕。
Next, an N+ type source,
Drain regions 25 and 26 were formed. At this time, the source region 25 was aligned so that the metal tg22 spanned the source region 25 and the silicon layer 27 forming the channel region. This alignment can be easily accomplished using conventional alignment techniques. Thereafter, a gate electrode 29 was formed on the channel region via the gate e-oxide film 28, and an MO8 type transistor with a desired SO8 structure was manufactured (as shown in FIG. 1(d)).

本発明に係るMO8型トランジスタは、第1図(d)に
示す如く、高融点金属)d22をサファイア21表面に
接しつつN+型のソース領域25とチャネル領域が形成
されるシリコン層27にまたがるように設けた構造とな
っている。
In the MO8 type transistor according to the present invention, as shown in FIG. 1(d), the high melting point metal d22 is placed in contact with the surface of the sapphire 21 and extends over the silicon layer 27 in which the N+ type source region 25 and channel region are formed. It has a structure set up in

しかして、本発明によれば、高融点金属層22の存在に
よプ、チャージポンピング作用によってシリコン層27
に注入されたチャージを、高融点金属層22全通して速
やかにソース領域25に流すことができる。従って、シ
リコンノ曽27に前記チャージが蓄積されることなく、
基板バイアス効果によるしきい値変4hを阻止できる。
According to the present invention, the presence of the high-melting point metal layer 22 causes the silicon layer 27 to rise due to the charge pumping action.
The charges injected into the source region 25 can quickly flow through the entire high melting point metal layer 22 to the source region 25. Therefore, the charge is not accumulated in the silicon noso 27,
It is possible to prevent the threshold value change 4h due to the substrate bias effect.

その結果、例えば0MO3のインバータにより論理回路
を構成した場合、その遅延時間に対する態形#を回避で
きる。特に、高速動作をさせるためにゲート長をサブミ
クロンの長さにまで縮小した場合、トランジスタの・ぐ
ンテスルーを防止するためにシリコン層27にイオン注
入によシネ縄物を添加するが、本発明によればシリコン
層27の不純物濃度が高くてもチャーシボ/ピング作用
の影響を完全に抑えることができ、安定した効率のよい
高速動作を可能ならしめる。
As a result, when a logic circuit is constructed using, for example, an 0MO3 inverter, form # for the delay time can be avoided. In particular, when the gate length is reduced to a sub-micron length for high-speed operation, a cylindrical material is added to the silicon layer 27 by ion implantation to prevent transistor throughput. According to the above, even if the impurity concentration of the silicon layer 27 is high, the influence of the charcoal/pumping effect can be completely suppressed, making stable, efficient, and high-speed operation possible.

なお、上記実施例では、高融点金属Mをサファイア上に
徽して設けた場合について述べたが、これに限らない。
In addition, although the above-mentioned Example described the case where the high melting point metal M was provided on sapphire, it is not limited to this.

例えば、第3図(、)〜((り Vr−示すように設け
てもよい。まず、サジアイア21に跡31tl−形成し
た(第3図(、)図示〕。つづいて、高融点金属層4層
32、平坦化材としてのレノスト層33を順次形成した
(第3図(b)図示〕。次いで、エッチ・々ツク技術に
より溝31内に高融点金属層32′を残存させた。以下
、上記実施例と同様にしてN+型のソース、ドレイン領
域25゜26及びゲート電極29′f、形成すれば、S
OS構造のMO8型トランジスタを製造される(第3図
(C)図示少。また、高融点金属層は、第4図〜第6図
に示すように設けてもよい。以下順に説明する。
For example, the traces 31tl- may be provided as shown in FIG. A layer 32 and a renost layer 33 as a planarizing material were sequentially formed (as shown in FIG. 3(b)).Next, the refractory metal layer 32' was left in the groove 31 by an etch-and-scratch technique.Hereinafter, If N+ type source and drain regions 25 and 26 and gate electrode 29'f are formed in the same manner as in the above embodiment, S
An MO8 type transistor having an OS structure is manufactured (FIG. 3(C), not shown).Furthermore, the high melting point metal layer may be provided as shown in FIGS.

第4図は、サファイア21上に第1の島状のシリコン層
41t−形成した後、このシリコン層4ノ上に高融点金
属層42fc形成し、ひきつづき上記実施例と同様に第
2の島状のシリコン層43を形成するもので、前記金属
層42は第1゜第2のシリコン層41.4Jの積層の厚
み方向の中央より上側に配置される。
FIG. 4 shows that after forming a first island-shaped silicon layer 41t on sapphire 21, a high melting point metal layer 42fc is formed on this silicon layer 4, and then a second island-shaped silicon layer 41t is formed on the silicon layer 4. The metal layer 42 is disposed above the center in the thickness direction of the stack of the 1st and 2nd silicon layers 41.4J.

第5図は、高融点金属層5ノを、第1.第2のシリコン
)d’41 、43の積層の厚み方向の中央より下側に
配置したものである。その形成方法は、第1のシリコン
層4ノを形成後、該シリコン層に溝52を設け、更にこ
の溝52に高融点金属N51を残存させ、ひきつづき第
2のシリコン層43を形成するものである。
FIG. 5 shows the high melting point metal layer 5 in the first layer. (second silicon) d'41, 43 is placed below the center in the thickness direction of the stacked layers. The formation method is to form a first silicon layer 4, then provide a groove 52 in the silicon layer, leave high melting point metal N51 in this groove 52, and then form a second silicon layer 43. be.

第6図は、高融点金属1@61を島状のシリコン層24
の界面に設けたものである。
FIG. 6 shows a high melting point metal 1@61 in an island-like silicon layer 24.
It is provided at the interface of

上記実施例では、全面にシリコン全気相′成長後高融点
金属層上の多結晶シリコン層をアニール技術によυ単結
晶化する場合について述べたが、これに限らず、高融点
金属JWIを形成後CVD法などにより全面に多結晶シ
リコン層を形成し、これをアニール技術で単結晶しても
よい。
In the above embodiment, the case where the polycrystalline silicon layer on the high melting point metal layer is made into a single crystal by annealing technology after silicon is grown in full vapor phase on the entire surface is described, but this is not limited to this. After the formation, a polycrystalline silicon layer may be formed on the entire surface by a CVD method or the like, and this may be made into a single crystal by an annealing technique.

上記実施例では、導電層として高融点金属層を用いた場
合について述べたが、これに限らず、チャネル領域と高
融点金属層の接続抵抗が大きい場合には、従来技術を用
いて所定の部分に高濃度のイオン注入層を設ければよい
In the above embodiment, a case is described in which a high melting point metal layer is used as the conductive layer, but this is not limited to this. If the connection resistance between the channel region and the high melting point metal layer is large, a predetermined portion can be formed using conventional technology. A high-concentration ion-implanted layer may be provided.

上記実施例では、WやMo等からなる高融点金属層を用
いたが、これに限らず、高融点金属シリサイド層でもよ
い。
In the above embodiment, a high melting point metal layer made of W, Mo, etc. is used, but the layer is not limited to this, and a high melting point metal silicide layer may also be used.

上記実施例では、絶縁性基板としてサファイアを用いた
場合について述べたが、これに限らず、例えばシリコン
基板上に酸化膜を形成したものでもよい。
In the above embodiment, a case was described in which sapphire was used as the insulating substrate, but the present invention is not limited to this, and, for example, an oxide film formed on a silicon substrate may be used.

〔発明の効果」 以上詳述した如く本発明によれば、しきい値変動を阻止
し得る高速動作化、微細化可能な高信頼性のSO8構造
のMO8型トランジスタ等の半導体装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a semiconductor device such as an MO8 type transistor with an SO8 structure that can operate at high speed and can be miniaturized with high reliability, which can prevent threshold fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(d)は本発明の一実施例に係るSO3
構造のMO8型トランノスタ全製造工程順に示す断面図
、第2図は従来のSO8構造のMO8型トランジスタの
断面図、第3図(&)〜(c)は本発明の他の実施例に
係るSOS 構造のMO8型トランソスタを製造工程順
に示す断面図、第4図〜第6図は夫々本発明に係る4電
層の他の配置の例を示す断面図である。 2ノ・・・サファイア、22 、32 、32’ 、4
2.。 51.61・・・高融点金属層、23・・・多結晶シリ
コン層、24.41.43・・・シリコン層、25・・
・N+型のソース領域、26・・・N+型のドレイン領
域、27・・・チャネル領域を形成するシリコン層、2
9・・・ゲート電極、31.52・・・溝。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
FIG. 1(,) to (d) show SO3 according to an embodiment of the present invention.
2 is a cross-sectional view of an MO8-type transistor with a conventional SO8 structure, and FIGS. 3 (&) to (c) are cross-sectional views of an MO8-type transistor according to another embodiment of the present invention. FIGS. 4 to 6 are cross-sectional views showing an MO8-type transistor having a structure in the order of manufacturing steps, and FIGS. 4 to 6 are cross-sectional views showing other examples of arrangement of four electric layers according to the present invention, respectively. 2 No... Sapphire, 22, 32, 32', 4
2. . 51.61... High melting point metal layer, 23... Polycrystalline silicon layer, 24.41.43... Silicon layer, 25...
・N+ type source region, 26... N+ type drain region, 27... silicon layer forming a channel region, 2
9...Gate electrode, 31.52...Groove. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板と、この基板上に設けられたソース、ドレ
イン領域を有する島状の半導体層と、前記ソース、ドレ
イン領域間のチャネル領域上にゲート酸化膜を介して設
けられたゲート電極と、前記ソース領域とソース、ドレ
イン領域を除く半導体層にまたがって形成された導電層
とを具備することを特徴とする半導体装置。
an insulating substrate, an island-shaped semiconductor layer provided on the substrate and having source and drain regions, a gate electrode provided on the channel region between the source and drain regions via a gate oxide film, and the A semiconductor device comprising a source region and a conductive layer formed across a semiconductor layer excluding the source and drain regions.
JP21991284A 1984-10-19 1984-10-19 Semiconductor device Pending JPS6197964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21991284A JPS6197964A (en) 1984-10-19 1984-10-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21991284A JPS6197964A (en) 1984-10-19 1984-10-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6197964A true JPS6197964A (en) 1986-05-16

Family

ID=16742964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21991284A Pending JPS6197964A (en) 1984-10-19 1984-10-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6197964A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405063A2 (en) * 1989-04-29 1991-01-02 Fujitsu Limited An insulated-gate fet on an soi-structure
US4984041A (en) * 1989-07-28 1991-01-08 Xerox Corporation High voltage thin film transistor with second control electrode
US4984040A (en) * 1989-06-15 1991-01-08 Xerox Corporation High voltage thin film transistor with second gate
US5264721A (en) * 1989-04-29 1993-11-23 Fujitsu Limited Insulated-gate FET on an SOI-structure
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5428234A (en) * 1992-07-20 1995-06-27 Sony Corporation Semiconductor device
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
EP1287563A1 (en) * 2000-05-16 2003-03-05 Infineon Technologies AG Field effect transistor and method for producing a field effect transistor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5565697A (en) * 1988-06-28 1996-10-15 Ricoh Company, Ltd. Semiconductor structure having island forming grooves
EP0405063A2 (en) * 1989-04-29 1991-01-02 Fujitsu Limited An insulated-gate fet on an soi-structure
US5264721A (en) * 1989-04-29 1993-11-23 Fujitsu Limited Insulated-gate FET on an SOI-structure
US4984040A (en) * 1989-06-15 1991-01-08 Xerox Corporation High voltage thin film transistor with second gate
US4984041A (en) * 1989-07-28 1991-01-08 Xerox Corporation High voltage thin film transistor with second control electrode
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5428234A (en) * 1992-07-20 1995-06-27 Sony Corporation Semiconductor device
EP1287563A1 (en) * 2000-05-16 2003-03-05 Infineon Technologies AG Field effect transistor and method for producing a field effect transistor

Similar Documents

Publication Publication Date Title
US7804110B2 (en) Field effect transistor with a heterostructure
US5894157A (en) MOS transistor having an offset resistance derived from a multiple region gate electrode
US4980306A (en) Method of making a CMOS device with trench isolation device
JPH0656888B2 (en) Semiconductor device
JPS6336566A (en) Semiconductor device
JPS6197964A (en) Semiconductor device
US3804681A (en) Method for making a schottky-barrier field effect transistor
JPH07131007A (en) Semiconductor device
JP3463593B2 (en) Field effect transistor and method of manufacturing the same
EP0690513B1 (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
EP0436038A1 (en) Semiconductor device and method of producing the same
JPH04171765A (en) Semiconductor device
US20120126330A1 (en) Enhanced Thin Film Field Effect Transistor Integration into Back End of Line
JPS6020582A (en) Mis transistor and manufacture thereof
JPS621270B2 (en)
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JP3411370B2 (en) Semiconductor device manufacturing method and semiconductor device
EP0297508A2 (en) Complementary heterostructure semiconductor device
JPH11260934A (en) Semiconductor device and manufacture thereof
JPH04115538A (en) Semiconductor device
JPH05198686A (en) Semiconductor device and its manufacture
JPS5934663A (en) Mis field effect type transistor
JP3467288B2 (en) Vertical junction field-effect transistor with optimized bipolar operation mode and method of manufacturing the same
JPS61177780A (en) Manufacture of semiconductor device