JPS6189621A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6189621A
JPS6189621A JP59211703A JP21170384A JPS6189621A JP S6189621 A JPS6189621 A JP S6189621A JP 59211703 A JP59211703 A JP 59211703A JP 21170384 A JP21170384 A JP 21170384A JP S6189621 A JPS6189621 A JP S6189621A
Authority
JP
Japan
Prior art keywords
film
thickness
silicon nitride
island
lpcvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211703A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59211703A priority Critical patent/JPS6189621A/en
Priority to EP85111301A priority patent/EP0178447B1/en
Priority to DE8585111301T priority patent/DE3587100T2/en
Priority to KR1019850007151A priority patent/KR900000561B1/en
Publication of JPS6189621A publication Critical patent/JPS6189621A/en
Priority to US07/513,045 priority patent/US5077233A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve the flexibility in designing an LSI, by applying laser beams to a non-single-crystal semiconductor film on an insulation layer with the use of an anti-reflecting film having windows, and thereby providing island- shaped single crystal regions in the semiconductor film. CONSTITUTION:A silicon wafer 3 is thermally oxidized to form an SiO2 film 4 having a thickness of 1mum. A silicon nitride film 5 is deposited thereon to a thickness of 1,000Angstrom by means of low pressure chemical vapor deposition (LPCVD), and a polysilicon film 6 to be recrystallized is further deposited thereon to a thickness of 4,000Angstrom by LPCVD. An SiO2 film 7 is formed thereon to a thickness of 300Angstrom by thermal oxidization, and a silicon nitride film 8 is deposited thereon to a thickness of 300Angstrom by LPCVD. Accordingly, an anti- reflecting film 3 is provided by the SiO2 film 7 and the silicon nitride film 8. The anti-reflecting film thus formed all over the wafer is provided with island-like windows at the positions corresponding to the regions where the desired elements are to be formed, and the polysilicon within the windows is recrystallized without crystal grain boundaries.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、詳しくは窓を開けた反
射防止膜を用い、レーザ照射により単結晶化過程で要求
される温度分布をアイランド状に形成し単結晶領域を作
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a semiconductor device manufacturing method, using an anti-reflection film with an open window, the temperature distribution required in the single crystallization process is controlled by laser irradiation. This invention relates to a method of forming a single crystal region into a single crystal region.

〔従来の技術〕[Conventional technology]

非晶質絶縁層上の非単結晶半導体膜(シリコン・オン・
インシュレータ、SOI )を単結晶化するために、反
射防止膜を利用する技術がある。これは、非単結晶半導
体股上にストライプ状の反射防止膜をパターニングして
おき、パターンに沿ってレーザ光をスキャニングしてレ
ーザ光の半導体膜中への吸収量を制御して、単結晶化過
程で要求される温度分布を半導体膜中に形成するもので
ある。
Non-single crystal semiconductor film (silicon on silicon) on an amorphous insulating layer
There is a technique that uses an anti-reflection film to make an insulator (SOI) into a single crystal. This process involves patterning a striped anti-reflection film on a non-single-crystal semiconductor, scanning laser light along the pattern, and controlling the amount of laser light absorbed into the semiconductor film during the single-crystalization process. This is to form the temperature distribution required in the semiconductor film.

第4図(a)の平面図とそのB−B線に沿う(blの断
面図を参照すると、21は非晶質絶縁層、22は再結晶
化すべき多結晶シリコン(ポリシリコン)またはアモル
ファスシリコン膜、23はストライプ状のシリコン窒化
11Q (Si、INq )膜(反射防止膜)を示す。
Referring to the plan view of FIG. 4(a) and its cross-sectional view along line B-B (bl), 21 is an amorphous insulating layer, 22 is polycrystalline silicon (polysilicon) or amorphous silicon to be recrystallized. The film 23 is a striped silicon nitride 11Q (Si, INq) film (antireflection film).

ここで、シリコン窒化膜3相互間の間隔よりも大なるス
ボ・ノド径のアルゴンレーザ(Ar JonLa5er
+波長4880人および5460人を主波長成分とする
)を照射すると、反射防止膜の形成されていない部分で
のレーザ光エネルギーの反射率は35%、シリコン窒化
膜の下では50%程度であり、第4図(b)に示す構造
においては同図(C1に示される&変分布が得られる。
Here, an argon laser (Argon laser) with a diameter larger than the interval between the silicon nitride films 3 is used.
+ wavelengths of 4880 and 5460), the reflectance of the laser light energy is 35% in the area where the anti-reflection film is not formed, and about 50% under the silicon nitride film. , in the structure shown in FIG. 4(b), the &variant distribution shown in FIG. 4(C1) is obtained.

同図で縦軸Tは温度を、横軸はポリシリコン股のす伯を
示すが、シリコン窒化j模23の間の中間点でポリシリ
コン膜は温度が最も低く、そごが最初に冷却して再結晶
化し小結晶ノリコンとなり、シリコン窒化膜の下には結
晶粒界が発生する。
In the same figure, the vertical axis T shows the temperature, and the horizontal axis shows the thickness of the polysilicon film.The temperature of the polysilicon film is the lowest at the midpoint between the silicon nitride films and the film cools down first. The silicon nitride film recrystallizes to become small crystalline silicon, and crystal grain boundaries are generated under the silicon nitride film.

その結果、第4図(a)に符号24で示すシートから核
成長か始まり、それはレーザ光が同図に見て上方に進む
につれて上方に引きずられて行く。同図の曲線25はか
かる核成長の拡がりを模式的に示すものである。
As a result, nucleus growth begins from the sheet shown at 24 in FIG. 4(a), which is dragged upward as the laser beam advances upward as seen in the figure. A curve 25 in the figure schematically shows the spread of such nuclear growth.

(発明かIW決しようとする問題点) 上記した非単結晶半導体膜の単結晶化において、素子形
成領域26a(第4図(a))が反射防止膜の存在しな
い部分にあると、同領域は単結晶化されるので特に問題
はないが、素子形成領域が26bで示されるように反射
防止膜の下の部分を含むものであるときには、そこにグ
レインが存在して素子を形成するに適しない。すなわち
、上記例において:よ、素子形成領域がストライブ状の
反射防止膜の1田に位置しなければならないという回路
設計上の制約か加わる問題がある。
(Problems to be resolved by the invention or IW) In the single crystallization of the non-single crystal semiconductor film described above, if the element formation region 26a (FIG. 4(a)) is located in a portion where no antireflection film exists, the same region There is no particular problem since it is single-crystalized, but when the element formation region includes a portion under the antireflection film as shown by 26b, grains are present there and it is not suitable for forming an element. That is, in the above example, there is an additional problem in that the element formation region must be located in one area of the striped antireflection film, which is a restriction on circuit design.

〔問題点を)W決するだめの手段〕[Means to resolve the issue]

本発明は上記問題点を解決した半導体装置の製造方法を
提供するもので、その手段は、非晶質絶縁層上の非単結
晶半導体膜を単結晶化する方法において、非単結晶″−
14導体股上にエネルギービームの反射防止膜を形成し
、該反射防止膜に窓を開け、しかる後に前記窓を通して
エネルギービームを照射し前記領域の非す1結晶半導体
を小結晶化することを特徴とする半導体装置の製造方法
によってなされる。
The present invention provides a method for manufacturing a semiconductor device that solves the above-mentioned problems.
14, forming an energy beam anti-reflection film on the crotch of the conductor, opening a window in the anti-reflection film, and then irradiating the energy beam through the window to crystallize the non-single-crystalline semiconductor in the region. This is accomplished by a method of manufacturing a semiconductor device.

〔作用〕[Effect]

上記方法においては、反射防止膜に窓をあけ、単結晶化
過程で要求される温度分布をアイラン]・状に形成し、
直接アイランド形状の単結晶化領域を作るものである。
In the above method, a window is opened in the anti-reflection film and the temperature distribution required in the single crystallization process is formed in the shape of an island.
This method directly creates an island-shaped single crystal region.

従って、単結晶化しようとするアイランド領域が反射防
止膜に形成する窓の配置、形状および大きさに一致して
形成できるので、自由度の高いLSI設計が可能となる
Therefore, the island region to be single-crystalized can be formed in accordance with the arrangement, shape, and size of the window formed in the antireflection film, making it possible to design an LSI with a high degree of freedom.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明実施例は第1図(alの平面図と同図のB−B線
に沿う拡大断面を示す(blの断面図に示され、La、
、、 leは反射防止膜2に形成された窓を示す。
Embodiments of the present invention are shown in FIG.
,, le indicates a window formed in the antireflection film 2.

第1図fblの断面図を参照すると、シリコンウェハ3
に熱酸化により1μmのj漢j¥の5iOz ll臭4
を形成し、その上にシリコン窒化膜5を減圧化学気相成
長法(LPCVD法)で1000人のj膜厚に成長し、
その」−に再結晶化すべきポリシリコン膜6をLPCV
D法で4000人のj膜厚に成長し、その上に5i02
膜7を300人の膜厚に熱酸化により形成し、その上に
シリコン窒化膜8をL P CV D法で300人の膜
厚に成長する。従って、 5iO211梁7とシリコン
窒化11Q 8とで第1図fa)の反射防止膜2が構成
される。
Referring to the cross-sectional view of FIG. 1 fbl, the silicon wafer 3
5iOz ll odor of 1μm by thermal oxidation 4
A silicon nitride film 5 is grown thereon to a thickness of 1000 nm by low pressure chemical vapor deposition (LPCVD),
LPCV the polysilicon film 6 to be recrystallized.
Grow to a film thickness of 4000 μm using the D method, and add 5i02 on top of it.
A film 7 is formed to a thickness of 300 nm by thermal oxidation, and a silicon nitride film 8 is grown thereon to a thickness of 300 nm by the LPCCVD method. Therefore, the 5iO211 beam 7 and the silicon nitride 11Q 8 constitute the antireflection film 2 shown in FIG. 1fa).

第1図ta+の実施例は、反射防止膜が従来例の如くス
トライブ状に形成されるものでな(、ウェハ全面上に形
成された反射防止膜に、所望の素子形成領域に対応した
アイランド状の窓を作り、これらの窓領域のポリシリコ
ンを結晶粒界な(再結晶化するものである。
In the embodiment shown in FIG. 1 ta+, the anti-reflection film is not formed in a stripe shape as in the conventional example. The process involves creating windows with shapes and recrystallizing the polysilicon in these window areas at grain boundaries.

単結晶化には、例えばGW (連続波)のArレーザ(
パワーは8〜14W)を用い、スキャンスピードは1〜
5μm/seaとし、シリコンウェハ3は450°Cに
加熱し空気中でスキャンする。スキャンはレーザ光源を
固定しウェハを動かしてなしたが、逆になすことも可能
である。すだ、再結晶化に用いるエネルギー源はレーザ
光に限定されるものではなく、その他のエネルギービー
ムも用いうる。
For single crystallization, for example, a GW (continuous wave) Ar laser (
Power is 8~14W), scan speed is 1~
5 μm/sea, and the silicon wafer 3 is heated to 450° C. and scanned in air. Scanning was performed by fixing the laser light source and moving the wafer, but it is also possible to do the opposite. However, the energy source used for recrystallization is not limited to laser light, and other energy beams may also be used.

第2図ta>の平面図には第1図のア・イラントの1つ
1aのみが示されるが、このアイランドにおけるレーザ
光照射後の温度分布は同図(blと(C)に示ず如くで
ある。なお、同図fb)、(C1の線図において、符号
Tを付した軸は温度を、その軸に直交する軸はアイラン
ドの幅を示す。すなわち、アイランドの中心部分が最も
低温で、アイランドの周辺に近つくにつれて温度が高く
なる61に四分布が得られる。
The plan view in Figure 2 (ta) shows only one of the island 1a in Figure 1, but the temperature distribution after laser beam irradiation on this island is as shown in the same figure (bl and (C)). In the diagram fb in the same figure, (C1), the axis with the symbol T indicates the temperature, and the axis perpendicular to that axis indicates the width of the island.In other words, the center part of the island is the lowest temperature. , a four-dimensional distribution is obtained in which the temperature increases as it approaches the periphery of the island.

従って、固化過十二aでの核成長はアイランドの中心に
できるシード9を基点に始まりまわりに曲線10に示す
如く拡がってアイランド形状の単結晶化領域が形成され
、その過■♀においてはダレインハウンダリーの発生は
全くないので、単結晶化か良好に進行する。
Therefore, the nucleus growth in the solidified over-12a starts from the seed 9 formed at the center of the island and spreads around it as shown by the curve 10, forming an island-shaped single crystal region, and in the over-solidification, there is no sag. Since no inhoundry occurs, single crystallization progresses well.

レーザ光の照射方法を第3図の模式的平面図を参照して
説明すると、レーザ光のスポット径がTであるとき、レ
ーザ光のスキャン方向く図に矢印Iで示す)に対して直
角方向のアイランドif、、、。
The laser beam irradiation method will be explained with reference to the schematic plan view in Fig. 3. When the laser beam spot diameter is T, the direction perpendicular to the scanning direction of the laser beam (indicated by arrow I in the figure) is as follows. Island if...

11の横方開拡がり t (f 、、、i)は、 t 
(f 、、、i)くTであることが必要で、レーザ光は
、スポットを部分的に重ねて(オーバーランプさせて)
照射する。
The lateral spread t (f,,,i) of 11 is t
(f,,,i) It is necessary that the laser beam is partially overlapped (overlamped)
irradiate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、窓を開けた反射防
止膜を用いてレーザ光照射によりアイランド形状の単結
晶領域を絶縁層上の非単結晶半導体膜に形成することが
できるので、LSIの設計の自由度を高めるに効果大で
ある。なお、SOIの再結晶化にはレーザ光のみならず
その他のエネルギービームを使用しうるちのであり、本
発明の適用範囲は上記した数値に制限されるものでない
As explained above, according to the present invention, an island-shaped single crystal region can be formed in a non-single crystal semiconductor film on an insulating layer by laser beam irradiation using an antireflection film with an open window. This is highly effective in increasing the degree of freedom in design. Note that not only laser light but also other energy beams can be used for recrystallization of SOI, and the scope of application of the present invention is not limited to the above-mentioned values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の方法を実施する工程における半
導体装置要部の平面図、同図(b)はその(a)におけ
るB−B線に沿う拡大断面図、第2図(alは第1図+
a)のアイランド領域の1つの平面図、同図(b)と(
C1はアイランドの温度分布を示す線図、第3図はレー
ザ光照射方法を示すための第1図のアイランド領域の平
面図、第4図(a)は従来方法を示す半導体装置要部の
平面図、同図fb)はその(a)におけるB−B線に沿
う断面図である。 図中、1a、、、liはアイランド、2は反射防止1模
、3はシリコンウェハ、4と7は5r02膜、5ト8は
シリコン窒化膜、6はポリシリコン膜、をそれぞれ示す
。 特 許 出願人  富士通株式会’;i7.r代理人 
弁理士  松 岡 宏四負町ぐ」、1第1図 第2図 (a)       (c) 第3図 +7
FIG. 1(a) is a plan view of the main part of a semiconductor device in the step of carrying out the method of the present invention, FIG. 1(b) is an enlarged sectional view taken along line B-B in FIG. is Figure 1 +
A plan view of one of the island regions in a), (b) and (
C1 is a diagram showing the temperature distribution of the island, FIG. 3 is a plan view of the island region in FIG. 1 to show the laser beam irradiation method, and FIG. 4(a) is a plan view of the main part of the semiconductor device showing the conventional method. Figure fb) is a sectional view taken along line B-B in (a). In the figure, 1a, . . . li are islands, 2 is an anti-reflection model 1, 3 is a silicon wafer, 4 and 7 are 5R02 films, 5 and 8 are silicon nitride films, and 6 is a polysilicon film, respectively. Patent applicant: Fujitsu Limited; i7. r agent
Patent Attorney Hiroshi Matsuoka, 1 Figure 1 Figure 2 (a) (c) Figure 3 +7

Claims (1)

【特許請求の範囲】[Claims]  非晶質絶縁層上に形成された非単結晶半導体膜上にエ
ネルギービームの反射防止膜を形成し、該反射防止膜に
窓を開け、しかる後に前記窓を有する反射防止膜を通し
てエネルギービームを照射し前記窓領域内の非単結晶半
導体を結晶粒界なく再結晶化することを特徴とする半導
体装置の製造方法。
Forming an energy beam antireflection film on a non-single crystal semiconductor film formed on an amorphous insulating layer, opening a window in the antireflection film, and then irradiating an energy beam through the antireflection film having the window. A method of manufacturing a semiconductor device, characterized in that the non-single crystal semiconductor within the window region is recrystallized without grain boundaries.
JP59211703A 1984-10-09 1984-10-09 Manufacture of semiconductor device Pending JPS6189621A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59211703A JPS6189621A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device
EP85111301A EP0178447B1 (en) 1984-10-09 1985-09-06 A manufacturing method of an integrated circuit based on semiconductor-on-insulator technology
DE8585111301T DE3587100T2 (en) 1984-10-09 1985-09-06 METHOD FOR PRODUCING AN INTEGRATED CIRCUIT BASED ON THE SEMICONDUCTOR ON ISOLATOR TECHNOLOGY.
KR1019850007151A KR900000561B1 (en) 1984-10-09 1985-09-27 Manufacturing method of an ic and device
US07/513,045 US5077233A (en) 1984-10-09 1990-04-23 Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211703A JPS6189621A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6189621A true JPS6189621A (en) 1986-05-07

Family

ID=16610188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211703A Pending JPS6189621A (en) 1984-10-09 1984-10-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6189621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693312A (en) * 1979-12-26 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
JPS58184720A (en) * 1982-04-23 1983-10-28 Nec Corp Manufacture of semiconductor film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693312A (en) * 1979-12-26 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
JPS58184720A (en) * 1982-04-23 1983-10-28 Nec Corp Manufacture of semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
EP0235819B1 (en) Process for producing single crystal semiconductor layer
US5077233A (en) Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein
JPS62172713A (en) Manufacture of semiconductor device
US4661167A (en) Method for manufacturing a monocrystalline semiconductor device
JPS63102265A (en) Manufacture of semiconductor device
JPS62132311A (en) Recrystallizing method for conductor film
JPS6115319A (en) Manufacture of semiconductor device
JPS6189621A (en) Manufacture of semiconductor device
JPS6342417B2 (en)
JPS6159820A (en) Manufacture of semiconductor device
JPS6347256B2 (en)
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPH02267931A (en) Manufacture of semiconductor device
JPH0236051B2 (en)
JPS62219510A (en) Formation of single crystal island region
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH0560668B2 (en)
JPS6236809A (en) Single crystal growth
JPS58180019A (en) Semiconductor base body and its manufacture
JPS6149411A (en) Single crystallizing method of silicon film
JPS62130509A (en) Manufacture of semiconductor substrate
JPH0523492B2 (en)
JPS60231319A (en) Manufacture of semiconductor device
JPS63271916A (en) Formation of silicon thin film
JPH0136244B2 (en)