JPS6188495A - Manufacture of luminous body - Google Patents

Manufacture of luminous body

Info

Publication number
JPS6188495A
JPS6188495A JP59199731A JP19973184A JPS6188495A JP S6188495 A JPS6188495 A JP S6188495A JP 59199731 A JP59199731 A JP 59199731A JP 19973184 A JP19973184 A JP 19973184A JP S6188495 A JPS6188495 A JP S6188495A
Authority
JP
Japan
Prior art keywords
porous layer
emitting body
light emitting
film
anodizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59199731A
Other languages
Japanese (ja)
Other versions
JPH0524639B2 (en
Inventor
馬場 宣良
一成 水木
川田 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP59199731A priority Critical patent/JPS6188495A/en
Publication of JPS6188495A publication Critical patent/JPS6188495A/en
Publication of JPH0524639B2 publication Critical patent/JPH0524639B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、アルミニウム部材又はその合金に陽極酸化処
理を施して形成される多孔質層を逆電解法によって母材
から薄膜状に剥離させた後、この多孔質層の孔中に希土
類金属を電気化学的手段で封入するようにした発光体の
製造法に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is a method in which a porous layer formed by anodizing an aluminum member or its alloy is peeled off from a base material in a thin film form by a reverse electrolytic method. The present invention then relates to a method for producing a light emitting body in which a rare earth metal is encapsulated in the pores of the porous layer by electrochemical means.

「従来の技術」 従来、不安定な有機物ではないマンガン、ユーマビウム
(Eu)又はテルビウム(Tb)等の希土類金属の付活
剤による固体発光体として、例えば、アルミニウム線に
対してニオブを0.37%合金したものを1%リン酸溶
液、140Vで陽極酸化中にオレンジ色のEL発光を行
わせること、或いはアルミニウムーテルビウム合金膜を
真空同時蒸着法で作製し、これをホウ酸アンモニウム浴
でDC陽極酸化することにより、テルビウム特有の緑色
EL発光が得られることなどが知られている。更に、真
空同時蒸着法によってE uをTaに添加し、これを陽
極酸化処理しながら赤色EL光発光行わせること等も報
告されている。
``Prior Art'' Conventionally, as a solid luminescent material using an activator of a rare earth metal such as manganese, eumabium (Eu), or terbium (Tb), which is not an unstable organic substance, for example, niobium was added to an aluminum wire at 0.37% % alloyed material in a 1% phosphoric acid solution at 140 V to cause orange EL emission during anodic oxidation, or create an aluminum-terbium alloy film by vacuum simultaneous evaporation method, and then apply DC in an ammonium borate bath. It is known that green EL emission unique to terbium can be obtained by anodic oxidation. Furthermore, it has also been reported that Eu is added to Ta by a vacuum simultaneous evaporation method, and red EL light is emitted while the Ta is anodized.

「発明が解決しようとする問題点」 上記従来の手法によれば、いずれもアルミニウムに合金
として希土類金属等を添加しなければならない為、固体
発光体としては極めて高価となり実用上大きな難点があ
る。
``Problems to be Solved by the Invention'' According to the above-mentioned conventional methods, since rare earth metals and the like must be added to aluminum as an alloy, they are extremely expensive as solid-state light emitters, and have a major practical drawback.

「問題点を解決するための手段」 本発明は、上記事情に鑑み、アル4ニウム部材又はその
合金に陽極酸化処理を施して多孔質層を形成し、逆電解
手段を使用して該多孔質層のみを母材から剥離させ、剥
離して得られた該多孔質層を希土類金属塩溶液に浸漬し
て該多孔質層の孔中に希土類金属を浸漬吸着させた後、
熱処理を加えて浸漬吸着させた上記希土類金属の封入付
活化を図るようにした薄膜状の発光体の製造法を提供す
るものである。
"Means for Solving the Problems" In view of the above circumstances, the present invention provides an anodic oxidation treatment for an aluminum member or its alloy to form a porous layer, and a method for forming a porous layer using reverse electrolysis means. Only the layer is peeled from the base material, and the porous layer obtained by peeling is immersed in a rare earth metal salt solution to soak and adsorb the rare earth metal into the pores of the porous layer.
The object of the present invention is to provide a method for manufacturing a thin film-like light emitting body in which the rare earth metal is encapsulated and activated by heat treatment and immersion adsorption.

「作    用」 本発明に係る発光体の製造法によれば、前記手段により
、上記多孔質層を母材から実用上十分な面積で良好に剥
離可能となり、従って、作製すべき発光体も薄膜状に構
成することが出来る。
"Function" According to the method for producing a light emitter according to the present invention, the porous layer can be peeled off from the base material in a practically sufficient area by the above means, and therefore the light emitter to be produced can also be made into a thin film. It can be configured as follows.

斯かる薄膜状発光体の発光励起手段として、例えば、電
界励起手段を採用するような場合、この薄膜状の発光体
の一方面にネサガラス等の電極を設け、発光体の他方面
には適宜蒸着金属膜等からなる他の電極を形成して電界
励起発光動作を安定的に行わせることが可能となる。即
ち、励起引加電圧を上昇させた場合、仮にこの薄膜状の
発光体が局部的にブレークダウンを起こしても、発光体
はアルミニウム母材の無い薄膜状の多孔質層のみから構
成されているので、ブレークダウンと同時にその部位の
両電極も無くなり、従って、発生後瞬時にブレークダウ
ンが自消して電圧破壊の拡大を阻止するようになる。こ
れによって、高電界下に於いても均一、安定なEL発光
動作が得られる。
When employing, for example, electric field excitation means as a means for emitting light from such a thin film-like light emitter, an electrode made of Nesa glass or the like is provided on one side of the thin film-like light emitter, and an electrode made of Nesa glass or the like is provided on the other side of the light emitter as appropriate. By forming another electrode made of a metal film or the like, it becomes possible to stably perform the electric field excitation light emission operation. In other words, even if the thin film-like luminescent material locally breaks down when the excitation applied voltage is increased, the luminous material is composed only of a thin film-like porous layer without an aluminum base material. Therefore, at the same time as the breakdown occurs, both electrodes at that location disappear, and therefore, the breakdown self-extinguishes instantly after it occurs, preventing the voltage breakdown from expanding. As a result, uniform and stable EL light emission operation can be obtained even under a high electric field.

「実 施 例」 図面は、本発明の一実施例による発光体の製造例を示す
概念図であって、第1図の如く、先ず使用すべきアp 
4 =ラム板1は純度的9999%程度のものとし、そ
の表面2は、例えば体積比4:1のエチルアルコール、
過塩素酸浴の10℃以下の液温における電解研磨等の手
段で平滑に形成すると共に、脱詣処理として、5重量%
前後のNaOH中で60〜65℃、2分間程度浸漬処理
したのち、十分に水洗するのが望ましい。前処理したこ
のアルミニウム板1は、これをDC17〜20■、電流
密度50 mA/cd 〜80 mA/c++f 、液
温15〜20℃の条件からなる10%の硫酸洛中で陽極
酸化処理すると、第2図に示すように、その表面には無
数の微細な孔3を有する多孔質J914とその底部にバ
リヤ層5を形成することが出来るO 斯かる陽極酸化処理により、多孔質層4には、孔3の直
径が約150A程度で数億個A4位の密度のものを厚さ
100μm以上に形成することが可能となる。多孔質層
4の厚さは、陽極酸化処理時の通電時間を10〜60分
等に適宜制御することにより所望の厚さに制御すること
が出来る。また、このような多孔質Wi4とアルミニウ
ム板1の母材との境界領域に形成されるバリヤ層5の厚
さは、約200人程度となる。
"Embodiment" The drawing is a conceptual diagram showing an example of manufacturing a light emitting body according to an embodiment of the present invention, and as shown in FIG.
4 = The ram plate 1 has a purity of about 9999%, and its surface 2 is made of, for example, ethyl alcohol at a volume ratio of 4:1,
It is formed smooth by means such as electrolytic polishing in a perchloric acid bath at a liquid temperature of 10°C or less, and as a demolition treatment, 5% by weight
It is desirable to perform immersion treatment in NaOH at 60 to 65° C. for about 2 minutes before washing thoroughly with water. This pretreated aluminum plate 1 is anodized in a 10% sulfuric acid solution under the conditions of DC 17 to 20 cm, current density of 50 mA/cd to 80 mA/c++f, and liquid temperature of 15 to 20°C. As shown in Figure 2, the porous layer 4 has numerous fine pores 3 on its surface and a barrier layer 5 can be formed on its bottom. It becomes possible to form holes 3 with a diameter of about 150 A and a density of several hundred million A4 holes with a thickness of 100 μm or more. The thickness of the porous layer 4 can be controlled to a desired thickness by appropriately controlling the current application time during the anodizing treatment to 10 to 60 minutes. Further, the thickness of the barrier layer 5 formed in the boundary area between the porous Wi 4 and the base material of the aluminum plate 1 is about 200 layers.

この第−次陽極酸化工程後に、約10%前後の硫酸浴中
で約DC5〜IOVの低電圧であって電流密度5〜10
 mA/c++!、数分から10分の条件で二次陽極酸
化処理を施すことにより、第2図のように番孔3の底部
に更に微細な孔3Aを形成して付活封入すべき金属の封
入面積を増加させると共にその付活能の強化と安定化を
図るのが好適である。
After this first anodization step, the anodizing process is performed in a sulfuric acid bath of about 10% at a low voltage of about DC5 to IOV and at a current density of 5 to 10V.
mA/c++! By performing secondary anodic oxidation treatment for several minutes to 10 minutes, a finer hole 3A is formed at the bottom of the hole 3 as shown in Figure 2, increasing the area of the metal to be activated and sealed. It is preferable to strengthen and stabilize its activation ability.

アルミニウム板1に設けるべき多孔質層4の他の形成手
段としては、シュウ酸皮膜形成法を挙げることができる
。シュウ酸皮膜形成法の場合、陽極酸化処理浴としては
、約2〜5%の濃度であって、温度20℃前後のものを
建浴し、DC約SOV、電流密度約1 mA/c、1〜
10mA/ciN陽極酸化時間数分〜約10%)条件で
アルミニウム板lに満足する多孔質層4を形成できる。
Another method for forming the porous layer 4 to be provided on the aluminum plate 1 is an oxalic acid film forming method. In the case of the oxalic acid film forming method, an anodic oxidation bath with a concentration of about 2 to 5% and a temperature of around 20°C is prepared, with a DC of about SOV, a current density of about 1 mA/c, and 1 ~
A satisfactory porous layer 4 can be formed on the aluminum plate 1 under the conditions of 10 mA/ciN anodic oxidation time of several minutes to about 10%.

なお、素材としてアルi 二つみ板1の代りに例えば1
%マンガン、アルミニウム合金板を使用することも可能
である。
In addition, the material is aluminum.For example, instead of the two-piece plate 1,
% manganese, it is also possible to use aluminum alloy plates.

このような合金板を素材として使用する場合、マンガン
は硫酸溶液に溶解するので、陽極酸化処理浴として前記
の如き硫酸溶液を直ちに使用することはできない。そこ
で、最初、上記のようなシュウ酸浴中で多孔質層4を形
成する為の陽極酸化処理をこの合金板に施し、次いで、
これを硫酸浴に交換して再度陽極酸化工程に付して多孔
質シュウ酸皮膜層上に数prnの厚さの硫酸皮膜を被着
して多孔質層4を形成しておくことができる。
When such an alloy plate is used as a raw material, manganese is dissolved in the sulfuric acid solution, so the sulfuric acid solution as described above cannot be used immediately as an anodizing bath. Therefore, first, this alloy plate was subjected to anodization treatment to form the porous layer 4 in an oxalic acid bath as described above, and then,
The porous layer 4 can be formed by replacing the bath with a sulfuric acid bath and subjecting it to the anodic oxidation process again to deposit a sulfuric acid film with a thickness of several prn on the porous oxalic acid film layer.

上記手段で形成された多孔質層4は、次に、第3図に示
すように、逆電解処理で該層4をその母材から剥離して
薄膜状のものを得ることができる。この際、剥離性を良
好にする為に、電流回復法を用いてバリヤN5を可及的
に薄くさせておくのが好ましい。電流回復電圧としては
、硫酸皮膜及びマンガン、アルミニウム合金皮膜の場合
にはDC約2v位とし、また、シュウ酸皮膜では先ずD
C約20Vで行ない、次に、硫酸浴に交換してDC約2
v程度に設定することが出来る。
The porous layer 4 formed by the above method can then be peeled off from its base material by reverse electrolytic treatment to obtain a thin film, as shown in FIG. At this time, in order to improve the peelability, it is preferable to use a current recovery method to make the barrier N5 as thin as possible. The current recovery voltage is approximately 2 VDC for sulfuric acid coatings and manganese and aluminum alloy coatings;
C at about 20 V, then change to a sulfuric acid bath and DC at about 2
It can be set to about v.

上記の如く剥離して得られた薄膜状の多孔質rlI4は
、希土類金属゛の硫酸塩溶液及びシュウ酸溶液に浸漬す
ることにより、第4図のように、多孔質層4の番孔3.
3人中にEu又はTbの如き希土類金属6を浸漬吸着さ
せることが出来る。浸漬吸着処理で使用する硫酸塩溶液
としてEu2 (5O4)3の場合、その濃度(講和溶
液とし、浸漬時間及び温度は10分以上、20〜40℃
とすることができる。
The thin film-like porous rlI4 obtained by peeling as described above is immersed in a sulfate solution of a rare earth metal and an oxalic acid solution to form the holes 3 and 4 of the porous layer 4, as shown in FIG.
A rare earth metal 6 such as Eu or Tb can be immersed and adsorbed in the three persons. In the case of Eu2(5O4)3 as the sulfate solution used in the immersion adsorption treatment, its concentration (use as a peaceful solution, immersion time and temperature of 10 minutes or more, 20-40℃)
It can be done.

薄膜多孔質Jσ4に浸漬吸着させた希土類金M6は、そ
の結晶化を図るために、NaHSO3とN[−I4)(
sO4トノモル比゛をl:1.15とし、液温的170
℃の溶融塩又は2%に/lのNa2CO3水溶液中で三
次陽極酸化処理され、次いで、水洗乾燥される。斯くし
て希土類金属6を付活封入した多孔質M4には適宜熱処
理を加えることにより、薄膜状の発光体7を得ることが
できる。なお、多孔質層4の結晶化の為に行なう前記三
次陽極酸化処理条件として、溶融塩浴の場合、電流密度
は約30〜40 mA/c4Na2CO3浴の場合では
、電流密度約100〜200mA/cr&とし、対極に
は99.99%のアルミニウム板又はプラチナ板を使用
できる。
Rare earth gold M6 was immersed and adsorbed on thin film porous Jσ4, and in order to crystallize it, NaHSO3 and N[-I4)(
The sO4 tonomolar ratio is 1:1.15, and the liquid temperature is 170
Tertiary anodization in molten salt or 2%/l Na2CO3 aqueous solution at 0.degree. C., followed by water washing and drying. By appropriately applying heat treatment to the porous M4 in which the rare earth metal 6 is activated and sealed, a thin film-like light emitting body 7 can be obtained. The conditions for the tertiary anodic oxidation treatment to crystallize the porous layer 4 are as follows: in the case of a molten salt bath, the current density is approximately 30 to 40 mA/c, and in the case of a 4Na2CO3 bath, the current density is approximately 100 to 200 mA/cr& A 99.99% aluminum plate or a platinum plate can be used as the counter electrode.

上記の如く構成される発光体7は、その多孔質層4の番
孔3に図示しないが七ツマー状ポリアセチレン性の導電
性部材を充填するか、又は沸m蒸留水中で適宜封孔処理
を施し、封入物の固定化を図るのが好ましい。また、発
光体7に対する発光励起手段としては、紫外線励起、電
子線励起或いは電界励起手段々の手段を採用することが
出来る。
In the light emitting body 7 constructed as described above, the holes 3 of the porous layer 4 are filled with a heptad-shaped polyacetylene conductive material (not shown) or are appropriately sealed in boiling distilled water. , it is preferable to aim at immobilization of the inclusions. Further, as a means for excitation of light emission for the light emitting body 7, means such as ultraviolet ray excitation, electron beam excitation, or electric field excitation means can be adopted.

電界励起手段の場合、上記で得られた薄膜状の発光体7
の表面には、第5図の如く、ネサガラス8を接合すると
共に、その裏面に他の電極として蒸着金属膜9を被着し
、これらネサガラス8七蒸着金属膜9とに交流電源1゜
を接線して電界励起発光動作を行わせることが出来る。
In the case of electric field excitation means, the thin film-like light emitter 7 obtained above
As shown in FIG. 5, Nesa Glass 8 is bonded to the front surface of the Nesa Glass 8, and a vapor-deposited metal film 9 is applied as another electrode to the back surface of the Nesa Glass 8. It is possible to perform an electric field excitation light emission operation.

斯かる構造において、発光体7はアルミニウム等の母材
から剥吸された多孔質層4のみからなる薄膜状に構成さ
れているので、引加電圧を上昇だせた場合、発光体7で
仮に局部的なブレークダウンを起こしても、その部位の
ネサガラス8及び蒸着金属膜9の部分も無くなり、これ
により発生後瞬時にブレークダウンが阻止されて電圧破
壊の拡大が好適に防止される。従って、高電界下におい
ても均一な発光動作を行わせることが可能となる。
In this structure, the light emitting body 7 is constructed in the form of a thin film consisting only of the porous layer 4 that has been exfoliated from a base material such as aluminum. Even if a breakdown occurs, the Nesa glass 8 and the deposited metal film 9 at that location also disappear, thereby preventing the breakdown instantly after the breakdown occurs, and suitably preventing the expansion of the voltage breakdown. Therefore, it is possible to perform a uniform light emission operation even under a high electric field.

「発明の効果」 本発明によれば、上記構成により、希土類金属を封入付
活した多孔質層のみからなる発光体を母材から剥離させ
て薄膜状に構成することが可能であり、このような発光
体を用いて発光体装置のコンパクト化を達成できる。
"Effects of the Invention" According to the present invention, with the above structure, it is possible to peel a light emitting body consisting only of a porous layer in which a rare earth metal is enclosed and activated from a base material and form it into a thin film. The light emitting device can be made more compact by using the light emitting material.

また、斯かる薄膜状の発光体により電界励起発光動作機
構を構成するような場合には、発光体の局部的な電圧破
壊によっても発光体全体の破壊を阻止でき、安定、′4
−な発光動作を行わせることが出来る等、実用性の高い
発光体を提供することができる。
In addition, when an electric field excitation luminescence operation mechanism is constructed using such a thin film-like light emitting body, destruction of the entire light emitting body can be prevented even by local voltage breakdown of the light emitting body, resulting in stable and
- It is possible to provide a highly practical light-emitting body that can perform a light-emitting operation.

表口面の簡単な説明 第1図から第4図は本発明に係る発光体の製造法の一実
施例に従った製造工程図を示すもので、 第1図はアル1ニウム板の表面を脱脂、W解研磨して平
滑に処理した図、 第2図は陽極翫化処理によりアル1ニウム板の表面に多
孔質層を形成した説明図、あ3図は電流回復法及び逆電
解処理で多孔質層のみを薄膜状に剥離させた状態を示す
図、第4図は多孔質層の孔中に希土類金属を付活封入さ
せて薄膜状の発光体を得た状態を示す説明図、 第5図は第4図の薄膜状発光体を使用して電界励起発光
装置を構成した一例の概念的な断面構成図である。
Brief explanation of the front surface Figures 1 to 4 show manufacturing process diagrams according to an embodiment of the method for manufacturing a light emitter according to the present invention. Figure 1 shows the surface of an aluminum plate. Figure 2 is an explanatory diagram of a porous layer formed on the surface of an aluminum plate by anodizing treatment, and Figure 3 is a diagram showing the surface of an aluminum plate made smooth by degreasing and W depolishing. FIG. 4 is an explanatory diagram showing a state in which only the porous layer is peeled off into a thin film; FIG. FIG. 5 is a conceptual cross-sectional configuration diagram of an example of an electric field excitation light-emitting device constructed using the thin film-like light emitter of FIG. 4.

添付図面に示す各符号の名称は、次のとおりである。The names of the symbols shown in the attached drawings are as follows.

1 :  アルミニウム板 2 :  平滑にされる面 3 :  多数の微細な孔 4  :   多  孔  質  層 5   ニ   パ  、リ  ャ  屑6 :  封
入希土類金属 7 :  薄膜状の発光体 8 : ネサガラス 9 : 蒸着金属膜 10  :   交  流  電  源11図 オ゛2図 牙3図 矛4図 手続補正書(自づ芭) 昭和60年9月9日
1: Aluminum plate 2: Surface to be smoothed 3: Many fine pores 4: Porous layer 5 Nipah, rear scraps 6: Encapsulated rare earth metal 7: Thin film-like light emitter 8: Nesa glass 9: Vapor-deposited metal Membrane 10: Alternating current power supply Figure 11 Figure 2 Figure 3 Figure 4 Procedural amendment (Jizuban) September 9, 1985

Claims (4)

【特許請求の範囲】[Claims] (1)アルミニウム部材又はその合金に陽極酸化処理を
施して多孔質層を形成し、逆電解手段によつて該多孔質
層を剥離させ、剥離した多孔質層を希土類金属塩溶液に
浸漬して該多孔質層の孔中に希土類金属を浸漬吸着させ
たのち、熱処理を施すことを特徴とする発光体の製造法
(1) Anodizing an aluminum member or its alloy to form a porous layer, peeling off the porous layer by reverse electrolysis, and immersing the peeled porous layer in a rare earth metal salt solution. A method for producing a light-emitting body, which comprises immersing and adsorbing a rare earth metal into the pores of the porous layer, and then subjecting it to heat treatment.
(2)前記アルミニウム部材の陽極酸化処理による多孔
質層が硫酸皮膜で形成され、電流回復法によつて該皮膜
のバリヤ層を薄くしたのち、前記逆電解処理を施すこと
を特徴とする特許請求の範囲第(1)項に記載の発光体
の製造法。
(2) A patent claim characterized in that the porous layer formed by anodizing the aluminum member is formed with a sulfuric acid film, and the barrier layer of the film is thinned by a current recovery method, and then the reverse electrolytic treatment is performed. A method for producing a light emitting body according to item (1).
(3)前記アルミニウム部材の陽極酸化処理による多孔
質層がシユウ酸皮膜で形成され、電流回復法によつて電
解電圧を降下させ、次いで硫酸浴中で再度電流回復法で
前記皮膜のバリヤ層を薄くしたのち、前記逆電解処理を
施すことを特徴とする特許請求の範囲第(1)項に記載
の発光体の製造法。
(3) A porous layer is formed with an oxalic acid film by anodizing the aluminum member, and the electrolytic voltage is lowered by the current recovery method, and then the barrier layer of the film is removed by the current recovery method in a sulfuric acid bath. The method for manufacturing a light emitting body according to claim 1, wherein the reverse electrolytic treatment is performed after thinning the light emitting body.
(4)マンガンを含む前記アルミニウム合金の陽極酸化
処理による多孔質層がシュウ酸皮膜で形成され、該シュ
ウ酸皮膜に硫酸皮膜を被着したのち、電流回復法によつ
て該皮膜のバリヤ層を薄くし、次いで前記逆電解処理を
施すことを特徴とする特許請求の範囲第(1)項に記載
の発光体の製造法。
(4) A porous layer is formed with an oxalic acid film by anodizing the aluminum alloy containing manganese, and after a sulfuric acid film is applied to the oxalic acid film, a barrier layer of the film is removed by a current recovery method. The method for producing a light emitting body according to claim 1, wherein the light emitting body is thinned and then subjected to the reverse electrolytic treatment.
JP59199731A 1984-09-25 1984-09-25 Manufacture of luminous body Granted JPS6188495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59199731A JPS6188495A (en) 1984-09-25 1984-09-25 Manufacture of luminous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199731A JPS6188495A (en) 1984-09-25 1984-09-25 Manufacture of luminous body

Publications (2)

Publication Number Publication Date
JPS6188495A true JPS6188495A (en) 1986-05-06
JPH0524639B2 JPH0524639B2 (en) 1993-04-08

Family

ID=16412680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199731A Granted JPS6188495A (en) 1984-09-25 1984-09-25 Manufacture of luminous body

Country Status (1)

Country Link
JP (1) JPS6188495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715085A2 (en) 2005-04-18 2006-10-25 Fuji Photo Film Co., Ltd. Method for producing anodized structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151619B2 (en) * 2019-05-15 2022-10-12 工機ホールディングス株式会社 Cutting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715085A2 (en) 2005-04-18 2006-10-25 Fuji Photo Film Co., Ltd. Method for producing anodized structure

Also Published As

Publication number Publication date
JPH0524639B2 (en) 1993-04-08

Similar Documents

Publication Publication Date Title
KR950032718A (en) How to treat nodular copper / nickel alloys for copper foil
JP3267883B2 (en) Structural surface with chevron elements and method of use and manufacture
JPH0524636B2 (en)
JPS6188495A (en) Manufacture of luminous body
US3006821A (en) Manufacture of silver chloride electrodes
JPS60182689A (en) Solid state fluorescent element and method of producing same
US3007993A (en) Electrodes and cells containing them
JP4164150B2 (en) Method for producing optical functional thin film
JPS6188496A (en) Luminous body structure
JP4444225B2 (en) LIGHT EMITTING BODY, ITS MANUFACTURING METHOD, AND LIGHT EMITTING ELEMENT
JPS62128487A (en) Display apparatus
JPS6188492A (en) Luminous body and manufacture thereof
JPH065263A (en) Manufacture of metallic body with minute hole and manufacture of emitter for lamp
JPS61179094A (en) Solid light emitting element
DE654918C (en) Process for the production of electrodes for electrical discharge vessels, in particular discharge lamps
JPH10223483A (en) Chemical conversion method of electrode foil for aluminum electrolytic capacitor
JPH0524638B2 (en)
RU2110611C1 (en) Method of coating titanium and its alloys
KR0153447B1 (en) Insulation layer of electroluminescence element
JPH0536478A (en) Electroluminescence element
JPH0578919B2 (en)
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
RU2022496C1 (en) Printed-circuit board manufacturing process
JP2629241B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS63186888A (en) Production of copper foil