JPS61179094A - Solid light emitting element - Google Patents

Solid light emitting element

Info

Publication number
JPS61179094A
JPS61179094A JP60017586A JP1758685A JPS61179094A JP S61179094 A JPS61179094 A JP S61179094A JP 60017586 A JP60017586 A JP 60017586A JP 1758685 A JP1758685 A JP 1758685A JP S61179094 A JPS61179094 A JP S61179094A
Authority
JP
Japan
Prior art keywords
light emitting
solid
state light
layer
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60017586A
Other languages
Japanese (ja)
Inventor
永堀 淳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP60017586A priority Critical patent/JPS61179094A/en
Publication of JPS61179094A publication Critical patent/JPS61179094A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、アルミニウム板に陽極酸化処理を施して形成
される多孔質層内に希土類元素蛍光体を電気化学的手段
で封入するようにした固体発光素子に関し、特には、多
孔質層の基底部に形成されろバリヤ層を厚くして耐電圧
の向上化及び素子の長寿命化を図るように構成した固体
発光素子に関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is a method in which a rare earth element phosphor is encapsulated in a porous layer formed by anodizing an aluminum plate by electrochemical means. The present invention relates to solid-state light-emitting devices, and particularly relates to solid-state light-emitting devices in which a barrier layer formed at the base of a porous layer is thickened to improve withstand voltage and extend the life of the device.

「従来の技術」 従来、不安定な有機物ではないマンガン、ユーロ・ピウ
ム(Eu)又はテルビウム(Tb) 等の希土類元素の
付活剤による固体発光素子として、例えば、アルミニウ
ム線にネオジム(Nd)を0.37に合金したものを1
zリン酸溶液、140vで陽極酸化中tこオレンジ色の
EL発光を行わせること、或いはアルミニウムーテルビ
ウム合金膜を真空同時蒸着法で作製し、これをホウ酸ア
ンモニウム浴でDC陽極酸化することにより、テルビウ
ム特有の緑色EL発光が得られることなどが知られてい
る。又、蒸着法によってEuをTaに添加し、これを陽
極酸化しながら赤色EL発光を行わせること等も報告さ
れている。
``Prior art'' Conventionally, solid-state light emitting devices using rare earth elements such as manganese, europium (Eu), or terbium (Tb), which are not unstable organic substances, have been used as solid-state light emitting devices, for example, by adding neodymium (Nd) to aluminum wire. 1 alloyed with 0.37
By producing orange EL emission during anodic oxidation using a phosphoric acid solution at 140 V, or by producing an aluminum-terbium alloy film by simultaneous vacuum evaporation and DC anodizing it in an ammonium borate bath. It is known that green EL emission unique to terbium can be obtained. It has also been reported that Eu is added to Ta by a vapor deposition method and red EL is emitted while the mixture is anodized.

「発明が解決しようとする問題点」 上記のような手法は、いずれもアルミニウムに合金とし
て希土類元素等を添加しなければならず、その為、固体
発光素子としては極めて高価なものとなり実用性の面で
難点がある。
``Problems to be solved by the invention'' In all of the above methods, rare earth elements must be added to aluminum as an alloy, which makes the solid-state light emitting device extremely expensive and impractical. There are some difficulties in terms of

そこで、上記の如き合金手段によらず、電気化学的安価
な手法によって希土類元素蛍光体をアルミニウム陽極酸
化皮膜の多孔質皮膜層に付活封入するようにした固体発
光素子の提案がなされた。
Therefore, a proposal has been made for a solid-state light emitting device in which a rare earth element phosphor is activated and encapsulated in a porous film layer of an aluminum anodic oxide film using an inexpensive electrochemical method instead of using the alloy method as described above.

このような固体発光素子は、第2図に概念的に示すよう
に、純度約99.99X程度のアルミニウム板1を硫酸
浴中で陽極酸化処理することにより、その表面に無数の
孔3を有する多孔質皮膜層4とその基底部にバリヤ層5
を形成し、このような処理(ζよる人lOからなる多孔
質皮膜層4には、希土類元素蛍光体塩溶液に浸漬して多
孔質皮膜層4の各孔3中に、Eu+″′又はTb″3等
の希土類元素蛍光体を付活封入するものである。
As conceptually shown in FIG. 2, such a solid-state light emitting device has numerous holes 3 on its surface by anodizing an aluminum plate 1 with a purity of about 99.99X in a sulfuric acid bath. A porous film layer 4 and a barrier layer 5 at its base.
The porous coating layer 4 made of 1O by such treatment (ζ) is immersed in a rare earth element phosphor salt solution to inject Eu+'' or Tb into each pore 3 of the porous coating layer 4. A rare earth element phosphor such as ``3'' is activated and sealed.

ところで、−次陽極酸化処理によって形成されろ多孔質
皮膜層4の基底部に於けるバリヤ層5は、略200人種
度の厚さであって、且つ、このバリヤ層5とアルミニウ
ム板1の金属層との境界面には不規則に無数に形成され
る欠陥、所謂フロー7が存在し、しかも、このフロー7
の厚さはバリヤ層5の約半分にも達する大きな領域を占
めるものである。従って、斯かるフロー7の存在は、固
体発光素子の耐電圧並びに寿命を低下させる大きな要因
となる。
By the way, the barrier layer 5 at the base of the porous film layer 4 formed by the second anodic oxidation treatment has a thickness of approximately 200 mm, and the thickness of the barrier layer 5 and the aluminum plate 1 are approximately 200 mm thick. There are countless irregularly formed defects, so-called flow 7, on the interface with the metal layer, and this flow 7
The thickness of the barrier layer 5 occupies a large area reaching about half of the barrier layer 5. Therefore, the existence of such flow 7 becomes a major factor in reducing the withstand voltage and life of the solid-state light emitting device.

「問題点を解決するための手段」 本発明は、叙上に鑑み、アルミニウム板の陽極酸化処理
で形成される多孔質層の孔中に希土類元素からなる蛍光
体を封入するようにした固体発光素子に於いて、前記多
孔質層を形成する為の一次陽極酸化処理後に該多孔質層
を溶解しない溶液中で二次陽極酸化処理を加えて前記多
孔質層の基底部に形成されるバリヤ層を厚くするように
構成したものである。このような二次陽極酸化手段によ
り、バリヤ層は、−次陽極酸化処理で得られたものに比
して路数10倍以上に強化可能となり、従って、素子の
耐電圧及び寿命を格段に向上させることが出来ろもので
ある。
"Means for Solving the Problems" In view of the above, the present invention provides a solid-state light emitting device in which a phosphor made of a rare earth element is enclosed in the pores of a porous layer formed by anodizing an aluminum plate. In the element, a barrier layer is formed at the base of the porous layer by performing a secondary anodization treatment in a solution that does not dissolve the porous layer after the primary anodization treatment for forming the porous layer. It is constructed so that it is thicker. By using such a secondary anodizing method, the barrier layer can be strengthened by more than 10 times the number of passes compared to that obtained by secondary anodizing treatment, thus significantly improving the withstand voltage and life of the device. It is something that can be done.

「実施例」 息下、第1図に示す実施例に基づいて本発明を更に詳述
すると、先ず、使用すべきアルミニウム板1としては、
純度約9999に程度のものを用意し、その表面は、例
えば体積比4: 1のエチ、レアルコール・過塩素酸浴
の10°C以下の液温に於ける電界研磨等の手段で平滑
化し、次いで、脱゛脂処理として、5重量2前後のNa
OH中で60〜65°C12分間程度浸漬処理した後、
十分に水洗処理する。
``Example'' The present invention will now be described in more detail based on the example shown in FIG. 1. First, the aluminum plate 1 to be used is as follows.
A material with a purity of about 9999 is prepared, and its surface is smoothed by means such as electropolishing in an ethyl alcohol/perchloric acid bath with a volume ratio of 4:1 at a temperature of 10°C or less. Then, as a degreasing treatment, about 5% Na by weight 2%
After immersion treatment in OH at 60-65°C for about 12 minutes,
Wash thoroughly with water.

このような前処理済みアルミニウム板1は、DC17〜
20■、電流密度約50 mA/Cm〜8011人/C
11の値で、液温15〜20’Cの条件からなる ]O
Xの硫酸浴中で陽極酸化処理を施され、これにより、そ
の表面には無数の徹細な孔3を有する多孔質皮膜層4と
その基底部にバリヤ層5とが形成される。
Such a pretreated aluminum plate 1 has DC17~
20 ■, current density approximately 50 mA/Cm ~ 8011 people/C
11 and the liquid temperature is 15 to 20'C ]O
The film is anodized in a sulfuric acid bath of X, thereby forming a porous film layer 4 having countless fine pores 3 on its surface and a barrier layer 5 at its base.

このような−次陽極酸化処理手段によって、多孔質皮膜
層4には、孔3の直径が約150人程度で数但個/ e
l@2前後の密度のものを厚さ 100μm以上に形成
することが出来、その際、多孔質皮膜層4の厚さは、陽
極酸化処理時の通電時間を例えば10〜60分程度に適
宜制御することにより、所望の値にすることが可能であ
る。バリヤ層5の厚さは、この段階では略200人種度
のものである。
By such a secondary anodizing treatment, the porous coating layer 4 has pores 3 with a diameter of approximately 150 pores/e.
It is possible to form a layer with a density of around 1@2 to a thickness of 100 μm or more, and in this case, the thickness of the porous film layer 4 can be controlled appropriately by controlling the current application time during anodizing treatment, for example, about 10 to 60 minutes. By doing so, it is possible to set the desired value. The thickness of the barrier layer 5 is approximately 200 degrees thick at this stage.

次いで、上記の如くしで得られた多孔質皮膜層4に対し
ては、十分な水洗処理を加九、多孔質皮膜層4中に残在
する^ビ3イオンやカチオンを十分に除去しておく。斯
かる除去処理を了えた段階で、酒石酸アンモニウム或い
はホウ酸アンモニウム等、形成済み多孔質皮膜層4を溶
解しないような中性塩浴若しくはイオン屏離度の低い有
機酸水溶液を用いて二次陽極酸化処理を施す。二次陽極
酸化浴として、例えば、3X酒石酸アンモニウム水溶液
を使用する場合には、対極として99.85X純度のア
ルミニウム板を用い、約0.5 mA/c+a2の一定
電流密度で化成処理し、浴電圧が上昇して所望の膜厚に
応じた電圧に達した段階で定電圧に切換え、約10分以
上経過した後、電解液から引き上げて十分な洗浄処理を
施す。バリヤ層5は、斯かる二次陽極酸化処理工程によ
り、第1図に示すように、破線2から下方に更に広い厚
さの領域に及ぶ増強バリヤ層5Aを得ることが出来、こ
れにより、両バリヤ層5.5Aからなる厚みを約500
0人種度に拡大可能となる。このような大きなバリヤN
J5.5Aの厚さは、固体発光素子の耐電圧向上に大き
く寄与し、従って、素子の長寿命化を有効に促進するも
のである。
Next, the porous film layer 4 obtained in the above manner is thoroughly washed with water to sufficiently remove the bi3 ions and cations remaining in the porous film layer 4. put. After completing such removal treatment, a secondary anode is formed using a neutral salt bath such as ammonium tartrate or ammonium borate that does not dissolve the formed porous film layer 4 or an organic acid aqueous solution with a low degree of ion separation. Perform oxidation treatment. For example, when using a 3X ammonium tartrate aqueous solution as the secondary anodizing bath, use a 99.85X purity aluminum plate as the counter electrode, perform chemical conversion treatment at a constant current density of about 0.5 mA/c+a2, and set the bath voltage When the voltage increases and reaches the voltage corresponding to the desired film thickness, the voltage is switched to constant voltage, and after about 10 minutes or more, the electrode is removed from the electrolytic solution and thoroughly cleaned. As shown in FIG. 1, the barrier layer 5 can be formed into an enhanced barrier layer 5A extending downward from the broken line 2 to a wider region of thickness by the secondary anodic oxidation process. The thickness of the barrier layer is approximately 500 mm.
It becomes possible to expand to 0 race degree. Such a large barrier N
The thickness of J5.5A greatly contributes to improving the withstand voltage of the solid-state light emitting device, and therefore effectively promotes the longevity of the device.

二次11極酸化処理によるバリヤ層強化工程後には、多
孔質皮膜FJ4の孔3中に対する希土類蛍光物質の封入
処理を行うべく、それらの硫酸塩溶液及びシュウ酸溶液
に浸漬して蛍光物質6の吸着化を施す。この浸漬吸着処
理で使用する硫酸塩溶液としてE u 2(S 04)
 3の場合、濃度は飽和溶液とし、浸漬時間及び温度は
、10分以上、20〜400C前後に設定できる。なお
、吸着させるべき蛍光物質としては、希土類元素金属の
他、遷移元素金属等も適宜適用することが可能である。
After the step of reinforcing the barrier layer by the secondary 11 electrode oxidation treatment, in order to encapsulate the rare earth fluorescent material in the pores 3 of the porous film FJ4, the fluorescent material 6 is immersed in a sulfate solution and an oxalic acid solution. Apply adsorption. E u 2 (S 04) as the sulfate solution used in this immersion adsorption treatment.
In the case of No. 3, the concentration is a saturated solution, and the immersion time and temperature can be set at about 20 to 400C for 10 minutes or more. Note that as the fluorescent substance to be adsorbed, in addition to rare earth metals, transition element metals and the like can be used as appropriate.

上記の如く蛍光物質6を吸着封入した多孔質皮膜層4に
対しては、その吸着封入物質の結晶化を図る為に、Na
HSO4と Ml(,1(SO2とのモル比を例えば1
:1.15、液温約170°Cの溶融塩又は2モル/l
のNa2Co、水溶液中で三次陽極酸化処理を施して、
上記皮膜層4の結晶化を行った後、水洗乾燥する。
For the porous coating layer 4 in which the fluorescent material 6 is adsorbed and encapsulated as described above, Na
For example, if the molar ratio of HSO4 and Ml(,1(SO2) is 1
:1.15, molten salt with liquid temperature of about 170°C or 2 mol/l
of Na2Co, subjected to tertiary anodic oxidation treatment in an aqueous solution,
After crystallizing the film layer 4, it is washed with water and dried.

三次陽極酸化処理条件としては、溶融塩浴の場合では、
電流密度約3CI−40mA/am2、Na2CO3浴
では略100〜20Oym^/e112とし、対極には
 99.91のアルミニウム板又はプラチナ板を使用で
きる。
In the case of molten salt bath, the tertiary anodizing treatment conditions are as follows:
The current density is about 3CI-40mA/am2, approximately 100-20Oym^/e112 in the Na2CO3 bath, and a 99.91 aluminum plate or platinum plate can be used as the counter electrode.

以上の如くして構成される固体発光素子は、その多孔質
皮膜層4の各孔3に図示しないが、モノマー状ポリアセ
チレン性の導電性部材を充填するか、又は沸騰蒸留水中
で適宜封孔処理を施して封入物の固定化を図ることもで
きろ。また、このような構造の固体発光素子に対する発
光励起手段としては、紫外線励起、電子線励起或いは電
界励起等種々の手段を採用することが可能である。
In the solid-state light emitting device constructed as described above, each pore 3 of the porous coating layer 4 is filled with a monomeric polyacetylene conductive material (not shown) or is appropriately sealed in boiling distilled water. It is also possible to fix the inclusions by applying Moreover, various means such as ultraviolet excitation, electron beam excitation, or electric field excitation can be employed as a means for emitting light from a solid-state light emitting device having such a structure.

「発明の効果」 本発明に係る固体発光素子の構造によれば、アルミニウ
ム陽極酸化処理で形成された多孔質皮膜層の孔中に希土
類元素金属等の発光体物質を安価な電気化学的手段で能
率よく安定に付活封入することが可能となり、製品の低
コスト化を図れる。
"Effects of the Invention" According to the structure of the solid-state light emitting device according to the present invention, a luminescent material such as a rare earth metal is injected into the pores of the porous film layer formed by aluminum anodization using an inexpensive electrochemical means. It becomes possible to efficiently and stably activate the encapsulation, and it is possible to reduce the cost of the product.

また、斯かる固体発光素子は、三次陽極酸化処理によっ
て、実用上十分な程度にそのバリヤ層を拡大強化した構
造を備えるので、素子の耐電圧特性を良好にして長寿命
化を達成できる
In addition, such a solid-state light emitting device has a structure in which the barrier layer is enlarged and strengthened to a practically sufficient degree through tertiary anodization treatment, so that the device has good withstand voltage characteristics and can achieve a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に従って構成された固体発
光素子の概念的断面構成図、そして、第2図は、多孔質
皮膜層の基底部に存在するフロー欠陥を説明する為の概
念説明図である。 1ニアルミニウム板 2: 増   強   線 3: 微   細   孔 4:多孔質な皮膜層 5 : パ   リ   ャ  暦 5A:増 強バリヤ層 6:蛍光物質 7 :  〕      ロ      −出願人  
口本メクトロン株式会社 第1図 第2図 ン 、l七℃
FIG. 1 is a conceptual cross-sectional diagram of a solid-state light emitting device constructed according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram for explaining flow defects existing at the base of a porous film layer. It is an explanatory diagram. 1 Aluminum plate 2: Reinforced wire 3: Fine pores 4: Porous film layer 5: Reinforced barrier layer 6: Fluorescent material 7: ] B - Applicant
Kuchimoto Mectron Co., Ltd. Figure 1 Figure 2 N, l7℃

Claims (1)

【特許請求の範囲】[Claims]  アルミニウム板の陽極酸化処理で形成される多孔質層
の孔中に希土類元素からなる蛍光体を封入するようにし
た固体発光素子に於いて、前記多孔質層を形成する為の
一次陽極酸化処理後に該多孔質層を溶解しない溶液中で
二次陽極酸化処理を加えて前記多孔質層の基底部に形成
されるバリヤ層を厚くするように構成したことを特徴と
する固体発光素子。
In a solid-state light emitting device in which a phosphor made of a rare earth element is enclosed in the pores of a porous layer formed by anodizing an aluminum plate, after the primary anodizing treatment to form the porous layer. A solid-state light emitting device, characterized in that the barrier layer formed at the base of the porous layer is thickened by performing a secondary anodization treatment in a solution that does not dissolve the porous layer.
JP60017586A 1985-01-31 1985-01-31 Solid light emitting element Pending JPS61179094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017586A JPS61179094A (en) 1985-01-31 1985-01-31 Solid light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017586A JPS61179094A (en) 1985-01-31 1985-01-31 Solid light emitting element

Publications (1)

Publication Number Publication Date
JPS61179094A true JPS61179094A (en) 1986-08-11

Family

ID=11948005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017586A Pending JPS61179094A (en) 1985-01-31 1985-01-31 Solid light emitting element

Country Status (1)

Country Link
JP (1) JPS61179094A (en)

Similar Documents

Publication Publication Date Title
CA1061741A (en) Two-stage anodization of capacitor electrodes
JPH0524636B2 (en)
JPS61179094A (en) Solid light emitting element
JPS60182689A (en) Solid state fluorescent element and method of producing same
Surganov et al. Study of the initial stage of aluminium anodization in malonic acid solution
Heber Studies on porous Al2O3 growth—II. Ionic conduction
JP2780889B2 (en) EL element and manufacturing method thereof
JPH0524639B2 (en)
JPH0524637B2 (en)
JPH0524638B2 (en)
JP3478039B2 (en) Method of forming electrode foil for aluminum electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JP2525990B2 (en) EL element manufacturing method
JPH0421756B2 (en)
JPH0774055A (en) Electrolytic capacitor and its tab terminal
JPH02194195A (en) Anodic oxidation of titanium and titanium alloy
DD206169A1 (en) PROCESS FOR TREATMENT OF ALUMINUM OXIDE LAYERS IN SILICATE SOLUTIONS
JPH07283085A (en) Formation of anode foil for aluminium electrolytic capacitor
JPS6188496A (en) Luminous body structure
JPH04119617A (en) Manufacture of solid electrolytic capacitor
JPS6337592A (en) Manufacture of thin film electroluminescence device
JPH06132172A (en) Manufacture of tab terminal for electrolytic capacitor
JPS62128489A (en) Display apparatus
JPH04196304A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH0536478A (en) Electroluminescence element