JPS6187860A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPS6187860A
JPS6187860A JP59208018A JP20801884A JPS6187860A JP S6187860 A JPS6187860 A JP S6187860A JP 59208018 A JP59208018 A JP 59208018A JP 20801884 A JP20801884 A JP 20801884A JP S6187860 A JPS6187860 A JP S6187860A
Authority
JP
Japan
Prior art keywords
wire
alloy
composite material
fecraly
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59208018A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takeda
博光 竹田
Masayuki Ito
伊藤 昌行
Takao Suzuki
隆夫 鈴木
Yuka Takahashi
高橋 由加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59208018A priority Critical patent/JPS6187860A/en
Publication of JPS6187860A publication Critical patent/JPS6187860A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Abstract

PURPOSE:To produce a composite material having low porosity and excellent mechanical properties by subjecting a W wire to plasma spraying of a base material consisting of an FeCrAlY alloy in an inert atmosphere under a relatively low pressure then subjecting the same to a heat treatment in a vacuum at an adequate temp. CONSTITUTION:The W wire is subjected to the plasma spraying of the base material of the FeCrAlY alloy consisting of about 5-40wt% Cr, about 3-20% Al, about 0.05-3% Y and the balance substantially Fe in the inert atmosphere under 50-500Torr, by which the W wire is compounded and united with said material in the 1st stage. The result ant composite material is subjected to the heat treatment in the vacuum for preferably about >=30min treatment time in a 1,000-1,300 deg.C temp. range. The FeCrAlY alloy is thereby stuck onto the surface of the W wire in the state of having no intergranular oxide at a good yield and further the metallic structure of the FeCrAlY alloy is made thorough. The composite W/FeCrAlY material which is excellent in terms of cost and characteristic is thus obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複合材料の製造方法に係り、特に高温ですぐれ
た機械的性質を示すW線強化Fe 基合金の複合材料の
製造方法1こ関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a composite material, and particularly to a method for manufacturing a composite material of a W-wire reinforced Fe 2 -based alloy that exhibits excellent mechanical properties at high temperatures.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

資源の涸渇が問題視されている今日においては、省資源
の観点からガスタービンで代表される大形のエネルギ変
換機器の高効率化が重要である。高効率化の基本的手段
として、機器の作動温度の高温化が挙げられる。この場
合、機器に用いられる部材の耐用温度が構造上大きな問
題となるがが、従来から採用されてきているNi基、F
e基、CO基超合金算では耐用温度上昇の開発も既に限
界に近い状況に達している。そこで、次の世代の耐熱材
料として高融点金属材料の繊維で従来の超合金を強化し
た複合材料が着目され始めている。
In today's world where resource depletion is viewed as a problem, it is important to improve the efficiency of large energy conversion equipment, such as gas turbines, from the perspective of resource conservation. A basic means of increasing efficiency is increasing the operating temperature of equipment. In this case, the withstand temperature of the components used in the equipment becomes a major structural problem, but the Ni-based, F-based
In terms of e-based and CO-based superalloys, the development of durable temperature increases has already reached its limit. Therefore, attention is beginning to be paid to composite materials in which conventional superalloys are reinforced with fibers of high-melting point metal materials as the next generation of heat-resistant materials.

その代表的なものがW線強化Fe 基合金の複合材料で
ある。これは、高融点金属であるW線をFe基合金中に
埋込んで一体化したものであるが、この組合せの特徴は
高温での長時間安定性1こある。
A typical example is a composite material of a W-line reinforced Fe-based alloy. This is a product in which W wire, which is a high melting point metal, is embedded and integrated into an Fe-based alloy, and the feature of this combination is long-term stability at high temperatures.

即ち、上述の高融点金属/超合金の組み合せ(こおいて
は高温での相互拡散が重要な問題となっているが、その
中で最も相互拡散の程度が低い組み合せとしてW/Fe
が選定されている。
That is, the above-mentioned combination of high melting point metal/superalloy (in which interdiffusion at high temperatures is an important issue, but W/Fe is the combination with the lowest degree of interdiffusion.
has been selected.

本複合材料の製造方法としてはW線上にプラズマ溶射に
よってFeCrkeY合金を析出させ複合一体化する方
法がある。特に、最近では低圧容器内でプラズマ溶射を
実施し、FeCrA/Y合金の特性を向上する方法がと
られている。
As a manufacturing method of this composite material, there is a method of depositing FeCrkeY alloy on the W wire by plasma spraying and integrating the composite material. In particular, a method has recently been adopted in which plasma spraying is carried out in a low-pressure vessel to improve the properties of FeCrA/Y alloys.

しかしながら、該低圧プラズマ溶射法は、その%像であ
る少ない気孔率、少ない未溶融粒子を再現させる為1こ
は、アーク電流、アークガス、補助ガス、粉末供給量、
距離算種々のプラズマ溶射条件を高精度で制御する必要
があった。さらにこれらの条件を最適化して溶射を実施
する場合、大気中の溶射法に比べて入力エネルギー、粉
末の付着犠共に大幅に歩留りが低下する。いう欠点があ
った。
However, in order to reproduce the low-pressure plasma spraying method, which has a low porosity and a small number of unmelted particles, the following problems are required: arc current, arc gas, auxiliary gas, powder supply amount,
Distance calculation It was necessary to control various plasma spraying conditions with high precision. Furthermore, when thermal spraying is carried out with these conditions optimized, the yield is significantly reduced in terms of input energy and powder adhesion costs, compared to thermal spraying in the atmosphere. There was a drawback.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、低圧プラズマ溶射のすぐれた
特性を活かし、かつ歩留り良く気孔率の少ない優れたW
線I FeCrkeY合金基材からなる複合材料を製造
する方法を提供するものである。
In view of the above points, the present invention utilizes the excellent characteristics of low-pressure plasma spraying, and provides excellent W with high yield and low porosity.
A method of manufacturing a composite material comprising a wire I FeCrkeY alloy substrate is provided.

し発明の概要〕 本発明はW線にFeCrkeY合金基材を50〜500
Torrの不活性雰囲気中でプラズマ溶射し複合一体化
する第1の工程と、 前記第1の工程で得た複合体を真空中で1000℃〜1
350’Cの温度範囲で熱処理を施す第2の工程とを具
備する複合材料の製造方法である。
[Summary of the invention] The present invention provides a W wire with a FeCrkeY alloy base material of 50 to 500%
A first step of plasma spraying and composite integration in an inert atmosphere of Torr; and heating the composite obtained in the first step at 1000°C to 100°C in a vacuum.
and a second step of performing heat treatment in a temperature range of 350'C.

つまり本発明方法では所定条件下でFeCrAlY合金
をW線1こ溶射した後、特定の熱処理を施す事を最大の
特長とするものである。
In other words, the greatest feature of the method of the present invention is that after thermal spraying one W line of FeCrAlY alloy under predetermined conditions, a specific heat treatment is performed.

なお本発明方法においてFeCrAlY合金とは重量%
でC「5〜40%、  ke3〜20% 、  Yo、
05〜3%残部が実質的1こFe からなるものである
In addition, in the method of the present invention, FeCrAlY alloy refers to
So C "5~40%, ke3~20%, Yo,
The balance of 0.5 to 3% consists essentially of 1 Fe.

まだ、各数値限定は以下の如き理由に−よるものである
低圧溶射条件を50〜500Torrとしたのは、50
Torr末端では粉末の付着効率が著しく低下し、50
0Torrを超えると大気溶射との差異が認められず、
本発明効果が充分得られないからである。
However, each numerical limitation is based on the following reasons.
At the Torr end, the powder adhesion efficiency decreases significantly, and 50
When the temperature exceeds 0 Torr, there is no difference between atmospheric spraying and
This is because the effects of the present invention cannot be sufficiently obtained.

さらfこ第2の工程における熱処理条件を真空中で10
00’〜1350’C,としたのは、1000′CJ未
満ではFe−CrA/Y合金からなる母地の緻密化が図
れず、1350°Cを越えるとタングステンと母地の反
応が著しく進行し、複合一体化が困難となる為である。
Furthermore, the heat treatment conditions in the second step were set to 10% in vacuum.
00' to 1350'CJ is because if the temperature is less than 1000'CJ, the matrix made of Fe-CrA/Y alloy cannot be densified, and if the temperature exceeds 1350°C, the reaction between tungsten and the matrix will proceed significantly. This is because complex integration becomes difficult.

なおこの熱処理は通常I Torr以上の真空中で行わ
れ、又熱処理時間は熱処理温度との関係で適宜選択され
るが、実用上30分以上とする事が好ましい。
Note that this heat treatment is usually performed in a vacuum of I Torr or more, and the heat treatment time is appropriately selected in relation to the heat treatment temperature, but in practice it is preferably 30 minutes or more.

〔発明の効果〕〔Effect of the invention〕

本発明方法により得られた複合材料は、粒界酸化物の存
在が認められず、かつ気孔、未溶粉末の巻き込み等のな
いW線に付着したFeCrA/Y合金を得る事ができ、
またFeCr人IY合金の歩留り(供給粉末量lこ対す
るW線上の付着量)も著しく向上したものとなる。
In the composite material obtained by the method of the present invention, the presence of grain boundary oxides is not recognized, and it is possible to obtain a FeCrA/Y alloy that adheres to the W wire without pores or entrainment of undissolved powder.
Furthermore, the yield of the FeCr-IY alloy (the amount of deposited powder on the W line relative to the amount of powder supplied) is also significantly improved.

〔発明の概要〕[Summary of the invention]

本発明は供給する粉末量とW線上に付着する量との割合
、すなわち付着歩留りが最もすぐれた条件でFeCrA
l!Yを低圧プラズマ溶射し、W線強化FeCrkeY
合金複合材料を得る工程と該複合材料をl Torr以
上の真空中で1000℃以上1350℃以下の温度、3
0分以上の熱処理の工程とからなることを特徴とするw
/Fe Cr AIY ?J合材料の製造方法である。
In the present invention, FeCrA
l! Low-pressure plasma spraying of Y and W line reinforced FeCrkeY
A step of obtaining an alloy composite material and heating the composite material at a temperature of 1000°C or more and 1350°C or less in a vacuum of 1 Torr or more,
It is characterized by consisting of a step of heat treatment for 0 minutes or more.
/Fe Cr AIY? This is a method for manufacturing J composite material.

〔発明の効果〕〔Effect of the invention〕

本発明に係る複合材料は前述の如く、高価なFeCr人
/Y合金を歩留り良く、かつ粒界酸化物のない状態でW
線表面上に付着せしめている。また、後熱処理1こより
、低圧プラズマ溶射時においては不十分であったFeC
r人/Y合金の金属組織を完全なものとしている。これ
らにより、本発明に係るW/FeCr AeY複合材料
は価格的蒼こも特性的1こもすぐれたものとなる。
As mentioned above, the composite material according to the present invention is capable of converting the expensive FeCr/Y alloy into W at a high yield and in the absence of grain boundary oxides.
It is attached to the surface of the wire. In addition, from the first post-heat treatment, FeC, which was insufficient during low-pressure plasma spraying, was improved.
The metal structure of the r/Y alloy is perfected. As a result, the W/FeCr AeY composite material according to the present invention is superior in terms of price and properties.

〔実施例〕〔Example〕

03φのW線を矩形の枠に並べて張り、これに低圧容器
内でFe−24Cr−8人/−0jY合金を磁圧37v
+選流800AI粉体供給量270g/rnin  真
空度250Torr のアルゴン雰囲気下でプラズマ溶
射しW線とFeCrAlY合金とを複合一体化した。こ
の複合体を1,100℃X4 h r+ l X I 
Q TOrrの真空下で熱処理した。W線上1こ付着し
たFeCr人eY合金の歩留りは55チあり、低圧プラ
ズマ溶射て最もすぐれた皮膜を形成する際の歩留り15
〜25チ  に比べ2倍以上すぐれていた。また、熱処
理後のFeCrA/Y合金の金属組織は気孔のない緻密
なもので、かつ相互拡散により均質化されており、最高
条件で低圧プラズマ注射したものの金属組織よりもすぐ
れていた。
03φ W wires are lined up and stretched in a rectangular frame, and Fe-24Cr-8/-0jY alloy is applied to the wires at a magnetic pressure of 37V in a low-pressure container.
+ Selective flow 800AI powder supply amount 270 g/rnin, plasma spraying in an argon atmosphere with a degree of vacuum of 250 Torr to composite and integrate the W wire and the FeCrAlY alloy. This complex was heated at 1,100°C x 4 hours r+ l
Heat treated under a vacuum of Q TOrr. The yield of FeCr/eY alloy deposited on the W wire is 55 chips, and the yield when forming the best film by low-pressure plasma spraying is 15.
It was more than twice as good as ~25chi. Furthermore, the metal structure of the FeCrA/Y alloy after heat treatment was dense with no pores and was homogenized by interdiffusion, which was superior to that of the metal structure injected with low-pressure plasma under the highest conditions.

Claims (1)

【特許請求の範囲】 W線にFeCrAlY合金基材を50〜500Torr
の不活性雰囲気中でプラズマ溶射し複合一体化する第1
の工程と、 前記第1の工程で得た複合体を真空中で1000℃〜1
350℃の温度範囲で熱処理を施す第2の工程とを具備
した事を特徴とする複合材料の製造方法。
[Claims] A FeCrAlY alloy base material is applied to the W wire at a pressure of 50 to 500 Torr.
The first step is to integrate the composite by plasma spraying in an inert atmosphere.
and heating the composite obtained in the first step in vacuum at 1000°C to 100°C.
A method for producing a composite material, comprising a second step of performing heat treatment in a temperature range of 350°C.
JP59208018A 1984-10-05 1984-10-05 Production of composite material Pending JPS6187860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208018A JPS6187860A (en) 1984-10-05 1984-10-05 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208018A JPS6187860A (en) 1984-10-05 1984-10-05 Production of composite material

Publications (1)

Publication Number Publication Date
JPS6187860A true JPS6187860A (en) 1986-05-06

Family

ID=16549310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208018A Pending JPS6187860A (en) 1984-10-05 1984-10-05 Production of composite material

Country Status (1)

Country Link
JP (1) JPS6187860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235448A (en) * 1987-03-23 1988-09-30 Tokin Corp Composite magnetic wire rod
JPS6442562A (en) * 1987-08-07 1989-02-14 Tokin Corp Composite magnetic wire and production thereof
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235448A (en) * 1987-03-23 1988-09-30 Tokin Corp Composite magnetic wire rod
JPS6442562A (en) * 1987-08-07 1989-02-14 Tokin Corp Composite magnetic wire and production thereof
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites

Similar Documents

Publication Publication Date Title
US4145481A (en) Process for producing elevated temperature corrosion resistant metal articles
US3542530A (en) Nickel or cobalt base with a coating containing iron chromium and aluminum
US5498484A (en) Thermal barrier coating system with hardenable bond coat
US4789441A (en) Metallic protective coatings and method of making
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
EP1391531B1 (en) Process of producing of thermal barrier coating with nitride particles
USRE31339E (en) Process for producing elevated temperature corrosion resistant metal articles
US6645560B2 (en) Oxidation resistant coatings for niobium-based silicide composites
JPH09296702A (en) Heat insulating coated product and coating method
GB1566179A (en) Superalloys and coatings
JPH11172404A (en) Execution of bonding coat for heat shielding coating system
US7655321B2 (en) Component having a coating
RU2264480C2 (en) Method of deposition of protective coatings on details made out of refractory alloys
CN108103455B (en) Preparation method of high-temperature protective coating
US3443978A (en) Method of coating metals with a silicide layer and an outer layer of aluminasilicate
JPS6187860A (en) Production of composite material
EP0583009B1 (en) Ceramic coating method for metallic substrate
JP3261457B2 (en) High temperature oxidation resistant alloy material and method for producing the same
GB2167446A (en) Electrode deposited composite coating
CN113278968A (en) High-temperature oxidation resistant Al-Si composite addition modified nickel-based high-temperature alloy coating and preparation method thereof
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP2868893B2 (en) Metal wire reinforced heat-resistant ceramic composite
JPS6324026A (en) Production of tungsten wire-reinforced composite material
JPH083718A (en) Production of thermal spraying-coated metallic member
JP3641500B2 (en) Gas turbine high temperature component and manufacturing method thereof