JPS6186628A - Dynamic balancing machine - Google Patents

Dynamic balancing machine

Info

Publication number
JPS6186628A
JPS6186628A JP20896884A JP20896884A JPS6186628A JP S6186628 A JPS6186628 A JP S6186628A JP 20896884 A JP20896884 A JP 20896884A JP 20896884 A JP20896884 A JP 20896884A JP S6186628 A JPS6186628 A JP S6186628A
Authority
JP
Japan
Prior art keywords
under test
body under
unbalance
rotation
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20896884A
Other languages
Japanese (ja)
Other versions
JPH0588413B2 (en
Inventor
Yoshimitsu Nakayama
義光 中山
Yoshio Kawamori
河盛 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP20896884A priority Critical patent/JPS6186628A/en
Publication of JPS6186628A publication Critical patent/JPS6186628A/en
Publication of JPH0588413B2 publication Critical patent/JPH0588413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/24Performing balancing on elastic shafts, e.g. for crankshafts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)
  • Drilling And Boring (AREA)

Abstract

PURPOSE:To make it possible to instruct a center-hole machining position, so that unbalance of a body under test lies within a specified range, by providing a circuit, which computes the amount and direction of deviation between the central axis of rotation of the body under test and the main inertial axis on both right and left end surfaces of the body under test. CONSTITUTION:A body under test is supported by right and left bearings 1L and 1R and rotated by a rotation driving mechanism. The unbalance signals generated by the rotation are detected by detectors 2L and 2R, which are provided in the right and left bearings 1L and 1R. A mark and the like, which are attached to the body under test are detected by a photocell 3, and the rotation phase of the body under test is detected. The outputs of the detectors 2L and 2R and the output of the photocell 3 are guided to dynamic balance measuring circuit 4. After specified operation, unbalance vectors We and Wr on the right and left correcting surfaces (l) and (r), which are provided on the body under test, are computed. The vectors are indicated on a display device and introduced to a center-hole-position operating circuit 5.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は動つりあい試験機に関し、更に詳しくは、例え
ばクランクシャフト等の、鍛造品又は鋳造品等の、機械
的仕上加工を施す前の回転体について、不つりあいを生
じさせないような両端センタ孔加工位置を指示し得る機
能を有した動つりあい試験機に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a dynamic balance testing machine, and more specifically, to a dynamic balance testing machine for testing forged or cast products, such as crankshafts, before mechanical finishing. The present invention relates to a dynamic balance tester having a function of instructing the machining position of center holes at both ends of a rotating body so as not to cause unbalance.

(ロ)従来技術 一般に、クランクシャフト等においては、鍛造や鋳造加
工された素材の両端にセンタ孔の加工を行い、それを基
準にして機械的な仕上加工が行なわれる。クランクシャ
フト等のように、カウンタウェイト部等の最終的に機械
加工が施されない部分の多い回転体については、センタ
孔の加工位置が、機械加工後の完成品の初期下つりあい
に大きく影響する。センタ孔の加工を適宜の位置に施せ
ば、仕上がった製品の不つりあいを所定値以内に収める
ことができる。
(b) Prior Art In general, for crankshafts and the like, a center hole is machined at both ends of a forged or cast material, and mechanical finishing is performed based on the center hole. For rotating bodies such as crankshafts that have many parts that are not ultimately machined, such as counterweight parts, the position of the center hole to be machined has a large effect on the initial downward balance of the finished product after machining. By machining the center hole at an appropriate position, the unbalance of the finished product can be kept within a predetermined value.

従来、このようなセンタ孔加工位置を求める為には、マ
スセンタリングマシンと称される専用機を必要としてい
た。マスセンタリングマシンは、センタ孔加工前の素材
を装着してこれを慣性主軸に沿うようその回転軸を変化
させ、穿つべきセンタ孔の位置を求めるもので、極めて
大掛りな装置となる。
Conventionally, in order to determine such a center hole processing position, a special machine called a mass centering machine was required. A mass centering machine is an extremely large-scale device that attaches a material before drilling a center hole and changes its axis of rotation to align with the main axis of inertia to determine the position of the center hole to be drilled.

(ハ)目的 本発明の目的は、供試体の不つりあいを測定する動つり
あい試験機にあって、上述の如きセンタ孔加工位置を指
示し得る機能を有し、もってマスセンタリングマシン等
の専用機を不要とする動つりあい試験機を提供すること
にある。
(c) Purpose An object of the present invention is to provide a dynamic balance tester for measuring unbalance of a specimen, which has a function of instructing the center hole machining position as described above, and which is suitable for special purpose machines such as mass centering machines. The purpose of the present invention is to provide a dynamic balance tester that does not require .

(ニ)発明の原理 一般に、鍛造状態でのクランクシャフトの慣性主軸上に
両端センタ孔を穿ち、そのセンタ孔を基準に機械加工を
施すと、加工後の初期率っりあいは、ジャーナル部の幾
何学的中心位置にセンタ孔を穿って加工した場合に比べ
て、その値は相当小さくなる。
(d) Principle of the invention Generally, when a center hole is drilled at both ends on the main axis of inertia of a crankshaft in a forged state, and machining is performed using the center hole as a reference, the initial balance after machining is The value is considerably smaller than when processing is performed by drilling a center hole at the geometric center position.

また、同一種、特に同一ロットの鍛造後のクランクシャ
フトについて、ジャーナル部の幾何学的中心位置にセン
タ孔を穿って機械加工した場合、その初期率つりあいの
方向はほぼ同一方向を示す。
Further, when forged crankshafts of the same type, especially of the same lot, are machined by drilling a center hole at the geometric center position of the journal portion, the direction of the initial rate balance is approximately the same.

本発明の原理は、上記二点に立脚している。すなわち、
同一ロフト等の鍛造品の任意のものに、幾何学的なジャ
ーナルの中心位置等の任意位置に両端センタ孔を穿ち、
そのセンタ孔を基準に機械加工を施し、そのものの慣性
主軸に対する両端センタ孔とのずれを測定できれば、以
後の同一ロフト等の鍛造品についてのセンタ孔位置を、
その測定値に基づいてずらせることにより、機械加工後
の初期率つりあいを所定の大きさ以下に収めることがで
きる。
The principle of the present invention is based on the above two points. That is,
Drill a center hole at both ends of any forged product such as the same loft at any position such as the center position of the geometric journal,
If you can perform machining based on the center hole and measure the deviation between the center holes at both ends relative to the main axis of inertia, you can determine the center hole position for future forged products such as the same loft.
By shifting based on the measured value, the initial ratio balance after machining can be kept within a predetermined value.

(ホ)構成 本発明の特徴とするところは、動っりあい試験により得
られた任意の修正面上での不っりあいヘルトル(量と角
度)から、供試体の左右両端面上における供試体の回転
中心軸と慣性主軸とのずれの量と方向を演算する回路を
備えたことにある。
(E) Structure A feature of the present invention is that the amount and angle of the unbalanced Hertl on any corrected surface obtained by the dynamic movement test is determined from the The reason is that it is equipped with a circuit that calculates the amount and direction of the deviation between the rotation center axis of the specimen and the principal axis of inertia.

(へ)実施例 本発明の実施例を、以下、図面に基づいてその測定原理
とともに述べる。
(F) Embodiments Examples of the present invention will be described below along with its measurement principles based on the drawings.

第1図は本発明実施例の構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

被試験体は左右の軸受IL、IRによって支承され、図
示しない回転駆動機構によって回転が与えられる。その
回転により生ずる不っりあい信号は、左右の軸受IL、
IR部に設けられた検出器2L、2Rによって検出され
る。また、被試験体に付されたマーク等をフォトセル3
によって検出することにより、被試験体の回転位相が検
出される。検出器2L、  2’a、およびフォトセル
3の出力は、動つりあい測定回路4に導入され、ここで
公知の演算を施すことにより、被試験体に設定された左
右の修正面1.)−上における不つりあいベクトルWl
 、Wrが導出される。この不つりあいベクトルWt 
、 Wp−は、表示器に表示されるとともに、センタ孔
位置演算回路5に導入されるよう構成されている。
The test object is supported by left and right bearings IL and IR, and is rotated by a rotation drive mechanism (not shown). The unbalance signal generated by the rotation is transmitted to the left and right bearings IL,
It is detected by detectors 2L and 2R provided in the IR section. In addition, the marks etc. attached to the test object can be transferred to the photocell 3.
By detecting this, the rotational phase of the test object is detected. The outputs of the detectors 2L, 2'a, and photocell 3 are introduced into a motion balance measurement circuit 4, where they are subjected to known calculations to determine the left and right correction planes 1. ) - unbalance vector Wl on
, Wr are derived. This unbalance vector Wt
, Wp- are displayed on the display and are also introduced into the center hole position calculation circuit 5.

次に、センタ孔位置演算回路5における演算内容を、本
発明実施例の使用方法とともに述べる。
Next, the contents of the calculation in the center hole position calculation circuit 5 will be described together with the method of using the embodiment of the present invention.

先ず、同一ロフト等の鍛造状態でのクランクシャフト等
から任意の一本を抽出し、例えばセンタ孔加工機等によ
って両端のジャーナル部の幾何学的中心にそれぞれセン
タ孔を穿ち、そのセンタ孔を基準として機械加工を施す
。このように加工されたクランクシャフト等を被試験体
として本発明実施例を駆動する。
First, extract an arbitrary crankshaft from a forged crankshaft with the same loft, etc., use a center hole processing machine, etc., to drill a center hole at the geometric center of the journal portions at both ends, and use the center hole as a reference. Machining is performed as follows. The embodiment of the present invention is driven by using the thus processed crankshaft and the like as a test object.

センタ孔位置演算回路5は、上述の試験により得られた
被試験体の左右の修正面上での不っりあいベクトルwz
 、 Wr−を入力して、以下に示す手順で演算を施す
The center hole position calculation circuit 5 calculates the disparity vector wz on the left and right correction surfaces of the test object obtained by the above-mentioned test.
, Wr- are input, and the calculation is performed according to the procedure shown below.

まず、左右の修正面上での不っりあいベクトルWt 、
 Wrは、被試験体をその回転軸方向に左右に二分した
左右の重心位置上での不っりあいベクトルWL 、 y
丸に換算される。これは、第2図に示す如く、例えば被
試験体の左端面からの左修正面、右修正面、左重心およ
び右重心までの距離を。
First, the disparity vector Wt on the left and right correction planes,
Wr is the unbalance vector WL, y on the left and right center of gravity positions of the test object divided into left and right in the direction of its rotation axis.
Converts to a circle. As shown in FIG. 2, this means, for example, the distance from the left end surface of the test object to the left correction surface, right correction surface, left center of gravity, and right center of gravity.

それぞれl、r、LおよびRとすると、下記の(1)。Letting l, r, L and R respectively, the following (1).

(2)式に示す力平衡、モーメント平衡の関係から求め
ることができる。
It can be determined from the force balance and moment balance relationships shown in equation (2).

w、  +wr+W、  +WR=O−<1)wL −
e +w、  ・r +wL −L+wRHR=0次に
、左右の重心位置における不っりあいベクトルwL、 
wAから、被試験体の回転軸心に対する左右の重心のず
れ量を算出する。これは、二分した被試験体の左右のM
量をそれぞれwL、wILとし、不つりあいベクトルの
修正半径をpとすると、回転軸心を始点とするベクトル
e、、eRにより次の(31,(41式から求めること
ができる。
w, +wr+W, +WR=O-<1)wL-
e +w, ・r +wL -L+wRHR=0 Next, the unbalance vector wL at the left and right center of gravity positions,
From wA, calculate the amount of deviation between the left and right center of gravity of the test object with respect to the rotation axis. This is the left and right M of the bisected test object.
When the quantities are wL and wIL, respectively, and the correction radius of the unbalance vector is p, it can be determined from the following equations (31, (41) using vectors e, , eR starting at the rotation axis.

心位置において、回転軸心を始点として慣性主軸を終点
とするベクトルと見做すことができる。
In the center position, it can be regarded as a vector starting from the axis of rotation and ending at the principal axis of inertia.

の左右両端面上における回転軸心に対する慣性主軸のず
れを示ずヘクトルeユ、ebが求められる。
Hectors e and eb are determined without indicating the deviation of the principal axis of inertia with respect to the rotational axis on both the left and right end surfaces of the .

具体的には、まず例えばeL、et<を回転軸心(2軸
)に直交するそれぞれのx−y平面上での分力ヘクトル
eL工、ecyおよびeえよ、epLyに分解する。
Specifically, first, for example, eL, et< is decomposed into component forces hector eL, ecy, and e, epLy on the respective xy planes perpendicular to the rotation axis (two axes).

次に、X方向およびX方向のそれぞれの分力ベクトルに
ついて、第3図および第4図に示す如く、x−2平面お
よびy−2平面上での力平衡、モーメント平衡から、左
右両端面上における回転軸心に対する慣性主軸のずれを
示すベクトルea、ebそれぞれのx、  7分力を求
める。すなわち、被試験体の両端面間距離をbとすると
、etxを原点にとり、横軸にX、縦軸にeχをとると
、ewはx=−L、ebzはx=b−Lとすれば、求め
ることができる。また、eLlを原点にとり、横軸にy
、縦軸に01をとると、 からy=−1,及びy=b−Lを選ぶことにより、以上
のように求められたベクトルeL、e、は、それぞれ被
試験体の左右両端面における回転中心と慣性主軸とのず
れの量と方向を表わすものであるから、この値に基づい
て、一本口のクランクシャフト等のセンタ孔を加工した
センタ孔加工機等のドリルの位置をシフトすれば、二本
口以降のクランクシャフト等には、機械加工後の初期不
つりあいが所定の大きさ以下となるようなセンタ孔が穿
たれることになる。
Next, regarding the component force vectors in the X direction and the X direction, as shown in FIGS. 3 and 4, from the force equilibrium and moment equilibrium on the Find the x and 7 component forces of vectors ea and eb, respectively, which indicate the deviation of the principal axis of inertia with respect to the axis of rotation. That is, if the distance between both end faces of the test object is b, then etx is the origin, X is on the horizontal axis, eχ is on the vertical axis, ew is x=-L, and ebz is x=b-L. , can be found. Also, taking eLl as the origin, the horizontal axis is y
, taking 01 on the vertical axis, by selecting y=-1 and y=b-L from Since it represents the amount and direction of deviation between the center and the principal axis of inertia, based on this value, if you shift the position of the drill such as a center hole processing machine that machined the center hole of a single-port crankshaft, etc. , A center hole is bored in the crankshaft after the second hole so that the initial unbalance after machining is less than a predetermined size.

なお、以上の演算の手順については、上述の実施例に限
られることはなく、修正面上での不つりあいベクトルか
ら、両端面上における回転軸心と慣性主軸とのずれの量
および方向を導出しさえすれば、どのような演算手順を
採ってもよい。
Note that the above calculation procedure is not limited to the example described above, and the amount and direction of the deviation between the rotation axis and the principal axis of inertia on both end surfaces are derived from the unbalance vector on the correction surface. Any calculation procedure may be used as long as it is done.

(ト)効果 以上説明したように、本発明によれば、汎用の動つりあ
い試験機により、機械加工後の不つりあいが所定の範囲
内に収まるような両端センタ孔の穿つ位置を容易に求め
ることができ、従来のマスセンタリングマシン等の大掛
りな専用機が不要となった。
(g) Effects As explained above, according to the present invention, it is possible to easily determine, using a general-purpose dynamic balance tester, the positions for drilling center holes at both ends so that the unbalance after machining is within a predetermined range. This eliminates the need for large-scale dedicated machines such as conventional mass centering machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成図、第2図、第3図および
第4図は、それぞれ本発明実施例のセンタ孔位置演算回
路5において左右の修正面上の不つりあいベクトルから
、両端面上の回転軸心と慣性主軸とのずれを示すベクト
ルを算出する過程を説明する図である。 IL、IR−軸受  2L、2R−検出器3−・−フォ
トセル   4−・動つりあい測定回路5−センタ孔位
置演算回路
FIG. 1 is a block diagram of the embodiment of the present invention, and FIGS. 2, 3, and 4 show the center hole position calculation circuit 5 of the embodiment of the present invention, from the unbalance vectors on the left and right correction planes. FIG. 3 is a diagram illustrating a process of calculating a vector indicating a deviation between a rotation axis and a principal axis of inertia on a surface. IL, IR-Bearing 2L, 2R-Detector 3--Photocell 4--Movement balance measurement circuit 5-Center hole position calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 供試体を回転させて得られる不つりあい信号と、供試体
の回転位相信号とから、供試体の任意の修正面上におけ
る不つりあいの量と角度を測定する装置において、得ら
れた上記不つりあいの量と角度とから、供試体の左右両
端面上における供試体の回転中心軸と慣性主軸とのずれ
の量と方向を演算する回路を有し、その演算結果により
、供試体の仕上加工後の不つりあいが所定の範囲内に収
まるような両端センタ孔加工位置を得るよう構成したこ
とを特徴とする動つりあい試験機。
A device that measures the amount and angle of unbalance on any corrected surface of a specimen from an unbalance signal obtained by rotating the specimen and a rotational phase signal of the specimen. It has a circuit that calculates the amount and direction of the deviation between the center axis of rotation and the main axis of inertia of the specimen on both the left and right end faces of the specimen from the amount and angle, and the calculation result allows the A dynamic balance tester characterized in that it is configured to obtain center hole machining positions at both ends such that unbalance is within a predetermined range.
JP20896884A 1984-10-03 1984-10-03 Dynamic balancing machine Granted JPS6186628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20896884A JPS6186628A (en) 1984-10-03 1984-10-03 Dynamic balancing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20896884A JPS6186628A (en) 1984-10-03 1984-10-03 Dynamic balancing machine

Publications (2)

Publication Number Publication Date
JPS6186628A true JPS6186628A (en) 1986-05-02
JPH0588413B2 JPH0588413B2 (en) 1993-12-22

Family

ID=16565140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20896884A Granted JPS6186628A (en) 1984-10-03 1984-10-03 Dynamic balancing machine

Country Status (1)

Country Link
JP (1) JPS6186628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292632A (en) * 2005-04-13 2006-10-26 Kokusai Keisokki Kk Crank shaft machining system
JP2009083005A (en) * 2007-09-27 2009-04-23 Nissan Motor Co Ltd Method, program and device for calculating machining center for rotating element, and cutting system
WO2014091742A1 (en) * 2012-12-12 2014-06-19 マツダ株式会社 Method for drilling center holes in forged rotors and system for drilling center holes in forged rotors
WO2014119352A1 (en) * 2013-01-31 2014-08-07 コマツNtc株式会社 Crankshaft machining system and crankshaft machining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424755A (en) * 1977-07-22 1979-02-24 Iseki Agricult Mach Knitting device of strawmattings
JPS55497A (en) * 1978-05-27 1980-01-05 Schenck Ag Carl Method and device for centering rotary body of nonuniform axial mass distribution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424755A (en) * 1977-07-22 1979-02-24 Iseki Agricult Mach Knitting device of strawmattings
JPS55497A (en) * 1978-05-27 1980-01-05 Schenck Ag Carl Method and device for centering rotary body of nonuniform axial mass distribution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292632A (en) * 2005-04-13 2006-10-26 Kokusai Keisokki Kk Crank shaft machining system
JP2009083005A (en) * 2007-09-27 2009-04-23 Nissan Motor Co Ltd Method, program and device for calculating machining center for rotating element, and cutting system
WO2014091742A1 (en) * 2012-12-12 2014-06-19 マツダ株式会社 Method for drilling center holes in forged rotors and system for drilling center holes in forged rotors
JP2014113635A (en) * 2012-12-12 2014-06-26 Mazda Motor Corp Method and system for machining center hole of forged rotating body
US9539651B2 (en) 2012-12-12 2017-01-10 Mazda Motor Corporation Method for machining center holes of forged rotary body and system for machining center holes of forged rotary body
WO2014119352A1 (en) * 2013-01-31 2014-08-07 コマツNtc株式会社 Crankshaft machining system and crankshaft machining method
KR20150112929A (en) * 2013-01-31 2015-10-07 코마츠 엔티씨 가부시끼가이샤 Crankshaft machining system and crankshaft machining method
JPWO2014119352A1 (en) * 2013-01-31 2017-01-26 コマツNtc株式会社 Crankshaft machining system and crankshaft machining method
CN104870130B (en) * 2013-01-31 2017-03-15 小松Ntc株式会社 Crankshaft Machining system and method for processing crankshaft
US10189096B2 (en) 2013-01-31 2019-01-29 Komatsu Ntc Ltd. Crankshaft machining system and crankshaft machining method

Also Published As

Publication number Publication date
JPH0588413B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
EP0133229B2 (en) Wheel balancer two plane calibration method
US4300197A (en) Process and apparatus for the centering of bodies of rotation having uneven mass distribution along their shaft axis
Li et al. High-precision measurement of tool-tip displacement using strain gauges in precision flexible line boring
US6631640B2 (en) Method and apparatus for measuring dynamic balance
US5046361A (en) Method and apparatus for balancing rotatable members
US2947175A (en) Balancing device
JPS6186628A (en) Dynamic balancing machine
US4502704A (en) Workholding devices
US2804775A (en) Means for the balancing of revolvable bodies
US4750361A (en) Universal balancing machine
US3805623A (en) Balancing apparatus for measurement of want of balance
Klocke et al. Compensation of disturbances on force signals for five-axis milling processes
US4532803A (en) Non-spinning dynamic balancing machine and method
US3232118A (en) Method and means for the compensation of journalling faults in workpiece-balancing operations
US4644792A (en) Method and apparatus for determining the mass center of a body
JP2000221096A (en) Balancing machine and balancing test method
US3114264A (en) Gravity sensing instrument
JPS6186627A (en) Dynamic balancing machine
JPH0617844B2 (en) Unbalance tester
SU1060958A1 (en) Rotor balancing method
SU492837A1 (en) The method of determining the gravitational constant
US3188858A (en) Method and apparatus for determining static moments of workfieces
DE2847643A1 (en) Main rotor inertia to rotation axis misalignment measurement - using vector addition of weighted static and dynamic imbalances and with weight adjusted electrically, hydraulically or pneumatically
SU1185141A1 (en) Method of adjusting an automatic line for balancing crankshafts
JP2709025B2 (en) Cylindrical accuracy inspection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees