JPS6185210A - Shock absorber with adjustable damping force - Google Patents

Shock absorber with adjustable damping force

Info

Publication number
JPS6185210A
JPS6185210A JP20669984A JP20669984A JPS6185210A JP S6185210 A JPS6185210 A JP S6185210A JP 20669984 A JP20669984 A JP 20669984A JP 20669984 A JP20669984 A JP 20669984A JP S6185210 A JPS6185210 A JP S6185210A
Authority
JP
Japan
Prior art keywords
damping force
shock absorber
displacement
piezoelectric
piezoelectric body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20669984A
Other languages
Japanese (ja)
Other versions
JPH0413568B2 (en
Inventor
Mitsuo Inagaki
光夫 稲垣
Hideaki Sasaya
笹谷 英顕
Kenji Takeda
憲司 武田
Yodo Nakano
中野 容道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP20669984A priority Critical patent/JPS6185210A/en
Priority to US06/781,638 priority patent/US4729459A/en
Publication of JPS6185210A publication Critical patent/JPS6185210A/en
Publication of JPH0413568B2 publication Critical patent/JPH0413568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/20Manual control or setting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/604Signal noise suppression; Electronic filtering means low pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/74Analog systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/90Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems other signal treatment means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/18Starting, accelerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To enable the response performance to be augmented by configurating a car shock absorber in such a manner that the cross sectional area of the oil passage which connects two hydraulic chambers within a cylinder is allowed to be adjustable permitting a piezoelectric element to generate an electric voltage in response to the displacement of sliding members and also to transmit the displacement to the sliding members simultaneously. CONSTITUTION:A side hole 18 of a piston 12 is connected with a groove 19a of a spool 19 permitting a damping force determined by the resistance caused through the side hole 18 and a throttle 16 to be produced when no electric voltage is applied to a piezoelectric element 23 by a control circuit 2. While on the contrary, when a high voltage is applied to the piezoe lectric element 23 by the control circuit 2, a small change in elongation takes place in the piezoelectric element 23 allowing its displacement to be enlarged by a ratio of the cross sectional area between a plunger 25 and a projection 19b of the spool 19 by a sealed chamber 27. This causes the spool 19 to be displaced downward allowing the side hole 18 and the groove 19a to be disconnected. Resultantly, this allows the damping force to be increased. In addition, changes in hydraulic pressure 14 and 15 when a car is running are allowed to be converted into changes in an electric voltage of the piezoelectric crystal element 23 by the piezoelectric effect, and to be transmitted to the control circuit 2 to determine the running condition. Thus, this configuration enables the response performance to be augmented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、減衰力を調整自在とした車両用のショックア
ブソーバに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a shock absorber for a vehicle whose damping force is adjustable.

(従来の技術) 従来の減衰力可変ショックアブソーバは、例えば特開昭
58−194609号公報に開示される様に、シリンダ
内に区画形成された2つの」二下浦圧室を通路で連絡す
るとともに、この通V品の面積を回転バルブによっ°(
変化させることによって、減衰力を変える構成のもので
あった。
(Prior Art) A conventional variable damping force shock absorber, as disclosed in, for example, Japanese Patent Application Laid-Open No. 58-194609, has two pressure chambers defined in a cylinder that are connected through a passage. , the area of this V product is measured by a rotary valve (
It was designed to change the damping force by changing the damping force.

(発明が解決しようとする問題点) ところが、従来のものにおいて、車両の走行状態によっ
てショックアブソーバの減衰力を変化させる場合は、そ
の走行状態を各種のセンサ、例えciH速センサ・操舵
角センサ・スロットルセンサ等の信号に基づい゛ζ間接
的に予測し、適切な減衰力となるように回転バルブを制
御する構成であった。このため、従来のもので減衰力を
適切に制御するには、非常に多くのセンサを必要とし、
またこれらのセンサの信号を受けて車両の走行状態を予
測する制御回路が複雑になるといった問題点を有してい
た。
(Problem to be Solved by the Invention) However, in the conventional system, when changing the damping force of the shock absorber depending on the driving condition of the vehicle, the driving condition is detected by various sensors, such as a ciH speed sensor, a steering angle sensor, It was configured to indirectly predict ζ based on signals from a throttle sensor, etc., and control the rotary valve to provide an appropriate damping force. For this reason, conventional methods require a large number of sensors to properly control damping force.
Another problem is that the control circuit that receives the signals from these sensors and predicts the driving state of the vehicle becomes complicated.

本発明は上記の問題点に鑑みてなされるものでなって、
車両走行状態をショックアブソーバ内の油室の圧力変化
に基づいて予測し、且つ応答性の優れた制御が可能とな
る新規な減衰力可変ショックアブリーバを提供すること
を目的とする。
The present invention has been made in view of the above problems.
It is an object of the present invention to provide a novel variable damping force shock absorber that predicts vehicle running conditions based on pressure changes in an oil chamber in a shock absorber and enables control with excellent responsiveness.

(問題点を解決するための手段) 本発明は上記問題点を解決するための手段としく3) て、シリンダ(11)に対して摺動自在にピストン(1
2)を収納した第1.第2油室(M、 +5)を形成し
、前記ビスI・ンに設けられて第1.第2油室(14,
15) ヲ連通スル連IN (17,18) (!:、
コ(7)連通路の通路面積を摺動変位Jることにょっ゛
ζ変化させ、[1つ、一端面は第2油室の圧力を受ける
摺動部材(19)と、この摺動部材(19)の他端面側
に配設さセて前記摺動部材(19)の変位を応力として
受けてこの応力に基づい″ζ電圧を発生し、且つ印加電
圧に基づいて伸縮度イ☆して変位を前記摺動部材(19
)へ伝達する圧電体(23)とを貝偏することを特徴と
する。
(Means for Solving the Problems) The present invention is a means for solving the above-mentioned problems.
2). A second oil chamber (M, +5) is formed, and a second oil chamber (M, +5) is provided in the screw I/N. 2nd oil chamber (14,
15) wo communication connection IN (17,18) (!:,
(7) The passage area of the communication passage is changed by the sliding displacement J, [1, one end surface is a sliding member (19) receiving pressure from the second oil chamber, and this sliding member (19) is disposed on the other end surface side, receives the displacement of the sliding member (19) as stress, generates a voltage based on this stress, and expands and contracts according to the applied voltage. The displacement is determined by the sliding member (19
) is characterized in that the piezoelectric body (23) transmitting information to the piezoelectric body (23) is biased.

(実施例) 次に、本発明の一実施例を図面に基づいて説明する。第
1図は本発明の一実Jlti例である減衰力可変ショッ
クアブソーバの断面図、第2図は第1図に図示したショ
ックアブソーバ1を用いたrF両制御システムの模式図
、第3図は第1図、第2図に図示した制御回l/82の
回路図を各々示す。
(Example) Next, an example of the present invention will be described based on the drawings. Fig. 1 is a sectional view of a variable damping force shock absorber which is an example of the present invention, Fig. 2 is a schematic diagram of an rF control system using the shock absorber 1 shown in Fig. 1, and Fig. 3 is a 1 and 2 are circuit diagrams of the control circuit 1/82 shown in FIGS. 1 and 2, respectively.

第1図において、1は減衰力可変ショックアブソーμで
、シリンダ11内に軸方向に摺動自在に収納されたピス
トンロッド13と、ピストンロッド13と溶接等によっ
て一体に固定されたピストン12とによって区画形成さ
れて作動油の封入された第1油室14及び第2油室15
と、第1油室14と第2油室15とを連通ずるようにピ
ストン12に設けられている絞り16が各々配設されて
いる。
In FIG. 1, 1 is a variable damping force shock absorber μ, which includes a piston rod 13 housed in a cylinder 11 so as to be slidable in the axial direction, and a piston 12 integrally fixed to the piston rod 13 by welding or the like. A first oil chamber 14 and a second oil chamber 15 which are partitioned and filled with hydraulic oil.
A throttle 16 is provided on the piston 12 so as to communicate the first oil chamber 14 and the second oil chamber 15.

ピストン12の中央には、中央孔17と側孔18が穿設
されて、第1油室14と第2油室15を連通ずる連通路
が形成されている。この中央孔17には、連通路の通路
面積を変化させる摺動自在であるスプール19が、軸方
向に摺動自在に油密的に挿入されている。即ちスプール
19は、外11i1に環状の溝19aと中央に中央孔1
9bと、この両者を連通する連通孔19cと備え、この
溝19aが前記側孔18と連通ずる位置から構成される
装置まで移動することによって、前記連通の通路面積を
変化させるいわゆる可変絞りの役割をする。
A central hole 17 and a side hole 18 are bored in the center of the piston 12 to form a communication path that communicates the first oil chamber 14 and the second oil chamber 15. A slidable spool 19 that changes the passage area of the communication path is inserted into the central hole 17 in an oil-tight manner and slidable in the axial direction. That is, the spool 19 has an annular groove 19a on the outside 11i1 and a central hole 1 in the center.
9b and a communication hole 19c that communicates the two, the groove 19a plays a role of a so-called variable throttle that changes the passage area of the communication by moving to a position where the groove 19a communicates with the side hole 18. do.

また、スプール19の一端面即ら図中下方端面ば、第2
油室15の圧力を受りるとともに、その一部はス]・ソ
バ20支持されたスプリング21によっ(上方に付勢さ
れζいる。尚、ストッパ20は中央孔17に圧入されて
固定されている。一方、スプール19の他端面叩ら図中
上方端面の部は、スプール19の上方に形成された突出
部+9dの上方端面であっζ、後述する封入室27に突
出している。なお、スプール19は摺動抵抗を減少させ
るため、上下端面を連通ずる小孔19eを備えている。
In addition, one end surface of the spool 19, that is, the lower end surface in the figure, and the second
It receives the pressure of the oil chamber 15, and a part of it is urged upward by the spring 21 supported by the oil chamber 20.The stopper 20 is press-fitted into the center hole 17 and fixed. On the other hand, the upper end surface in the drawing of the other end surface of the spool 19 is the upper end surface of the protrusion +9d formed above the spool 19, and protrudes into the inclusion chamber 27, which will be described later. The spool 19 is provided with a small hole 19e that communicates between the upper and lower end surfaces in order to reduce sliding resistance.

ピストン12の上部のケーシング12aとピストンロッ
ド13によって形成される空間22内には、圧電素子2
3aと電極板(図示せず)とが交lJ4に多数積層され
た積層型圧電体23が固定されている。この圧電素子2
3aは、ピストンロッド13内にあるリード線24によ
って印加される電圧に茫づいて、軸方向に伸縮変位する
逆圧電効果を有しているとともに、圧電素子23aの軸
方向に応力が加わるとその応力に基づい起電力を発生ず
る圧電効果を備え°(おり、例えば、P h Z r 
O3。
A piezoelectric element 2 is provided in a space 22 formed by the upper casing 12a of the piston 12 and the piston rod 13.
A laminated piezoelectric body 23 in which a large number of piezoelectric members 3a and electrode plates (not shown) are laminated at the intersection 1J4 is fixed. This piezoelectric element 2
3a has an inverse piezoelectric effect that expands and contracts in the axial direction due to the voltage applied by the lead wire 24 in the piston rod 13, and when stress is applied in the axial direction of the piezoelectric element 23a, It has a piezoelectric effect that generates an electromotive force based on stress (e.g., P h Z r
O3.

pbTi03等を主成分とするPZT素子などである。This is a PZT element whose main component is pbTi03 or the like.

25は圧電体23の伸縮変位と追従してケーシング12
a内の空間22金上下方向に摺動移動すプランジャで、
プランジャ25、空間22、スプール19の突出部19
dの上方端面及びシール用0リング26によって封入室
27が区画形成される。封入室27には非圧縮性流体、
例えばシリコン油が密封状態で封入されており、プラン
ジャ25の断面積とスプール19の突出部19dの断面
積との比によって、いわゆるパスカルの原理に基づいて
圧電体23によって変位するプランジャ25の微少変位
量をスプール19に増大させて伝達する。また封入室2
7はスプリング21によって10〜20 k g/−程
度の圧力に維持されている。
25 is a casing 12 that follows the expansion and contraction displacement of the piezoelectric body 23.
A plunger that slides vertically in the 22K gold space in a.
Plunger 25, space 22, protrusion 19 of spool 19
A sealing chamber 27 is defined by the upper end surface of d and the O-ring 26 for sealing. The containment chamber 27 contains an incompressible fluid,
For example, silicone oil is hermetically sealed, and depending on the ratio of the cross-sectional area of the plunger 25 and the cross-sectional area of the protrusion 19d of the spool 19, the plunger 25 is slightly displaced by the piezoelectric body 23 based on the so-called Pascal's principle. The amount is increased and transmitted to the spool 19. Also, inclusion room 2
7 is maintained at a pressure of about 10 to 20 kg/- by a spring 21.

尚、スプール19は圧電体23に電圧が印加されていな
いときは、第1.第2油室14.15を連通する側孔1
8及び、絞り16により連通し、高電圧(約500 V
)が印加されたときは両油室14.15は側孔18が絞
り16だけで連通するように構成されている。
Note that when no voltage is applied to the piezoelectric body 23, the spool 19 is in the first position. Side hole 1 communicating with the second oil chamber 14.15
8 and diaphragm 16, high voltage (approximately 500 V
) is applied, both oil chambers 14 and 15 are configured such that the side holes 18 communicate only through the throttle 16.

また、28.29はシール用Oリングで、0リング28
はピストンロット13の外周に配設されて油室14.1
5のシールをし、0リング29はスプール19の突出部
+9dの外周にあって封入室27のシリコ1フ油が外部
へ流出しないようにするものである。
Also, 28.29 is an O-ring for sealing, O-ring 28
is arranged on the outer periphery of the piston rod 13 and the oil chamber 14.1
5, and the O-ring 29 is located on the outer periphery of the protrusion +9d of the spool 19 to prevent the silica 1 oil in the sealing chamber 27 from leaking to the outside.

また、2は制御回路であってリード線24を介して圧電
体23と電気的に接続されている。
Further, 2 is a control circuit which is electrically connected to the piezoelectric body 23 via a lead wire 24.

上述の構成に基づいて、減衰力可変ショックアブソーバ
の作動について説明する。
The operation of the variable damping force shock absorber will be explained based on the above configuration.

制御回路2により圧電体23に電圧が印加されない場合
においては、ピストン12の側孔18とスプール19の
溝19aとは連通しており、ピストン12及びピストン
ロフト川3がシリンダll内を摺動する際に発生ずる減
衰力は、側孔18及び絞り16を流れる作動油の抵抗力
として得られる。
When no voltage is applied to the piezoelectric body 23 by the control circuit 2, the side hole 18 of the piston 12 and the groove 19a of the spool 19 are in communication, and the piston 12 and the piston loft river 3 slide inside the cylinder 11. The damping force generated at this time is obtained as a resistance force of the hydraulic oil flowing through the side hole 18 and the throttle 16.

制御回路2により圧電体23高電圧(約500■)が印
加された場合には、圧電体23は微少の伸び変位(約9
0μ)し、この変位はプランジャ25及びスプール19
の突出部19dの断面積の比(約25倍)だけ封入室2
7によって拡大されてスプール19に図中下方の変位(
約2mm)として伝達される。この時、側孔18とスプ
ール19の溝19aと連通は遮断されため、ショックア
ブソーバlの減衰力は絞りI6を流れる作動油の抵抗力
として得られる。この抵抗力は、前述の場合と比較して
、側孔18が閉塞されただけ大きくなるため、ショック
アブソーバ1の減衰力は増加する。
When a high voltage (approximately 500 cm) is applied to the piezoelectric body 23 by the control circuit 2, the piezoelectric body 23 undergoes a slight elongation displacement (approximately 9
0μ), and this displacement is caused by the plunger 25 and the spool 19.
The filling chamber 2 is filled by the ratio (approximately 25 times) of the cross-sectional area of the protrusion 19d.
7, the spool 19 has a downward displacement in the figure (
approximately 2 mm). At this time, communication between the side hole 18 and the groove 19a of the spool 19 is cut off, so the damping force of the shock absorber I is obtained as a resistance force of the hydraulic oil flowing through the throttle I6. This resistance force becomes greater as the side hole 18 is closed compared to the case described above, so the damping force of the shock absorber 1 increases.

以上述べた樺に、ショックアブソーバ1の減衰力は、圧
電体23に印加される電圧を制御回路2によって0N−
OFFすることにより、ハード・ソフトの2つの減衰力
を得られる。
In the birch described above, the damping force of the shock absorber 1 is determined by controlling the voltage applied to the piezoelectric body 23 to 0N-
By turning it off, two types of damping force, hard and soft, can be obtained.

尚、上述の説明においては、圧電体23に印加される電
圧を0N−OFF制御することによってシロツクアブソ
ーバ1の減衰力を2段階に切り換えるものであったが、
圧電体23印加される電圧を零から高電圧(約500V
)まで連続的に制御することによって、ショックアブソ
ーバ1の減衰力をソフトからハードまで連続的に変える
ことも可能であることは言うまでもない。
In the above description, the damping force of the shield absorber 1 is switched between two stages by controlling the voltage applied to the piezoelectric body 23 from ON to OFF.
The voltage applied to the piezoelectric body 23 is varied from zero to high voltage (approximately 500V).
), it goes without saying that it is also possible to continuously change the damping force of the shock absorber 1 from soft to hard.

次に、ショックアブソーバ■内の油室14,15の圧力
変化に基づいて、車両走行状態を検出する場合番こおけ
る圧電体23の作動を説明する。
Next, the operation of the piezoelectric body 23 when detecting the running state of the vehicle based on pressure changes in the oil chambers 14 and 15 in the shock absorber 1 will be explained.

ショックアブソーバlの作動時、例えハヒストン12が
シリンダ+1内を下降している場合には、ピストン12
の側孔18及び絞り16を介して、第2油室15の作動
油が第1油室14に流れる。
When the shock absorber l is activated, even if the piston 12 is moving down inside the cylinder +1, the piston 12
Hydraulic oil in the second oil chamber 15 flows into the first oil chamber 14 through the side hole 18 and the throttle 16 .

このとき、作動油の流動抵抗より、第2油室15の圧力
は上昇してスプール19の下端面を上方に押圧する押圧
力が作用する。
At this time, the pressure in the second oil chamber 15 increases due to the flow resistance of the hydraulic oil, and a pressing force that presses the lower end surface of the spool 19 upward acts.

圧電体23に泪従するプランジャ25とスプール19と
は、封入室27内のシリコン浦によって両者の変位が伝
達される構成となっているため、スプール19の下方端
面より押圧力が作用すると、その押圧力に応じて封入室
27の圧力が変化する。
The plunger 25 and the spool 19, which follow the piezoelectric body 23, are configured so that their displacement is transmitted by the silicone hole in the enclosure chamber 27. Therefore, when a pressing force is applied from the lower end surface of the spool 19, The pressure in the inclusion chamber 27 changes depending on the pressing force.

この圧力変化は、プランジャ25を介して圧電体23に
押圧力を作用させるため、圧電体23は圧電効果により
電圧が発生ずる。この電圧は、リード線24で制御回路
2に接続されて走行状態の判定に用いられる。
This pressure change causes a pressing force to act on the piezoelectric body 23 via the plunger 25, so that a voltage is generated in the piezoelectric body 23 due to the piezoelectric effect. This voltage is connected to the control circuit 2 through a lead wire 24 and used to determine the running state.

尚、上述の実施例においては、圧電体23の変位が微少
であるため、封入室27を介してその変位を拡大してス
プール20に伝達する構成であるが、圧電体23の変位
によって直接にスプール20を変位さ一ロてもピストン
12の側孔18を開閉することが可能の場合は、封入室
27は不必要となることは言うまでもない。
In the above-described embodiment, since the displacement of the piezoelectric body 23 is minute, the displacement is magnified and transmitted to the spool 20 via the enclosure chamber 27, but the displacement of the piezoelectric body 23 directly It goes without saying that if the side hole 18 of the piston 12 can be opened and closed even by displacing the spool 20, the sealing chamber 27 is unnecessary.

また、ピストン12の、中央孔17、側孔18からなる
連通路の通路面積が十分に大きい場合は、ピストン口に
設けられている絞り16を省略しても上述の作動、効果
が得られることは、当業者において容易に理解されるで
あろう。
Further, if the passage area of the communication passage consisting of the central hole 17 and side holes 18 of the piston 12 is sufficiently large, the above-mentioned operation and effect can be obtained even if the throttle 16 provided at the piston mouth is omitted. will be easily understood by those skilled in the art.

第2図は、上述のショックアブリーバ1を組み込んだ車
両制御の模式図であって、2は制御回路、3は車輪で、
ショックアブソーバlは、前後両方車輪の計4輪に各々
取付けられて、各々のり一ト線24は制御回路2と接続
されている。
FIG. 2 is a schematic diagram of vehicle control incorporating the above-mentioned shock absorber 1, in which 2 is a control circuit, 3 is a wheel,
The shock absorbers 1 are attached to each of the front and rear wheels, a total of four wheels, and the respective steering lines 24 are connected to the control circuit 2.

第3図は制御回路2の回路図である。FIG. 3 is a circuit diagram of the control circuit 2.

制御回I?82は、D C−D C=Iンハータによる
高圧電源201、高圧電源201の出力をON −01
;’ F−Jる4ケのスイッチ202、各ソ9ンクアブ
ソーハ1の圧電体23に発生ずる電圧を分圧する抵抗器
203.2+14.分圧された圧電体23の電圧の低周
波成分だけを取り出−44組の11−パスフィルタ20
5(1、・F)、フィルタ進退後の信号を設定レヘル■
Rと比較して1.O信号を発生する4糸11の比較器2
06.4本のショックアブソーバ1の圧電体23からの
信号を判別して作動するA N D回路207、OR回
路208、及びごのANr)−ORによる論理回路の信
号を受けて、一定時間(約2秒間)前記スイッチ202
を閉じさゼるタイマ回路209から構成され゛(いる。
Control time I? 82 turns on the output of the high voltage power supply 201 and the high voltage power supply 201 by the D C-D C=I inverter -01
' F-J 4 switches 202, resistors 203.2+14. for dividing the voltage generated in the piezoelectric body 23 of each solenoid absorber 1. Only the low frequency components of the voltage of the divided piezoelectric material 23 are taken out -44 sets of 11-pass filters 20
5 (1,・F), set the signal after the filter advances and retreats ■
Compared to R: 1. Comparator 2 with 4 threads 11 generating O signal
06. A N D circuit 207, an OR circuit 208, and an OR circuit 208, which operate by discriminating the signals from the piezoelectric bodies 23 of the four shock absorbers 1, receive a signal from the logic circuit by OR, and operate for a certain period of time ( (for about 2 seconds) the switch 202
It consists of a timer circuit 209 that closes the circuit.

前記論理回路は、4本のショックアブソーバの取(」位
置を、前輪右側(F−R)、前輪左+1’l(F・1、
)、1輪輪右側(R−R) 、後輪左側(R−1−)と
して説明すると、ド・RとF・11、又はR−RとR・
15、又はF −RとR−R,又はR・1、とR・■、
が同時に比較器206の設定電圧vRを越える電圧を発
生した場合に、AND回路207が1となり、OR回路
208は1なる論理を有する。
The logic circuit changes the positions of the four shock absorbers to front wheel right side (F-R), front wheel left +1'l (F・1,
), one wheel on the right side (R-R), and the rear wheel on the left side (R-1-).
15, or F-R and R-R, or R・1, and R・■,
simultaneously generates a voltage exceeding the set voltage vR of the comparator 206, the AND circuit 207 becomes 1 and the OR circuit 208 has a logic of 1.

次に、本発明による減衰力可変ショックアブソーバを組
み込んだシステムの作動について説明する。
Next, the operation of the system incorporating the variable damping force shock absorber according to the present invention will be explained.

本システムにおいて、従来公知の減衰力可変ショックア
ブソーバを組み込んだシステム同様、マニュアル操作に
より減衰力をソフト又はハードに切替えることは、設定
に応じて本発明のショックアブソーバlの圧電体23に
加える高電圧をON又はOFFとすれば容易にできるこ
とは前述した様にいうまでもない。(マニュアル操作に
係る回路は省略する) 本システムの最も宙なポイントは、車両の走行状態に応
じて自動的に減衰力をソフトあるいはハードに切替える
いわゆるオート機能を容易にかつ簡単に行なえるところ
にある。
In this system, similarly to a system incorporating a conventionally known variable damping force shock absorber, the damping force can be switched to soft or hard by manual operation by applying a high voltage to the piezoelectric body 23 of the shock absorber l of the present invention according to the setting. As mentioned above, it goes without saying that this can be easily done by turning ON or OFF. (Circuit related to manual operation is omitted) The most interesting point of this system is that it can easily and easily perform the so-called auto function, which automatically switches the damping force between soft and hard depending on the vehicle's driving condition. be.

本システムにおけるオートモードでは、車両の4輪に装
着された4本のショックアブソーバ1に〈13) 組み込んだ圧電体23の発生電圧をもとに、車両の走行
状態を予測し、すみやかにソフトからハードへと′lI
t、資力を切替える。本システムでは、オートモード時
の減衰力のソフトからハードへの切替えは、急発進時・
急制動時及びスラローム走行時に行ない、各々、スフオ
ウト(車両の尻下り現象)・ダイブ(車両の前のめり)
及びロールを防止し操縦安定性を向上するとともに、通
常時の乗りごごち性を向上させることができる。
In the auto mode of this system, the running state of the vehicle is predicted based on the voltage generated by the piezoelectric body 23 incorporated in the four shock absorbers 1 attached to the four wheels of the vehicle. To the hard
t. Switch your financial resources. In this system, the damping force in auto mode is switched from soft to hard when starting suddenly.
Performed during sudden braking and slalom, respectively, sifting (vehicle tail-sloping phenomenon) and dive (vehicle leaning forward)
It is possible to prevent roll and improve steering stability, as well as improve riding comfort during normal conditions.

次に、4本のショックアブソーバ1に組み込まれた圧電
体23の発生電圧から、いかに、急発進、急制動及びス
ラロームを予測するかを説明する。
Next, a description will be given of how to predict sudden start, sudden braking, and slalom from the voltage generated by the piezoelectric bodies 23 incorporated in the four shock absorbers 1.

急発進時に車両はスフオウト現象、すなわち車両の尻下
りが生ずるため4輪の内、後2輪(R・R及びR−L)
に取り付けられたショックアブソーバ1が縮む。従って
、1&2輪(R−R及びR・L)に取り付りられたショ
ックアブソーバ1からの電圧信号が同時に発生ずるため
、これらを検知して減衰力はソフトからハードへと切替
えスクオうトを抑える。即ちAND回路207のAND
4がlとなって、タイマ回路209によって一定時間ス
イノ千202を閉し、ショックアブソーバ1の圧電体2
3に高圧電源201の高電圧を印加する。
When the vehicle starts suddenly, the vehicle tends to stall, which means the vehicle tails off, so the rear two wheels (R, R and R-L) of the four wheels
Shock absorber 1 attached to compresses. Therefore, since the voltage signals from the shock absorbers 1 attached to the first and second wheels (R-R and R/L) are generated at the same time, these are detected and the damping force is switched from soft to hard and the scooter is activated. suppress. That is, the AND of the AND circuit 207
4 becomes l, the timer circuit 209 closes the suinosen 202 for a certain period of time, and the piezoelectric body 2 of the shock absorber 1
3, a high voltage from the high voltage power supply 201 is applied.

急制動時には、タイプ現象、すなわら車両の前のめりに
より前2輪(l・゛・)鷹及びF・1−)に取り付けら
れたショックアブソーバから電圧信号が同時に発生ずる
。これを検知し゛ζ減衰力をソフトからハートへと切替
えダイブ現象を抑える。このときAND回路207のA
NDIが1となる。
During sudden braking, voltage signals are simultaneously generated from the shock absorbers attached to the two front wheels (L. It detects this and switches the damping force from soft to heart to suppress the dive phenomenon. At this time, A of the AND circuit 207
NDI becomes 1.

また、スラローム走行時には、コーナリングの方向に従
いロール現象が発生ずる。この時、車両の右2輪(F−
R及びR−R)、又は左2輪(F・I7及びR・1.)
のいすわかが沈み込むため、ショックアブソーバ1から
の電圧信号は右2輪(F・R及びR−R)、又は左2輪
(F・1.及び・R・し)が同時に発生するため、これ
を受けて減衰力をソフトからハートへ切替えることによ
りロールを抑える。このときはANr)回路207のA
ND2、又はAND3が1なる。
Furthermore, during slalom driving, a roll phenomenon occurs depending on the direction of cornering. At this time, the two right wheels of the vehicle (F-
R and R-R), or 2 left wheels (F・I7 and R・1.)
Because the suspension sinks, the voltage signal from shock absorber 1 is generated simultaneously for the two right wheels (F・R and R-R) or the two left wheels (F・1. and・R・shi). In response to this, the roll is suppressed by switching the damping force from soft to heart. In this case, ANr)A of the circuit 207
ND2 or AND3 becomes 1.

本/スーrムの制御回路2では、前述の、スフオウト・
タイプ・1」−ル現象に応し7て、各ショックアブソー
バ1の圧電体から発/lする電lトをあらかしめ設定し
た電圧(VR)と比較するごとにより、設定電圧(VR
)より人なる場合に信冒を論理回路へ入力し、この他〜
(を八Nr)とORの組合・lにより、車両の走行状態
に起因するスフオウト・ダイブ・ロール現象を予測し、
為圧電源201からの高電圧をショクアブソーバ1の圧
電体23へ加えるためスイッチ202を設定時間の間(
約2秒間)作動させる。尚、ショックアブソーバlの発
生電圧は、抵抗器203によって分圧し、これをあらか
しめ設定した特性を有するフィルタ205(ローパスフ
ィルタ)に通ずことで、例えば走路の凹凸などによって
発生ずるタイヤの」二F振動に起因する比較的高い周波
数成分をカッl−シて防いでいる。
In the control circuit 2 of this/summer, the above-mentioned software
In response to the type 1 phenomenon, the set voltage (VR) is determined by comparing the electric current generated from the piezoelectric body of each shock absorber 1 with the preset voltage (VR).
) Input the belief into the logic circuit if it is more human, and other ~
By the combination of (8Nr) and OR, predict the short dive roll phenomenon caused by the driving condition of the vehicle,
In order to apply high voltage from the pressure power source 201 to the piezoelectric body 23 of the shock absorber 1, the switch 202 is pressed for a set time (
(approximately 2 seconds). The voltage generated by the shock absorber l is divided by a resistor 203 and passed through a filter 205 (low-pass filter) having predetermined characteristics. Relatively high frequency components caused by F vibration are blocked and prevented.

以上述べた通り、本発明による減衰を可変ショックアブ
ソーバ1は、減衰力を切替える手段とし゛()F電体2
3と、パスカルの原理に基きこの圧電体23の微少変位
を拡大してスプール19の変位を起こし、ピストン12
の側孔18を開閉する構成としたごとにより、ショック
アブソーバlの縮み時には、圧電体23ら電月−信号を
発生させることができ、この信号をもとに、車両の走行
状態を予測することが可能となり、従来のシステムに使
用されている車速センサ、ステアリングセンサ、スロッ
トルセンサ、ブレーキ圧センサなどの多くのセンサを必
要とする配線などを含めてシステムが簡単となるメリッ
トを有する。
As described above, the shock absorber 1 with variable damping according to the present invention uses the damping force as a means for switching the damping force.
3, based on Pascal's principle, this slight displacement of the piezoelectric body 23 is magnified to cause displacement of the spool 19, and the piston 12
By opening and closing the side hole 18, when the shock absorber l is compressed, a signal can be generated from the piezoelectric body 23, and the running state of the vehicle can be predicted based on this signal. This has the advantage of simplifying the system, including the wiring required for many sensors used in conventional systems, such as the vehicle speed sensor, steering sensor, throttle sensor, and brake pressure sensor.

(発明の効果) 以上述べた様に本発明は、ショック”?ブソーバ内のピ
ストンに圧電体を配設するとともに、第1・第2油室の
連通路の通路面積を変化させるIN動部材を設けて、両
者の変位を伝達する構成としたごとにより、ショックア
ブソーバが縮む場合には第2油室の圧力が摺動部材から
、圧電体と伝達されて、この圧力に基づいて圧電体に電
圧が発生ずる。
(Effects of the Invention) As described above, the present invention provides a piezoelectric body on the piston in the shock absorber and an IN moving member that changes the passage area of the communication passage between the first and second oil chambers. Because of the configuration in which the shock absorber is compressed, the pressure in the second oil chamber is transmitted from the sliding member to the piezoelectric body, and a voltage is applied to the piezoelectric body based on this pressure. occurs.

このため、車両走行状態を、ショックアブソーバ内の油
室の圧力変化に基づいて発生ずる圧電体の電11に3L
つ(1−1接にY渕するごとがrIJ能と4yイ、。
For this reason, the driving state of the vehicle can be adjusted by 3L to the electric current 11 of the piezoelectric body, which is generated based on the pressure change in the oil chamber in the shock absorber.
(Every Y edge on the 1-1 tangent is rIJ ability and 4y I.

また、摺!!11部44 iJ、 Il二電体に印加さ
相る電圧に基づいて変(☆移ωjしで、通路面積を変化
さ・Uるため、itt来の回転ハルゾなどC旧り較1−
.’(非富に応答(11か(llよIたものになる。
See you again! ! 11 Part 44 iJ, Il changes based on the voltages applied to the dielectric body (☆ ωj), so that the passage area is changed.
.. '(Response to non-wealth (11?)

4.1ン1曲の簡11な説明 第1図は4発明の一実施例ごある減衰力riJ変シジソ
クー〆ゾソーハの断面図、第2図は第1図に図示し7た
ショックアブソーバ1を用いた車両制御ソステノ、の模
式図、第3図口第1図、第2図にMホした■、制御回路
2の回路図を各々示す。
4.1 Brief explanation of one song Figure 1 is a cross-sectional view of a damping force riJ variable shijisoha according to an embodiment of the invention, and Figure 2 is a cross-sectional view of the shock absorber 1 shown in Figure 1. A schematic diagram of the vehicle control sostenometer used, and a circuit diagram of the control circuit 2 are shown in FIG.

1・・・減衰力nJ変ショノクアゾソーハ、11・・・
ノリンタ、12・・・ビス]・ン、12a・・・ケーシ
ング、14.15・・・第1・第2浦室、16・・・絞
り、17゜113・・・連1irl路となる中火fLと
側rし、19・・・スプール(1!!動部(杓、2+・
・・スプリング、2j3・・・圧電体、25・・・シラ
ンジャ、27・・・11人室。
1... Damping force nJ variable Shonoku Azo Soha, 11...
Norinta, 12...Bis]・n, 12a...Casing, 14.15...1st and 2nd chamber, 16...Aperture, 17°113...Medium heat to become continuous 1irl path Side r with fL, 19... spool (1!! moving part (ladle, 2+...
...Spring, 2j3...Piezoelectric body, 25...Siranja, 27...11 person room.

Claims (1)

【特許請求の範囲】 1、シリンダに対して摺動自在にピストンを収納した第
1、第2油室を形成し、前記ピストンに設けられて第1
、第2油室を連通する連通路と、この連通路の通路面積
を摺動変位することによって変化させ、且つ、一端面は
第2油室の圧力を受ける摺動部材と、この摺動部材の他
端面側に配設させて前記摺動部材の変位を応力として受
けてこの応力に基づいて電圧を発生し、且つ印加電圧に
従って伸縮変位してその変位を前記摺動部材へ伝達する
圧電体とを具備することを特徴とする減衰可変ショック
アブソーバ 2、前記圧電体は、軸方向に応力が加わるとその応力に
基づいて電圧を発生する圧電効果と、印加される電圧に
基づいて軸方向に伸縮変位する逆圧電効果とを有する圧
電素子を、軸方向に多数積層した積層型圧電体である特
許請求の範囲第1項記載の減衰力可変ショックアブソー
バ。 3、前記圧電体の変位は、前記圧電体と追従してケーシ
ング内を追従するプランジャと・前記摺動部材の他端面
と・前記ケーシングとによって区画されて非圧縮流体の
封入された封入室を介して前記スプールに伝達されると
ともに、前記プランジャの断面積と前記摺動部材の他端
面の面積の比によって拡大されて前記摺動部材に伝達さ
れる特許請求の範囲第2項記載の減衰力可変ショックア
ブソーバ。
[Scope of Claims] 1. First and second oil chambers are formed in which a piston is housed so as to be slidable with respect to the cylinder, and a first oil chamber provided in the piston is formed.
, a communicating passage that communicates with the second oil chamber, a sliding member whose passage area is changed by sliding displacement, and whose one end face receives pressure from the second oil chamber, and this sliding member. a piezoelectric body that is disposed on the other end surface side, receives the displacement of the sliding member as stress, generates a voltage based on this stress, expands and contracts according to the applied voltage, and transmits the displacement to the sliding member; A variable damping shock absorber 2 characterized in that the piezoelectric body has a piezoelectric effect that generates a voltage based on the stress when stress is applied in the axial direction, and a piezoelectric effect that generates a voltage in the axial direction based on the applied voltage. The variable damping force shock absorber according to claim 1, which is a laminated piezoelectric body in which a large number of piezoelectric elements having an inverse piezoelectric effect that expand and contract are laminated in the axial direction. 3. The displacement of the piezoelectric body causes an enclosed chamber in which an incompressible fluid is enclosed, which is partitioned by a plunger that follows the piezoelectric body and follows the inside of the casing, the other end surface of the sliding member, and the casing. The damping force according to claim 2, which is transmitted to the spool through the damping force and is transmitted to the sliding member after being enlarged by the ratio of the cross-sectional area of the plunger to the area of the other end surface of the sliding member. Variable shock absorber.
JP20669984A 1984-10-01 1984-10-01 Shock absorber with adjustable damping force Granted JPS6185210A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20669984A JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force
US06/781,638 US4729459A (en) 1984-10-01 1985-09-30 Adjustable damping force type shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20669984A JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force

Publications (2)

Publication Number Publication Date
JPS6185210A true JPS6185210A (en) 1986-04-30
JPH0413568B2 JPH0413568B2 (en) 1992-03-10

Family

ID=16527649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20669984A Granted JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force

Country Status (1)

Country Link
JP (1) JPS6185210A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113509A (en) * 1984-11-09 1986-05-31 Honda Motor Co Ltd Shock absorber controlling device
JPS62143836U (en) * 1986-03-06 1987-09-10
JPS62143837U (en) * 1986-03-06 1987-09-10
JPS636238A (en) * 1986-06-25 1988-01-12 Nippon Soken Inc Damping force control device of shock absorber
JPS6376507U (en) * 1986-11-07 1988-05-21
JPS63303238A (en) * 1987-06-02 1988-12-09 Nippon Autom:Kk Shock absorber
JPS6455445A (en) * 1987-08-24 1989-03-02 Nippon Denso Co Damping force detector and shock absorber controller
JPH01208214A (en) * 1988-02-13 1989-08-22 Nippon Denso Co Ltd Damping force control device for shock absorber
JPH01152812U (en) * 1988-04-15 1989-10-20
JPH01152811U (en) * 1988-04-15 1989-10-20
JPH01152810U (en) * 1988-04-15 1989-10-20
JPH01158209U (en) * 1988-04-19 1989-11-01
JPH01158210U (en) * 1988-04-19 1989-11-01
JPH0269146U (en) * 1988-11-14 1990-05-25
JPH0271012U (en) * 1988-11-18 1990-05-30
US4961483A (en) * 1988-08-03 1990-10-09 Atsugi Motor Parts, Limited Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal
JPH0371028A (en) * 1989-08-10 1991-03-26 Nippondenso Co Ltd Damping force detector for vehicle
US5013955A (en) * 1989-06-07 1991-05-07 Nippondenso Co., Ltd. Drive system of actuator having piezoelectric device for use in motor vehicle
US5054809A (en) * 1988-11-25 1991-10-08 Atsugi Unisia Corporation Variable damping characteristics shock absorber
JPH0425640A (en) * 1990-05-18 1992-01-29 Toyo Tire & Rubber Co Ltd Vibration isolator
US5233834A (en) * 1990-11-05 1993-08-10 Nissan Motor Company, Ltd. Piezo-actuator's displacement magnifying mechanism
JPH06509518A (en) * 1991-08-08 1994-10-27 ヴィディア ゲゼルシャフト ミット ベシュレンクテル ハフツング Drill tools and cutting inserts for drilling holes in solid materials
JP2012013226A (en) * 2010-05-31 2012-01-19 Honda Motor Co Ltd Damping force variable damper
JP2012092883A (en) * 2010-10-26 2012-05-17 Honda Motor Co Ltd Damping force variable damper

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113509A (en) * 1984-11-09 1986-05-31 Honda Motor Co Ltd Shock absorber controlling device
JPS62143836U (en) * 1986-03-06 1987-09-10
JPS62143837U (en) * 1986-03-06 1987-09-10
JPH0517469Y2 (en) * 1986-03-06 1993-05-11
JPH0517468Y2 (en) * 1986-03-06 1993-05-11
JPS636238A (en) * 1986-06-25 1988-01-12 Nippon Soken Inc Damping force control device of shock absorber
JPS6376507U (en) * 1986-11-07 1988-05-21
JPS63303238A (en) * 1987-06-02 1988-12-09 Nippon Autom:Kk Shock absorber
JPH0461980B2 (en) * 1987-08-24 1992-10-02 Nippon Denso Kk
JPS6455445A (en) * 1987-08-24 1989-03-02 Nippon Denso Co Damping force detector and shock absorber controller
JPH01208214A (en) * 1988-02-13 1989-08-22 Nippon Denso Co Ltd Damping force control device for shock absorber
JPH01152810U (en) * 1988-04-15 1989-10-20
JPH01152812U (en) * 1988-04-15 1989-10-20
JPH01152811U (en) * 1988-04-15 1989-10-20
JPH01158210U (en) * 1988-04-19 1989-11-01
JPH01158209U (en) * 1988-04-19 1989-11-01
US4961483A (en) * 1988-08-03 1990-10-09 Atsugi Motor Parts, Limited Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal
JPH0524832Y2 (en) * 1988-11-14 1993-06-23
JPH0269146U (en) * 1988-11-14 1990-05-25
JPH0271012U (en) * 1988-11-18 1990-05-30
US5054809A (en) * 1988-11-25 1991-10-08 Atsugi Unisia Corporation Variable damping characteristics shock absorber
US5013955A (en) * 1989-06-07 1991-05-07 Nippondenso Co., Ltd. Drive system of actuator having piezoelectric device for use in motor vehicle
JPH0371028A (en) * 1989-08-10 1991-03-26 Nippondenso Co Ltd Damping force detector for vehicle
JPH0425640A (en) * 1990-05-18 1992-01-29 Toyo Tire & Rubber Co Ltd Vibration isolator
US5233834A (en) * 1990-11-05 1993-08-10 Nissan Motor Company, Ltd. Piezo-actuator's displacement magnifying mechanism
JPH06509518A (en) * 1991-08-08 1994-10-27 ヴィディア ゲゼルシャフト ミット ベシュレンクテル ハフツング Drill tools and cutting inserts for drilling holes in solid materials
JP2012013226A (en) * 2010-05-31 2012-01-19 Honda Motor Co Ltd Damping force variable damper
JP2012092883A (en) * 2010-10-26 2012-05-17 Honda Motor Co Ltd Damping force variable damper

Also Published As

Publication number Publication date
JPH0413568B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
JPS6185210A (en) Shock absorber with adjustable damping force
JP2752668B2 (en) Suspension system
US4729459A (en) Adjustable damping force type shock absorber
JP5582318B2 (en) Suspension device
JPH0450015A (en) Active suspension device for vehicle
JPH02138531A (en) Fluid shock absorber
JPS636238A (en) Damping force control device of shock absorber
JPH06330977A (en) Damping force regulation type hydraulic buffer
JP3083114B2 (en) Vehicle suspension system
JPH02142942A (en) Hydraulic shock absorber
JP6397536B1 (en) Suspension device and suspension control device
JPS63106127A (en) Vehicle suspension device
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber
JPS6229410A (en) Shock absorber for vehicle and shock absorber controlling device equiped with said shock absorber
JPH08104122A (en) Suspension control device
JP2752664B2 (en) Suspension system
JPH0747210Y2 (en) Variable damping force type hydraulic shock absorber
JP2576222Y2 (en) Suspension system
JPH0241913A (en) Damping force variable type liquid pressure shock absorber
JPH0742820Y2 (en) Suspension system
JPH06247121A (en) Vehicle suspension device
JP2741030B2 (en) Variable damping force type hydraulic shock absorber
JPH0586498B2 (en)
JPH0714007Y2 (en) Variable damping force hydraulic shock absorber
JPH0524832Y2 (en)