JPS6177001A - Optical antireflecting film - Google Patents

Optical antireflecting film

Info

Publication number
JPS6177001A
JPS6177001A JP59198479A JP19847984A JPS6177001A JP S6177001 A JPS6177001 A JP S6177001A JP 59198479 A JP59198479 A JP 59198479A JP 19847984 A JP19847984 A JP 19847984A JP S6177001 A JPS6177001 A JP S6177001A
Authority
JP
Japan
Prior art keywords
layer
refractive index
optical thickness
layers
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59198479A
Other languages
Japanese (ja)
Other versions
JPH058801B2 (en
Inventor
Yasushi Taniguchi
靖 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59198479A priority Critical patent/JPS6177001A/en
Publication of JPS6177001A publication Critical patent/JPS6177001A/en
Publication of JPH058801B2 publication Critical patent/JPH058801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain an antireflecting film which is satisfactory with vacuum UV rays by laminating alternately 5 layers of low refractive index materials and intermediate reflective index materials on a base body. CONSTITUTION:The layers 2, 4, 5 consisting of the low reflective index material having <=1.5 refractive index with light having 160-230nm wavelength and the layers 3, 5 consisting of the intermediate refractive index material having 1.6-1.8 refractive index are alternately laminated on the base body 1 consisting of a material allowing the transmission of the above-mentioned light by which the film is made into the 5-layered structure. The sum of the optical film thick ness of the 1st layer 2-3rd layer 4 from the body 1 side is made about (1/2)lambda0 with respect to the optional design reference wavelength lambda0 within the above- described wavelength range and the optical film thicknesses of the 4th layer 4 and the 5th layer 6 are respectively made about (1/4)lambda0.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は光反射防止膜に関し、特に真空紫外線に対して
良好な反射防止作用を有する膜体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a light antireflection film, and particularly to a film body having a good antireflection effect against vacuum ultraviolet rays.

〔従来技術〕[Prior art]

半導体露光装置は、焼付の方式からみて、密着(又はプ
ロキシミティー)方式と投影焼付方式とに分けられ、装
置の解像力は、密着露光の場合には光源波長の平方根に
比例し、iた投影露光の場合には光源波長に比例する。
Semiconductor exposure equipment is divided into contact (or proximity) type and projection printing type based on the printing method. In the case of , it is proportional to the light source wavelength.

このため、露光装置の解像力を高める目的から、光源の
短波長化を図る必要があり、現今では200〜270 
nmの紫外線を利用した装置が実用化されている。しか
し、将来的には更に解像力を高める必要があり、波長2
00 nm以下の真空紫外線を用いる必要がでてくる。
Therefore, in order to improve the resolution of exposure equipment, it is necessary to shorten the wavelength of the light source, and currently the wavelength is 200 to 270.
Devices using nanometer ultraviolet light have been put into practical use. However, in the future it will be necessary to further improve resolution, and wavelength 2
It becomes necessary to use vacuum ultraviolet light with a wavelength of 0.00 nm or less.

ところで、半導体露光装置の照明系において、レンズ面
での反射に起因するゴーストが像面の照明ムラを起すと
いう問題がある。このため、従来からレンズ面を誘電体
の単層ないし多層からなる反射防止膜で被覆することは
行なわれているが、真空紫外領域において作用する反射
防止膜は殆んどなく、僅かに特公昭50−40668号
、OpticalKnglneerlng Vol、 
18、Al(1979)等に見られるが、これらも十分
な反射防止機能を果たすものとは言い1I111/1゜ 〔発明の目的〕 本発明の1つの目的は、真空紫外線に対して良好な反射
防止作用を有する反射防止膜を提供することにある。
However, in the illumination system of a semiconductor exposure apparatus, there is a problem in that ghosts caused by reflection on the lens surface cause uneven illumination on the image plane. For this reason, the lens surface has traditionally been coated with an antireflection film consisting of a single or multilayer dielectric, but there are almost no antireflection films that work in the vacuum ultraviolet region, and only a few No. 50-40668, OpticalKnglneerlng Vol.
18, Al (1979), etc., but these also have a sufficient antireflection function. An object of the present invention is to provide an antireflection film having an antireflection effect.

本発明の他の目的は、真空紫外線に対して良好な反射防
止作用を有すると共に、物理的、化学的に安定な反射防
止膜を提供することにある。
Another object of the present invention is to provide an antireflection film that has a good antireflection effect against vacuum ultraviolet rays and is physically and chemically stable.

上記目的は、波長160□”23On+y+の光に対し
屈折率が1.5以下の低屈折率物質と屈折率が1.6〜
1,8の中間屈折率物質とを用い、前記波長の光を透過
する物質からなる基体上に前記低屈折率物質の層次いで
前記中間屈折率物質の層の順で交互に積層させた構造を
有し、且つこの積層構造において基体側から第1層乃至
第3層の光学的膜厚の和が、前記波長範囲内の任意の設
計基準波長λG光学的膜厚がそれぞれ約τλ0であるこ
とを特徴とする光反射防止膜によって達成される。
The above purpose is to use a low refractive index material with a refractive index of 1.5 or less for light with a wavelength of 160□”23On+y+ and a material with a refractive index of 1.6 to
A structure in which layers of the low refractive index material and layers of the intermediate refractive index material are alternately laminated in this order on a substrate made of a material that transmits light of the wavelength. and that the sum of the optical film thicknesses of the first to third layers from the base side in this laminated structure is approximately τλ0 at any design reference wavelength λG within the wavelength range. This is achieved by a characteristic anti-reflection coating.

〔発明の詳細な説明〕[Detailed description of the invention]

真空紫外線用の反射防止膜は、その膜材料が設計、製作
上大きな制約となる。すなわち反射防止膜の膜物料は、
真空紫外線に対し、透明かつ安定な物質でなければなら
ない。真空紫外線透過材料としては、MgF’2.Ca
F2. LIF、LaF3.NdFs等のフッ化物が知
られている。一方、At203. S 102.HfO
□等の一部の酸化物は、比較的短波長まで透過するが波
長220nm以下では吸収が大きくなり透過しなくなる
。また、可視域での反射防止膜に使用されるZrO2,
’rto2. Coo□等の高屈折率物質は、吸収力に
大きく透過しないために使用することができない。従っ
て本発明の光反射防止膜は、主として7ツ化物系の線型
体材料で構成するのが好ましい。
For antireflection coatings for vacuum ultraviolet rays, the coating material poses a major constraint in design and production. In other words, the film material of the anti-reflection film is
The material must be transparent and stable to vacuum ultraviolet light. As the vacuum ultraviolet transmitting material, MgF'2. Ca
F2. LIF, LaF3. Fluorides such as NdFs are known. On the other hand, At203. S102. HfO
Some oxides, such as □, transmit light up to relatively short wavelengths, but absorb so much at wavelengths of 220 nm or less that they no longer transmit. In addition, ZrO2, which is used for antireflection coatings in the visible range,
'rto2. High refractive index materials such as Coo□ cannot be used because they do not transmit much absorption power. Therefore, it is preferable that the light antireflection film of the present invention is mainly composed of a heptadide-based linear body material.

このうち、本発明で使用する前記低屈折率物質としては
、MgF2、CaF 2、LiF及びNa5AtF6が
ら選ばれる物質、また前記中間屈折率物質としては、L
aFs及びNdF3から選ばれる物質が好適である。
Among these, the low refractive index substance used in the present invention is a substance selected from MgF2, CaF2, LiF, and Na5AtF6, and the intermediate refractive index substance is L
Materials selected from aFs and NdF3 are preferred.

本発明の光反射防止膜は、第1図に示した如く、5層構
造を有する光反射防止膜である。
The anti-reflection film of the present invention is an anti-reflection film having a five-layer structure, as shown in FIG.

第1図において、1は波長160〜230 nmの光を
透過する物質からなる基体であり、具体的には例えば合
成石英、人工水晶、CaF2、MgF2等・の結晶体か
らなるレンズ等光学デバイスである。基体1上に積層さ
れた、2,4.6は低屈折率物質の層、3,5は中間屈
折率物質の層モある。これらの層を!ltR″″rるに
は、通常、真空蒸着法(イオンデレーティング、スパッ
タリング等を包含する。)が用いられる。なお、本発明
の光反射防止膜の形状例として、第1図には平板状の膜
体を示したが、膜の形状はこれに限定されず、円筒面状
、球面状、凹面状、凸面状等基体表面の形状に応じて任
意に設計することができる。
In Fig. 1, reference numeral 1 indicates a substrate made of a substance that transmits light with a wavelength of 160 to 230 nm. Specifically, it is an optical device such as a lens made of a crystal such as synthetic quartz, artificial quartz, CaF2, MgF2, etc. be. Laminated on the substrate 1 are layers 2 and 4.6 of low refractive index materials, and layers 3 and 5 of intermediate refractive index materials. These layers! A vacuum evaporation method (including ion derating, sputtering, etc.) is usually used for ltR''r. As an example of the shape of the anti-reflection film of the present invention, a flat film body is shown in FIG. It can be arbitrarily designed depending on the shape of the substrate surface.

本発明の光反射防止膜は、基本的には−1,0−1λ0
ティ一層であり、本発明においては、この720層を光
反射防止膜の設計上公知である3層構造の等価膜で置き
換えたわけである。各構成層の膜厚は、所望する波長域
において反射率が最小となる様、例えば電子計算機によ
り演算して最適化することができる。
The anti-reflection film of the present invention basically has -1,0-1λ0
In the present invention, this 720 layer is replaced with an equivalent film having a three-layer structure, which is known in the design of anti-reflection films. The thickness of each constituent layer can be optimized, for example, by calculation using an electronic computer so that the reflectance is minimized in a desired wavelength range.

不発明の光反射防止膜においては、更に基体側の第1層
乃至第3層の光学的膜厚を調整することにより、所望す
る反射防止効果を適宜調整して発現せしめることができ
る。
In the optical antireflection film of the present invention, the desired antireflection effect can be appropriately adjusted and exhibited by further adjusting the optical thickness of the first to third layers on the substrate side.

第2図(a)乃至(e)は、第1層乃至第3層の光学的
膜厚を、適宜に選択した3つの態様について、層構成及
び各層構成物質の屈折率を併せて感知できる様に示した
グラフであり、第1図と同一要素を同一符号で表わしで
ある。図中、横軸は光反射防止膜構成層の層厚方向の寸
法(光学的膜厚)、縦軸は屈折率を示している。
Figures 2 (a) to (e) show how the optical thickness of the first to third layers can be sensed together with the layer structure and the refractive index of each layer-constituting material for three appropriately selected modes. This is a graph shown in FIG. 1, and the same elements as in FIG. 1 are represented by the same symbols. In the figure, the horizontal axis indicates the dimension in the layer thickness direction (optical film thickness) of the layers constituting the light antireflection film, and the vertical axis indicates the refractive index.

第2図中(a)乃至(c)は、第2層の光学的膜厚(D
2)を第1層の光学的膜厚(Dl)及び第2層の光学的
膜厚(Ds)よりも小とした場合であり、第2図中(a
l u +)、 =l)3、(b) Its Dt >
Ds 、(c)はり、<Dsとした場合を示している。
In Fig. 2, (a) to (c) indicate the optical thickness (D) of the second layer.
2) is smaller than the optical thickness (Dl) of the first layer and the optical thickness (Ds) of the second layer, and (a
l u +), = l) 3, (b) Its Dt >
Ds, (c) shows the case where <Ds.

(、)乃至(C)の例について、第3図乃至第5図に分
光特性(設計基準波長λG=200nm )を示してい
る。
For examples (,) to (C), spectral characteristics (design standard wavelength λG=200 nm) are shown in FIGS. 3 to 5.

第3図乃至第5図から判る様に、本発明Q光反射防止膜
は、大旨、160〜230 nmの波長域において反射
率1チ以下、特に165〜215 nm’の波長域で反
射率0.5 %以下を達成することができるが、個々の
態様について比較してみると、DI<D、とした場合、
D、=D3の場合に比べて反射防止帯域は若干挟まり、
反射率曲線はU字形に近くなるが、λ。近傍における反
射率をより小さくすることができる。
As can be seen from Figures 3 to 5, the Q light antireflection coating of the present invention generally has a reflectance of 1 inch or less in the wavelength range of 160 to 230 nm, and particularly a reflectance of 1 inch or less in the wavelength range of 165 to 215 nm. It is possible to achieve 0.5% or less, but when comparing individual aspects, when DI<D,
Compared to the case of D, = D3, the antireflection band is slightly narrowed,
The reflectance curve becomes nearly U-shaped, but at λ. Reflectance in the vicinity can be made smaller.

一方、Dt>Dsとした場合、DI=D3の場合に比べ
てλ0近傍における反射率は若干大きくなるが、反射防
止帯域を広くすることができ、反射率曲線はW字形に近
くなる。
On the other hand, when Dt>Ds, the reflectance near λ0 becomes slightly larger than when DI=D3, but the antireflection band can be widened and the reflectance curve becomes close to a W-shape.

また、屈折率については、第1層の屈折率を基体の屈折
率よりも小さくすることにより、反射防止帯域を広くと
ることができ、好ましb0以下、実施例によp本発明を
更に具体的に説明する。
Regarding the refractive index, by making the refractive index of the first layer smaller than the refractive index of the base material, the antireflection band can be widened, preferably b0 or less. Explain in detail.

実施例1 第1図の光反射防止膜の構成において、基体1を合成石
英からなるレンズとし、2,4.6の層構成物質として
MgF2.3,5の層構成物質としてLa F sを用
い、第2図(a)乃至(e)の膜厚の関係となる様に第
1表乃至第3表に示し友光学的膜厚分だけ真空蒸着法に
よシ順次ハードコーティングした。
Example 1 In the structure of the anti-reflection film shown in FIG. 1, the base 1 was a lens made of synthetic quartz, and La F s was used as the layer constituent material of MgF2.3,5 as the layer constituent material of 2, 4.6. Hard coating was sequentially performed by vacuum evaporation method by the optical film thickness shown in Tables 1 to 3 so that the film thickness relationships shown in FIGS. 2(a) to 3(e) were achieved.

構成物質の屈折率は、分散式で、 7.51 合成石英: n==1.448 +λxz6.510.
03 MgF’2: n ” 1.348 + a s 。
The refractive index of the constituent materials is the dispersion formula: 7.51 Synthetic quartz: n==1.448 +λxz6.510.
03 MgF'2: n'' 1.348 + a s.

15.4 L a F s  : n =1.574 +□λ−6
9 で求められる。第1表乃至第3表にλ”:200nmと
したときの屈折率を示した。なお、真空蒸着するにあた
っては、第1表に示した光学的膜厚分だけ蒸着を行った
。この実施91ノで用いたMgF2及びLa F sは
、第1表乃至第3表に示した膜厚程度では殆ど吸収を無
視することができる。また、フッ化物は酸化物と比ベバ
ルクと蒸着膜との構成に差がなく、再現性がよいという
利点がある。
15.4 L a F s : n = 1.574 +□λ-6
It is found by 9. Tables 1 to 3 show the refractive index when λ": 200 nm. When performing vacuum deposition, the optical film thickness shown in Table 1 was deposited. This implementation 91 The absorption of MgF2 and LaFs used in the above can be almost ignored at the film thicknesses shown in Tables 1 to 3.In addition, fluoride has a large structure in the bulk and deposited film compared to oxide. It has the advantage of good reproducibility with no difference in

かくして得られた実施例1(第1表)、実施例2(第2
表)及び実施例3(第3表)の光9反射防止膜の分光特
性は、第3図乃至第5図に示した如く(前述)になる。
Example 1 (Table 1) and Example 2 (Second Table) thus obtained
The spectral characteristics of the light 9 antireflection films of Example 3 (Table 3) and Example 3 (Table 3) are as shown in FIGS. 3 to 5 (described above).

また、通常使用する真空紫外線の波長はl 80 nm
付近であるため、本発明の光反射防止膜によれば、十分
に反射率を低く抑えることができる。
In addition, the wavelength of vacuum ultraviolet rays normally used is l 80 nm.
Therefore, according to the antireflection film of the present invention, the reflectance can be kept sufficiently low.

次に、実施例1乃至実施例3の光反射防止膜の耐久性に
ついては、耐溶剤テストとしてア七トン、インプロピル
・アルコール、メタノールを用イ、作製した光反射防止
膜を付したレンズ表面をクリーニングしたが、分光特性
、外観上の変化が見られず、十分耐溶剤性があることが
確かめられた。
Next, regarding the durability of the anti-reflection coatings of Examples 1 to 3, the surfaces of the lenses with the anti-reflection coatings prepared were tested using A7Tone, Impropyl Alcohol, and Methanol in a solvent resistance test. Although it was cleaned, no changes were observed in the spectral characteristics or appearance, and it was confirmed that it had sufficient solvent resistance.

また、スコッチテープによる密着性テスト、綿布(ヂー
ズクロス)による耐摩耗テストの結果も剥離、クラーク
等の外観上の欠陥ならびに反射率の変化は見られなかっ
た。耐湿性についても45℃。
Further, as a result of an adhesion test using Scotch tape and an abrasion resistance test using cotton cloth (Zee's cloth), no external defects such as peeling or cracks or changes in reflectance were observed. Moisture resistance is also 45℃.

相対湿度95チの恒温恒湿槽に1,000時間以上置い
た後も、反射率の低下、腐食等の化学的変化は起こらな
かった。さらに、真空紫外光の照射に対しても、何ら劣
化することはなかった・第2表 (実施例2の膜構成) 第3表 (実施例3の膜構成) 実施例4 低屈折率物質としてLIF及びMgF2を用い、第4表
に示した膜構成とする以外は、実施例1〜3と同様にし
て光反射防止膜を作製し念。
Even after being placed in a constant temperature and humidity chamber at a relative humidity of 95 degrees for more than 1,000 hours, no chemical changes such as a decrease in reflectance or corrosion occurred. Furthermore, there was no deterioration at all when irradiated with vacuum ultraviolet light.Table 2 (Film structure of Example 2) Table 3 (Film structure of Example 3) Example 4 As a low refractive index material An antireflection film was prepared in the same manner as in Examples 1 to 3, except that LIF and MgF2 were used and the film structure was as shown in Table 4.

かくして得られた光反射防止膜の分光特性を第6図に示
した。
The spectral characteristics of the antireflection film thus obtained are shown in FIG.

第  4  表 (実施例4の膜構成) 〔発明の効果〕 以上説明したように、本発明の光反射防止膜は、光学的
には真空紫外線をはじめとして所望する波長の光に対し
て、レンズ等基体表面の反射を低くおさえ、ゴースト等
の問題を解決するという優れた光学的性質を持っている
。さらに、耐溶剤性、耐湿性に優れるという化学的安定
性に富むと同時に、密着性、耐摩耗性、耐紫外線性など
物理的安定性にも優れており、実用的にきわめて有用で
ある。
Table 4 (Film Structure of Example 4) [Effects of the Invention] As explained above, the antireflection film of the present invention is optically effective against light of a desired wavelength, including vacuum ultraviolet rays, as a lens. It has excellent optical properties that suppresses reflection on the substrate surface and solves problems such as ghosting. Furthermore, it is chemically stable with excellent solvent resistance and moisture resistance, and at the same time has excellent physical stability such as adhesion, abrasion resistance, and ultraviolet resistance, making it extremely useful for practical purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一構成例を示し之断面図、゛第2図(
a)〜(c)は、第1層乃至第3層の光学的膜厚をグラ
フ様に表わして本発明の詳細な説明するための模式図゛
、第3図乃至第6図は本発明の光反射防止膜の分光特性
を示す友めの曲線図である。 1・・・基体、2,4.6・・・低屈折率物質層、3゜
5・・・中間屈折率物質層。
FIG. 1 is a sectional view showing an example of the structure of the present invention, and FIG.
a) to (c) are schematic diagrams for explaining the present invention in detail by graphically representing the optical thicknesses of the first to third layers. FIG. 2 is a graph showing the spectral characteristics of an antireflection film. 1... Base body, 2, 4.6... Low refractive index material layer, 3°5... Intermediate refractive index material layer.

Claims (6)

【特許請求の範囲】[Claims] (1)波長160〜230nmの光に対し屈折率が1.
5以下の低屈折率物質と屈折率が1.6〜1.8の中間
屈折率物質とを用い、前記波長の光を透過する物質から
なる基体上に前記低屈折率物質の層次いで前記中間屈折
率物質の層の順で交互に積層させた5層構造を有し、且
つこの積層構造において基体側から第1層乃至第3層の
光学的膜厚の和が、前記波長範囲内の任意の設計基準波
長λ_0に対し、約1/2λ_0であり、また第4層及
び第5層の光学的膜厚がそれぞれ約1/4λ_0である
ことを特徴とする光反射防止膜。
(1) The refractive index for light with a wavelength of 160 to 230 nm is 1.
Using a low refractive index material of 5 or less and an intermediate refractive index material having a refractive index of 1.6 to 1.8, a layer of the low refractive index material and then the intermediate refractive index material are formed on a substrate made of a material that transmits light of the wavelength. It has a five-layer structure in which layers of refractive index substances are laminated alternately in order, and in this laminated structure, the sum of the optical thicknesses of the first to third layers from the substrate side is any wavelength within the above wavelength range. A light antireflection film characterized in that the optical thickness is approximately 1/2 λ_0 with respect to the design reference wavelength λ_0, and the optical thickness of the fourth layer and the fifth layer are each approximately 1/4 λ_0.
(2)第2層の光学的膜厚が第1層及び第3層の光学的
膜厚よりも小であり、また第1層の光学的膜厚が第3層
の光学的膜厚よりも小である特許請求の範囲第(1)項
記載の光反射防止膜。
(2) The optical thickness of the second layer is smaller than the optical thickness of the first and third layers, and the optical thickness of the first layer is smaller than the optical thickness of the third layer. The antireflection film according to claim 1, which is small.
(3)第2層の光学的膜厚が第1層及び第3層の光学的
膜厚よりも小であり、また第1層の光学的膜厚が第3層
の光学的膜厚よりも大である特許請求の範囲第(1)項
記載の光反射防止膜。
(3) The optical thickness of the second layer is smaller than the optical thickness of the first and third layers, and the optical thickness of the first layer is smaller than the optical thickness of the third layer. The antireflection film according to claim (1), which is large in size.
(4)第2層の光学的膜厚が第1層及び第3層の光学的
膜厚よりも小であり、また第1層の光学的膜厚が第3層
の光学的膜厚と等しい特許請求の範囲第(1)項記載の
光反射防止膜。
(4) The optical thickness of the second layer is smaller than the optical thickness of the first and third layers, and the optical thickness of the first layer is equal to the optical thickness of the third layer. The antireflection film according to claim (1).
(5)第1層の低屈折率物質の屈折率が基体の屈折率よ
りも小である特許請求の範囲第(1)項乃至第(4)項
記載の光反射防止膜。
(5) The antireflection film according to claims (1) to (4), wherein the first layer of the low refractive index material has a refractive index smaller than the refractive index of the substrate.
(6)低屈折率物質が、MgF_2、CaF_2、Li
F及びNa_3AlF_6から選ばれる物質であり、中
間屈折率物質がLaF_3及びNdF_3から選ばれる
物質である特許請求の範囲第(1)項乃至第(5)項の
うちの1に記載の光反射防止膜。
(6) The low refractive index substance is MgF_2, CaF_2, Li
F and Na_3AlF_6, and the intermediate refractive index substance is a substance selected from LaF_3 and NdF_3. .
JP59198479A 1984-09-25 1984-09-25 Optical antireflecting film Granted JPS6177001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198479A JPS6177001A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198479A JPS6177001A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Publications (2)

Publication Number Publication Date
JPS6177001A true JPS6177001A (en) 1986-04-19
JPH058801B2 JPH058801B2 (en) 1993-02-03

Family

ID=16391792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198479A Granted JPS6177001A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Country Status (1)

Country Link
JP (1) JPS6177001A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461702A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH01138501A (en) * 1987-11-26 1989-05-31 Minolta Camera Co Ltd Reflection preventive film
JPH04166901A (en) * 1990-10-31 1992-06-12 Hoya Corp Optical parts having antireflection coating
JPH04191801A (en) * 1990-11-27 1992-07-10 Hoya Corp Optical parts
JPH09329702A (en) * 1996-06-10 1997-12-22 Nikon Corp Antireflection film
US6472087B1 (en) 1997-11-13 2002-10-29 Canon Kabushiki Kaisha Antireflection film, optical element with antireflection film, and production method of the antireflection film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040668A (en) * 1973-04-11 1975-04-14
JPS5655901A (en) * 1980-10-09 1981-05-16 Mamiya Koki Kk Antireflection film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040668A (en) * 1973-04-11 1975-04-14
JPS5655901A (en) * 1980-10-09 1981-05-16 Mamiya Koki Kk Antireflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461702A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH01138501A (en) * 1987-11-26 1989-05-31 Minolta Camera Co Ltd Reflection preventive film
JPH04166901A (en) * 1990-10-31 1992-06-12 Hoya Corp Optical parts having antireflection coating
JPH04191801A (en) * 1990-11-27 1992-07-10 Hoya Corp Optical parts
JPH09329702A (en) * 1996-06-10 1997-12-22 Nikon Corp Antireflection film
US6472087B1 (en) 1997-11-13 2002-10-29 Canon Kabushiki Kaisha Antireflection film, optical element with antireflection film, and production method of the antireflection film

Also Published As

Publication number Publication date
JPH058801B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
TWI432770B (en) Optical system
JP3359114B2 (en) Thin film type ND filter and method of manufacturing the same
JPS60181704A (en) Reflection mirror for uv
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
US3858965A (en) Five layer anti-reflection coating
JP3249992B2 (en) Anti-reflection coating for silicon or germanium substrates
JPS6177002A (en) Optical antireflecting film
JPS6177001A (en) Optical antireflecting film
US6472087B1 (en) Antireflection film, optical element with antireflection film, and production method of the antireflection film
JP2004302113A (en) Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JPH05215915A (en) Multilayer reflection increase film
JP3221770B2 (en) Anti-reflection coating for plastic optical parts
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
JP2002014203A (en) Antireflection film and optical member using the same
JPH07107563B2 (en) Anti-reflection film
JPH10253802A (en) Reflection preventive film
JPH052101A (en) Optical component
JPS6222121B2 (en)
JPS6177003A (en) Optical antireflecting film
JP3550894B2 (en) Anti-reflective coating
JPH05264802A (en) Multilayered antireflection film
JP2001013304A (en) Optical parts
JPH0815501A (en) Reflection preventing film for infrared region
JP3113371B2 (en) Multi-layer anti-reflective coating
JPS5811901A (en) Multilayered semipermeable mirror

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term