JPS6162115A - Water level control method for dam reservoir - Google Patents

Water level control method for dam reservoir

Info

Publication number
JPS6162115A
JPS6162115A JP18427884A JP18427884A JPS6162115A JP S6162115 A JPS6162115 A JP S6162115A JP 18427884 A JP18427884 A JP 18427884A JP 18427884 A JP18427884 A JP 18427884A JP S6162115 A JPS6162115 A JP S6162115A
Authority
JP
Japan
Prior art keywords
water level
control
gate
time
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18427884A
Other languages
Japanese (ja)
Inventor
Masaharu Kawabata
正晴 川端
Akio Mori
森 章雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP18427884A priority Critical patent/JPS6162115A/en
Publication of JPS6162115A publication Critical patent/JPS6162115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To prevent the occurrence of vibration of gate and water level caused by over control and to realize appropriate level control by refraining the next control until the time when the result of gate opening/closing control affects the change of water level. CONSTITUTION:Firstly, a present water level H(t0) and a present water flow volume Q0(t0) are inputted, and in considering with a previous water level H(t-1) and a target level H, the necessity of gate control is judged. And if it is judged to be necessary, the gate control is executed and the flow volume Q0'(t0) after the control is inputted. Next, the next control time t1 is worked out, and the control is suspended for the time (t1-t). If it is judged that gate control is unnecessary, the control is suspended for the time of sampling cycle. Thus occurrence of vibration of water level and gate caused by over control is avoided and appropriate water level control is realized by refraining the next control until the time when the result of gate opening/closing control is reflected to the change of water level.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はダム貯水池の水位を一定に保持するための水位
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a water level control method for maintaining a constant water level in a dam reservoir.

〔発明の背景〕[Background of the invention]

近年普及しつつあるダムの自動化・省力化に半い、ダム
のゲート制御をいかに安全かつ正確に行うかは重要な問
題である。
How to control dam gates safely and accurately is an important issue in line with the automation and labor-saving measures that have become popular in recent years.

特に、水力発電や利水に備えてダムの水位を高く保つた
り、あるいは洪水に備えてダムの水位を低く保つよ・う
なことが必要である。これを実現するために、予め目標
水位を設定し、一定の周期毎にダムの水位を検出し、こ
の水位の変化勾配、あるいは目標水位との偏差に応じて
ゲートを動作させ、ダムの水位を目標水位に保つような
定水位制御方法が通常用いられている。
In particular, it is necessary to keep dam water levels high in preparation for hydroelectric power generation and water utilization, and to keep dam water levels low in preparation for flooding. In order to achieve this, a target water level is set in advance, the water level of the dam is detected at regular intervals, and a gate is operated according to the gradient of change in this water level or the deviation from the target water level, and the water level of the dam is adjusted. A constant water level control method is usually used to maintain the water level at a target level.

ここで、従来の定水位制御方法の一例について説明する
。一般に、現在水位を目標水位まで制御する場合は、第
5図に示すように、各目標水位毎に予め目標水位に対し
上下対称となる所定幅の制御帯域(以下制御バンドとい
う。)1,2.3を決めておき、現在の位置と過去の水
位勾配(図中の矢印)により図に示す様な制御判断を行
う。
Here, an example of a conventional constant water level control method will be described. Generally, when controlling the current water level to the target water level, as shown in Fig. 5, control bands (hereinafter referred to as control bands) 1, 2 of a predetermined width that are vertically symmetrical with respect to the target water level are prepared for each target water level. .3 is determined in advance, and the control judgment as shown in the figure is made based on the current position and past water level gradient (arrow in the figure).

第5図において、・印は現在水位、X印は制御しない場
合、○印は制御を行う場合、■は水位変化が急激な場合
に制御を行うことをそれぞれ示している。
In FIG. 5, the * mark indicates the current water level, the X mark indicates when no control is performed, the ○ mark indicates when control is performed, and ■ indicates that control is performed when the water level changes rapidly.

第6図は目標水位に対し、水位が遠ざかる場合の制御量
の決定方法を示す。横軸に時間、縦軸に水位を示し、t
o、tl、t2は制御サンプリング時間を示す。現在時
刻t1における制御量は次の様に決定する。すなわち流
量の急激な変化がなければtlでの水位Ht、は制御サ
ンプリング時間(t)後にはHtz ’  (Hh’ 
=2Hh  Ht6 )となることに着目し、次回の制
御サンプリング時にはHt x ’  (Ht“=Ht
1−Δh、)となる様制御量を決定する。つまシ下式で
表わされる。
FIG. 6 shows a method for determining the control amount when the water level moves away from the target water level. The horizontal axis shows time, the vertical axis shows water level, and t
o, tl, and t2 indicate control sampling times. The control amount at the current time t1 is determined as follows. In other words, if there is no sudden change in flow rate, the water level Ht at tl becomes Htz'(Hh'
=2Hh Ht6), and at the next control sampling time Ht x'(Ht"=Ht
1-Δh, ) is determined. It is expressed by the tsumushimo formula.

ただし、Qoは現在放流量、f(H)は水位がHの時の
ダム総貯留量計算式、tは制御サンプリング時間を示す
However, Qo is the current discharge amount, f(H) is the dam total storage amount calculation formula when the water level is H, and t is the control sampling time.

なお、Δhiは制御バンド巾ΔHrによシ決定Δhi=
f(ΔHi)L、Δhi≦Δh2≦Δh3・・・・・・
≦Δhiとなる。
Note that Δhi is determined by the control band width ΔHr.Δhi=
f(ΔHi)L, Δhi≦Δh2≦Δh3...
≦Δhi.

次に第7図に目標水位に対し2水位が近づく場合の制御
量の決定方法を示す。第7図においてHlo  Htr
≦Δh の時、制御せず、 Hto  Htt>Δh2 の時住)式により制御量を算出し制御する。
Next, FIG. 7 shows a method for determining the control amount when the water level approaches the target water level by two levels. In Figure 7, Hlo Htr
When ≦Δh, no control is performed, and the control amount is calculated by the equation (Tokisumi) where Hto Htt>Δh2, and control is performed.

以上の制御方式を用いたゲート自動制御装置の例を第8
図に示す。水位計4より測定された水位データは加算要
素を介してゲート開度指令装置5により所定の演算が行
われ、その制御指令信号によりゲート駆動モータ2が駆
動制御され、ゲート1が開閉調節される。3はゲート開
度計であり、修正用のものである。
An example of an automatic gate control device using the above control method is shown in Section 8.
As shown in the figure. The water level data measured by the water level gauge 4 is subjected to a predetermined calculation by the gate opening command device 5 via an addition element, and the gate drive motor 2 is driven and controlled by the control command signal, and the gate 1 is adjusted to open or close. . 3 is a gate opening degree meter, which is used for correction.

さて、以上述べた従来方式において、ちる時刻11でゲ
ート制御を行った後、さらに時間ΔTだけ経過した時刻
t2において水位をサンプリングした時、もしΔTが湛
水面積に比べ小さ過ぎると、時刻t1で放流量を変化さ
せた結果が水位に反映されないうちに、同じ制御を時刻
t2においても繰り返してしまい、結果として制御量過
大となり、水位及びゲートの振動を起こす危険性がある
。この例を第7図に示す。
Now, in the conventional method described above, when the water level is sampled at time t2, which is a further time ΔT after the gate control is performed at drop time 11, if ΔT is too small compared to the flooded area, then at time t1, the water level is sampled. Before the result of changing the discharge amount is reflected in the water level, the same control is repeated at time t2, resulting in an excessive control amount, which may cause vibrations in the water level and the gate. An example of this is shown in FIG.

第11図は時刻tと放流量Qo及び水位Hとの関係を示
すグラフである。■の区間では、水位が目標水位Haか
ら大きく外れているため、連続的に放流量を増加させて
いる。■の区間では、目標水位に近づき出したため制御
を中止しているが、■の区間でゲートを開は過ぎたため
、■の区間で再び閉じている。このような操作を繰り返
すことにより、ゲート及び水位の振動が発生し、下流に
対する影響や装置の寿命等の点で好ましくない。
FIG. 11 is a graph showing the relationship between time t, discharge amount Qo, and water level H. In section (2), the water level deviates significantly from the target water level Ha, so the discharge amount is continuously increased. In the section (■), the control was stopped because the water level was approaching the target water level, but the gate was too open in the section (■), so it was closed again in the section (■). By repeating such operations, vibrations of the gate and water level occur, which is undesirable in terms of downstream effects and equipment life.

このようなゲートの振動状態が発生する原因は、水面の
さざ波等の微動による誤制御を防ぐため、一般の水位計
の精度は比較的粗い目盛となっており(約ICrn)、
この分の水位の変化があるまで制御計算機は制御を続行
してしまうからである。その結果、過制御となってゲー
トの振動が生ずるのである。
The reason why such a gate vibrates is that in order to prevent erroneous control due to small movements such as ripples on the water surface, the accuracy of general water level gauges is relatively coarse scale (approximately ICrn).
This is because the control computer continues the control until the water level changes by this amount. As a result, overcontrol occurs and gate vibration occurs.

逆にΔTが大き過ぎると流入量が急激に変化している場
合等に制御遅れを生じる危険性がある。
On the other hand, if ΔT is too large, there is a risk of a control delay occurring when the inflow rate is changing rapidly.

このように、水位のサンプリング周期ΔTが不適切であ
ると好ましくないが、流入量、放流量、及びダムの湛水
面積等の諸条件により最適なΔTは変わるため、一定周
期でゲート制御を行う従来の方法では、ある種度の振動
は避けられない。
In this way, it is undesirable if the water level sampling period ΔT is inappropriate, but since the optimal ΔT changes depending on various conditions such as inflow volume, discharge volume, and flooded area of the dam, gate control is performed at a constant cycle. In conventional methods, some degree of vibration is unavoidable.

なお、水面のさざ波等によるゲートの開閉操作のひんば
んな繰返しを防止する例として特公昭48−44232
号公報に開示されたものがある。
In addition, as an example of preventing repeated opening and closing operations of the gate due to ripples on the water surface, etc.,
There is something disclosed in the publication No.

また、ダムへの流入量の時間的変化を検出して水位変化
を予想することによりゲートの開閉制御を行う例として
特公昭44−23693号公報に開示されたものがちる
Furthermore, Japanese Patent Publication No. 44-23693 discloses an example of controlling the opening and closing of a gate by detecting temporal changes in the amount of water flowing into a dam and predicting changes in water level.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、水位やゲートの振動を発生させない、
最適な定水位制御方法を提供するにある。
The purpose of the present invention is to prevent water level and gate vibration from occurring.
The objective is to provide an optimal constant water level control method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は、ダムのゲートを
開閉することにより、ダム貯水池の水位を一定に保持す
る水位制御方法において、前記ゲートの回置制御による
放水量の制御の結果が前記ダム貯水池の水位変化に反映
される時刻まで次の放水量の増減制御を休止する期間を
設けることを特徴とするものである。
In order to achieve the above object, the present invention provides a water level control method for maintaining a constant water level in a dam reservoir by opening and closing a gate of a dam, in which the result of controlling the amount of water released by controlling the rotation of the gate is as follows. This system is characterized by providing a period during which control of the increase or decrease in the amount of water released is suspended until the time when the change in water level in the dam reservoir is reflected.

より具体的には、放水量の増減制御を休止する期間は、
ダム貯水池の各水位における湛水面積と所定放水量の放
流による水位変動分との積により現在水位と目標水位間
の水量を求め、この水量を所定時間での放水流量の変化
分により除して求めた前記現在水位と目標水位間の水量
を放流するに要する時間としたものである。
More specifically, the period during which control of increase/decrease in water discharge amount is suspended is as follows:
The amount of water between the current water level and the target water level is calculated by multiplying the flooded area at each water level of the dam reservoir by the water level fluctuation due to the release of a specified amount of water, and then divides this water amount by the change in the amount of water released over a predetermined time. The amount of water between the determined current water level and the target water level is taken as the time required to discharge the water.

〔発明の実施例〕[Embodiments of the invention]

次に本発明によるダム貯水池の水位制御方法の実施例を
図面に基づいて説明する。
Next, an embodiment of the water level control method for a dam reservoir according to the present invention will be described based on the drawings.

まず、本発明による制御原理を説明する。第1図は時刻
tと流入量Q ’ +放流量QO1及び水位Hとの関係
を示すグラフである。時刻t0において放流量Qo(t
o)を変化させなかったならば、次回のサンプリング時
刻t1における水位はH(t+)であると推定できる。
First, the control principle according to the present invention will be explained. FIG. 1 is a graph showing the relationship between time t, inflow amount Q' + outflow amount QO1, and water level H. At time t0, the discharge amount Qo(t
If o) is not changed, the water level at the next sampling time t1 can be estimated to be H(t+).

この値は、時刻ioにおける流入iをQi(to)、水
位をH(to)、また水位H(to)における湛水面積
をA(H(to)とすると、 ・・・・・・(1) でろる。
This value is calculated as follows, where Qi(to) is the inflow i at time io, H(to) is the water level, and A(H(to) is the flooded area at the water level H(to)). ) Deroru.

次に、時刻1.において放流fttQo (to )を
Qo/  (to )に変化させたならば、次回の水位
u’(tl )であると推定できる。この値は、・・・
・・・(2) となる。
Next, time 1. If the discharge fttQo (to) is changed to Qo/(to) in , it can be estimated that the next water level is u'(tl). This value is...
...(2) becomes.

したがって、放流量を変化させることによる水    
 6′位の変動分ΔHは、(1)式及び(2)式よシ、
・・・・・・(3〕 でおると推定できる。
Therefore, water by varying the discharge amount
The variation ΔH at the 6' position is calculated from equations (1) and (2),
It can be estimated that (3).

今、水位を検出する最小単位をΔHvrb i nとす
るとコ(3)式のΔHをΔHrrL i nと置き換え
ることにより、時刻toにおけるゲート制御が水位変化
に反映される時刻t1が求まり、 となる。したがって、(4)式の11が、次回に水位変
化を検出し、制御を行うべき最適な時刻である。
Now, assuming that the minimum unit for detecting the water level is ΔHvrb in , by replacing ΔH in equation (3) with ΔHrrL in , the time t1 at which the gate control at time to is reflected in the water level change can be found. Therefore, 11 of equation (4) is the optimal time at which the next water level change should be detected and control should be performed.

なお、ΔHminは水位計によって決まる値であるが通
常は1crnである。
Note that ΔHmin is a value determined by a water level gauge, and is usually 1 crn.

さらに、時刻11においてゲート制御を行って、放流量
t”Qo(tt)からQo′(tl )へ変化させた場
合には、同様にその次に制御すべき時刻t2は、 となるが、時刻11においてゲ°−ト制御を行わなかっ
た場合には、以後の水位変化検出が遅れないように、通
常のサンプリング周期ΔTに戻し、tji”tl  +
ΔT         ・・・・・・(6)とする。こ
のサンプリング周期ΔTは、水位変化の検出が遅れない
ように十分率さな値としておく。、本発明の場合の制御
時刻tと放流量QOとの関係の例を第2図に示す。第2
図の■、■はゲート制御を行い、放流量を変化させた時
刻であり、■。
Furthermore, when gate control is performed at time 11 to change the discharge amount from t''Qo(tt) to Qo'(tl), the time t2 to be controlled next is similarly, but the time If gate control is not performed in step 11, the sampling period is returned to the normal sampling period ΔT and tji"tl +
ΔT (6). This sampling period ΔT is set to a sufficiently rapid value so that detection of water level changes is not delayed. FIG. 2 shows an example of the relationship between the control time t and the discharge amount QO in the case of the present invention. Second
■ and ■ in the figure are the times when gate control was performed and the discharge amount was changed, and ■.

■は■、■においてゲート制御を行った時、(4)式に
基づいて計算した制御時刻である。一方、第3図は第2
図と同様の条件における従来方式の例である。第3図で
は■、■、■、■、■、 10の時刻における制御が、
サンプリング周期が短か過ぎるため生じる無駄な制御で
ある。このように、本発明の場合、ゲート制御を行った
結果が水位変化量に反映させるまでの間は次回の制御を
行なわない。
■ is the control time calculated based on equation (4) when gate control is performed in ■ and ■. On the other hand, Figure 3 shows the second
This is an example of a conventional method under the same conditions as in the figure. In Figure 3, the control at time ■, ■, ■, ■, ■, 10 is as follows.
This is a wasteful control that occurs because the sampling period is too short. As described above, in the case of the present invention, the next control is not performed until the result of the gate control is reflected in the amount of water level change.

このため、無駄な制御を省き、ゲートや水位の振動を防
ぐことが可能である。すなわち、(4)式で示される時
刻11の間は制御を行なわないということは、ゲート開
度指令装置5〜7(第8図)においてゲート制御信号を
出されないということであり、水位検出の遅れに基づく
過制御を抑制すること全意味する。それゆえ、ゲートの
開閉を必要以上に繰り返すことがなく、振動を防止でき
るものである。
Therefore, it is possible to eliminate unnecessary control and prevent vibrations of the gate and water level. In other words, not performing control during time 11 shown by equation (4) means that gate control signals are not output in the gate opening command devices 5 to 7 (Fig. 8), and the water level detection is not performed. This means suppressing overcontrol based on delays. Therefore, the opening and closing of the gate is not repeated more than necessary, and vibration can be prevented.

第11図は本発明の実施例を示す流れ図である。FIG. 11 is a flowchart showing an embodiment of the present invention.

ステップ8において、現在水位H(to)と現在放流量
QO(to)を入力し、ステップ9において、前回水位
H(t−1)や目標水位HOを加味して、ゲート制御が
必要か否かを判断する。判断の方法は従来方式(第5図
〜第9図)と同じでよい。判断の結果、ゲート制御が必
要ならば、ステップ10で制御を実行し、ステップ11
で制御後の放流量Qo’(to)を入力する。さらにス
テップ12で(4)式によシ次回の制御時刻t1を求め
、13で時間(ts   t)だけ待ち、ステップ8の
処理に戻る。一方、ステップ9の判断の結果、ゲート制
御が不要ならば、サンプリング周期を通常の値ΔTとす
るために、ステップ14でΔTだけ待ち、ステップ8の
処理に戻る。
In step 8, the current water level H (to) and current discharge amount QO (to) are input, and in step 9, the previous water level H (t-1) and target water level HO are taken into consideration to determine whether gate control is necessary. to judge. The determination method may be the same as the conventional method (FIGS. 5 to 9). As a result of the judgment, if gate control is necessary, control is executed in step 10, and step 11 is performed.
Input the controlled discharge amount Qo'(to). Further, in step 12, the next control time t1 is determined using equation (4), and in 13, the process waits for a time (ts t), and returns to the process of step 8. On the other hand, as a result of the determination in step 9, if gate control is not required, the process waits for ΔT in step 14 in order to set the sampling period to the normal value ΔT, and returns to the processing in step 8.

゛〔発明の効果〕 以上述べた如く、本発明によれば、ゲート開閉制御の結
果が水位変化に反映される時刻まで、次の制御、時刻ま
で制御を停止するので、過制御による水位やゲートの振
動の発生を防止できる最適な水位制御が可能となる。
[Effects of the Invention] As described above, according to the present invention, the control is stopped until the time when the result of the gate opening/closing control is reflected in the water level change, and the control is stopped until the next control or time. This enables optimal water level control that can prevent the occurrence of vibrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による水位ftTIJ 御方法において
休止期間の設定方法を示すグー)7図、WJz図は本発
明における制御時刻tと放流量Qおよび水位との関係を
示す727図、第3図は第2図との対比において従来の
制御方法による放流量の変化を示すグラブ図、第4図は
本発明による制御方法の処理手順を示すフローチャート
、第5図は、従来の制来の制御装置の例を示すブロック
図、第9図は従来の制御手順の例を示すブロック図、第
10図は従来の目標流量計算の計算手順を示すフローチ
ャート、第11図は時刻と放流量および水位の関係を示
すグラフ図である。 1・・・ダム、2・・・ゲート駆動モーター、3・・・
ゲート開度計、4・・・水位計、5,6.7・・・ゲー
ト圀度指。 令装置、12・・・最適制御時刻の算出ステップ、13
・・・待ち時間ステップ、14・・・待ち時間ステツー
    グ。
Figure 1 shows the method of setting the pause period in the water level ftTIJ control method according to the present invention. is a graph diagram showing the change in discharge amount due to the conventional control method in comparison with FIG. 2, FIG. 4 is a flowchart showing the processing procedure of the control method according to the present invention, and FIG. Fig. 9 is a block diagram showing an example of a conventional control procedure, Fig. 10 is a flowchart showing a conventional calculation procedure for target flow rate calculation, and Fig. 11 is a relationship between time, discharge amount, and water level. FIG. 1...Dam, 2...Gate drive motor, 3...
Gate opening degree meter, 4... Water level gauge, 5, 6.7... Gate opening degree finger. control device, 12...optimum control time calculation step, 13
...Waiting time step, 14...Waiting time step.

Claims (1)

【特許請求の範囲】 1、ダムのゲートを開閉することにより、ダム貯水池の
水位を一定に保持する水位制御方法において、前記ゲー
ト開度制御による放水量の制御の結果が前記ダム貯水池
の水位変化に反映される時刻まで次の放水量の増減制御
を休止する期間を設けることを特徴とするダム貯水池の
水位制御方法。 2、特許請求の範囲第1項記載の水位制御方法において
、前記放水量の増減制御を休止する期間は、ダム貯水池
の各水位における湛水面積と所定放水量の放流による水
位変動分との積により現在水位と目標水位間の水量を求
め、この水量を所定時間での放水流量の変化分により除
して求めた前記現在水位と目標水位間の水量を放流する
に要する時間であることを特徴とするダム貯水池の水位
制御方法。
[Claims] 1. In a water level control method for maintaining a constant water level in a dam reservoir by opening and closing a gate of a dam, the result of controlling the amount of water discharged by controlling the gate opening degree is a change in the water level in the dam reservoir. A water level control method for a dam reservoir, characterized by providing a period during which control of increase/decrease in the amount of water discharged is suspended until the time when the next water discharge amount is reflected. 2. In the water level control method according to claim 1, the period during which the water discharge amount increase/decrease control is suspended is determined by the product of the flooded area at each water level of the dam reservoir and the water level fluctuation due to the discharge of a predetermined water discharge amount. The time required to discharge the amount of water between the current water level and the target water level, which is obtained by calculating the amount of water between the current water level and the target water level, and dividing this amount by the change in the amount of water discharged over a predetermined time. water level control method for dam reservoirs.
JP18427884A 1984-09-03 1984-09-03 Water level control method for dam reservoir Pending JPS6162115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18427884A JPS6162115A (en) 1984-09-03 1984-09-03 Water level control method for dam reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18427884A JPS6162115A (en) 1984-09-03 1984-09-03 Water level control method for dam reservoir

Publications (1)

Publication Number Publication Date
JPS6162115A true JPS6162115A (en) 1986-03-31

Family

ID=16150514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18427884A Pending JPS6162115A (en) 1984-09-03 1984-09-03 Water level control method for dam reservoir

Country Status (1)

Country Link
JP (1) JPS6162115A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106127A (en) * 1973-02-16 1974-10-08
JPS5148560A (en) * 1974-10-22 1976-04-26 Asahi Chemical Ind DATSUCHITSUSOYOBISEIBUTSUGUNNO JUNYOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106127A (en) * 1973-02-16 1974-10-08
JPS5148560A (en) * 1974-10-22 1976-04-26 Asahi Chemical Ind DATSUCHITSUSOYOBISEIBUTSUGUNNO JUNYOHOHO

Similar Documents

Publication Publication Date Title
JPS5816205B2 (en) Dam control method
US4607681A (en) Process and apparatus for controlling a continuous casting plant
JPS6162115A (en) Water level control method for dam reservoir
US4382745A (en) Method of controlling wicket gates of a pump-turbine
JP2010037770A (en) Inflow rate predicting method and dam management control system
JP3293193B2 (en) Weir discharge calculation method
JP2001172945A (en) Automatic dam control device and method, and recording medium having automatic dam control program recorded therein
JPH01191210A (en) Dam gate control system
JP2000122726A (en) Dam water level control method and dam gate automatic control system using the dam water level control method
JP2006171845A (en) Dam water level control system
JPH04104307A (en) Control method for dam discharge rate
JPS6216283B2 (en)
JPS5911127B2 (en) Estuary weir water level control system
JPH04102611A (en) Constant water level control device
JP2003303024A (en) Method, system and program for controlling water level of dam
JPH07138930A (en) Planed maximum dam water discharge control method device, and dam water discharge facilities using the method and device
JP2766502B2 (en) Hydropower station water level control system
JPS63187313A (en) Set flow rate control system
JP3263593B2 (en) Water level control device
JPS6328164B2 (en)
JPS6256354B2 (en)
JP2001265443A (en) Method and device for controlling flow rate
JPH01292211A (en) Inflow tendency judging and controlling system
JPS61131013A (en) Dam controlling system
JPH01310410A (en) River maintaining flow quantity controller