JPS616114A - Process and apparatus for preparing metallic silicon - Google Patents

Process and apparatus for preparing metallic silicon

Info

Publication number
JPS616114A
JPS616114A JP12509184A JP12509184A JPS616114A JP S616114 A JPS616114 A JP S616114A JP 12509184 A JP12509184 A JP 12509184A JP 12509184 A JP12509184 A JP 12509184A JP S616114 A JPS616114 A JP S616114A
Authority
JP
Japan
Prior art keywords
sic
sio
mixture
sio2
plasma jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12509184A
Other languages
Japanese (ja)
Inventor
Matao Araya
荒谷 復夫
Takeshi Fukutake
福武 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12509184A priority Critical patent/JPS616114A/en
Publication of JPS616114A publication Critical patent/JPS616114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain metallic silicon of high purity contg. no entangled impurity by reducing an appropriate proportion of SiO2 to SiC by blowing powdery SiO2 and hydrocarbon into plasma jet and decomposing the mixture by heating and melting at high temp. CONSTITUTION:Powdery SiO2 8 and hydrocarbon 9 are blown into plasma jet through a feeder 7 in a shaft furnace 1 and >=40% of the weight of the blown SiO2 is reduced to SiO. Obtd. mixture is taken out after cooling in a crucible 3 and SiC is separated from the mixture by a cyclone 7 from the exhaust gas. If necessary, the weight ratio of Si/C is adjusted. The mixture is then blown into plasma jet from a torch 11 of the melting reaction apparatus 2 to cause reaction between the Si and SiO2 in the molten state. Generated metallic Si is taken out after cooling it in the crucible 5. By this process, metallic silicon having high purity is obtd. without particular purification.

Description

【発明の詳細な説明】 〈発明の目的) 産業上の利用分野 本発明は金属珪素(以下、単にSlという。)の製造方
法ならびにその装置に係り、訂しくは、固体炭材を用い
ずに非酸化性でかつ非窒化牲ガスのプラズマジェット中
にSiO2粉末とともに炭化水素を吹込んで金属S1を
高純度でかつ高収率のもとて製造ηる方法ならびにその
装置に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Field of Application The present invention relates to a method and apparatus for producing metallic silicon (hereinafter simply referred to as Sl), and more particularly, to a method for producing metallic silicon (hereinafter simply referred to as Sl) and an apparatus therefor. The present invention relates to a method and an apparatus for producing metal S1 with high purity and high yield by injecting hydrocarbon together with SiO2 powder into a plasma jet of non-oxidizing and non-nitriding gas.

従  来  の  技  術 従来、金属珪素(以上、単に金属Siという。)の製造
は一般的には電気炉によって固体炭素によるSin、 
(珪石)の還元を行なわせしめることにより行なわれて
いた。このような方法では炭材として通常石炭あるいは
コークスが使用されるため、これら炭材中に含まれる不
純物、例えば、鉄、チタン、アルミニウムなどが、Sl
と同時に還元されて金属Sl中に入るため、得られる金
属S:の純度は90〜95%と低く、半導体はどの高純
度を必要としない太陽電池等の用途に使用づるときでさ
えも、この金属S1は更に複雑な精製工程による精製が
必要である。この精製工程の効率自体も原料の金属S1
のg度に依存しているのが現状で、Fe、Ti、A4な
どの含まない高tk度金WAsiの製造法やその装置の
開発が望まれている。
Conventional technology Conventionally, metal silicon (hereinafter simply referred to as metal Si) was generally manufactured using solid carbon in an electric furnace.
This was done by causing the reduction of (silica). Coal or coke is usually used as the carbon material in this method, so impurities contained in these carbon materials, such as iron, titanium, aluminum, etc.
At the same time, it is reduced and enters the metal Sl, so the purity of the resulting metal S is as low as 90-95%. Even when semiconductors are used for applications such as solar cells that do not require high purity, this Metal S1 requires purification through a more complicated purification process. The efficiency of this refining process itself is due to the raw metal S1.
At present, it is dependent on the g-degree of gold, and it is desired to develop a method and an apparatus for producing high-tk gold WAsi that does not contain Fe, Ti, A4, etc.

発明が解決しようとする問題点 本発明は上記欠点の解決を目的とし、具体的には、炭材
として石炭コークス等を用いることによる不純物の混入
等の問題点を解決する口とを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks, and specifically aims to solve problems such as the contamination of impurities due to the use of coal coke etc. as a carbon material. .

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 すなわち、本発明は、金属S1の製造時に不純物の原因
となる固体炭材を用いずに、精製の容易な炭化水素を還
元剤としてSiO2を)!元し、金属S1を製造する方
法ならびにぞの装置を提供するものである。
<Structure of the Invention> Means for solving the problems and their effects, that is, the present invention uses an easily purified hydrocarbon as a reducing agent without using a solid carbonaceous material that causes impurities during the production of metal S1. SiO2)! The present invention provides a method and apparatus for producing metal S1.

そこで、本発明方法について更に詳しく説明すると5次
の通りである。
Therefore, the method of the present invention will be explained in more detail as follows.

まず、本発明方法は2つの工程よりなり、第一工程では
82 、xr+H7あるいはArブラズマジエッ(・気
流中に5i02粉末と炭化水素を吹込み、この炭化水素
によって5I02を還元し、吹込んだSin、粉末の4
0%以上をSiCにする。その後の第二工程では、この
第一工程で生成したS10゜とSiCの混合物を別の高
温溶解炉に投入して高温で溶解反応させることにより金
属Siを得る。
First, the method of the present invention consists of two steps. In the first step, 82, powder 4
0% or more should be SiC. In the subsequent second step, the mixture of S10° and SiC produced in the first step is put into another high-temperature melting furnace and melted and reacted at high temperature to obtain metal Si.

すなわち、炭化水素で3102を還元する場合、例えば
、メタンガスを使用すると熱力学的には反応の開始温度
は1300℃以下と比較的低温である。しかし、この温
度では炭化水素は分解を起口す。このため、工業的に通
常の方法でこの反応を起こさせようとしても、炭化水素
の分解のみが進行し、良好な結果は得られない。ごの点
について、上記の如く、本発明方法により2000℃以
上の如く、超高温にあるプラズマジェット中で炭化水素
による3i02の還元反応を起こさせると反応速度が大
きいため、容易に添加したSiO2の40%以上をSi
Cまで還元することができる。この反応生成物は主とし
てSiO2とSiCの混合物となるが、この混合物を第
二工程で約1900℃以上に胃温、反応させることで、 2SiC+5i02→3Si+2C02・・・・・・(
1)の反応が進み溶融した金属Siを得ることができる
。なお、第一1−程でのSiCの生成率を40%以上に
するのは、でれ以下であると生産性が悪化するからであ
る。
That is, when reducing 3102 with a hydrocarbon, for example, when methane gas is used, the starting temperature of the reaction is thermodynamically as low as 1300° C. or lower, which is relatively low. However, at this temperature hydrocarbons begin to decompose. Therefore, even if an attempt is made to cause this reaction by an industrially common method, only the decomposition of the hydrocarbons will proceed, and good results will not be obtained. Regarding this point, as mentioned above, when the reduction reaction of 3i02 with hydrocarbons is caused in a plasma jet at an ultra-high temperature of 2000°C or higher using the method of the present invention, the reaction rate is high, so it is easy to reduce the amount of SiO2 added. More than 40% Si
It can be reduced to C. This reaction product is mainly a mixture of SiO2 and SiC, and by reacting this mixture at a stomach temperature of about 1900°C or higher in the second step, 2SiC+5i02→3Si+2C02...
The reaction 1) progresses and molten metal Si can be obtained. The reason why the SiC production rate in the first step is set to 40% or more is because productivity deteriorates if it is less than 40%.

この第二工程では、第一工程での反応生成物たる混合物
のSi/C比が適正範囲、例えば、3.3〜4.2、な
かでも、3.5近くあるとぎに最ち効率が良く金WXs
iを回収すること/fできるごとから、第一工程で得ら
れる反応生成物のSi/C比がこれよりずれるときは勿
論第一工程と第二工程の間で固体のSiCあるいはSi
O2粉末を;浜加して第二工程に入る装入物のSi/C
比が3.5近くになるように、あるいは、固体5iC一
部名しくは全部の代りに固体炭素を添加して調整を行な
う口ともできる。この固体炭素の添加の場合には、第二
工程で(1)式で示した反応と同時に、SiO2+ 2
C−+Si+ 2CO・・・・・(2)なる反応が進行
するので、これらの反応の化学量論計算より、前述のS
i/Cが3.5になるのと同等の効果をつるには、固体
炭素添加後の混合物のSi/Cが(3)式 になるように固体炭素を添加する必要がある。
In this second step, the efficiency is highest when the Si/C ratio of the reaction product mixture in the first step is in an appropriate range, for example, 3.3 to 4.2, especially close to 3.5. Gold WXs
Since it is possible to recover i/f, if the Si/C ratio of the reaction product obtained in the first step deviates from this, it goes without saying that solid SiC or Si
O2 powder is added to the Si/C charge that enters the second process.
Adjustment can also be made so that the ratio is close to 3.5, or by adding solid carbon in place of some or all of the solid 5iC. In the case of this addition of solid carbon, SiO2+ 2
Since the following reaction progresses: C-+Si+ 2CO...(2), from the stoichiometric calculation of these reactions, the above-mentioned S
In order to obtain an effect equivalent to i/C being 3.5, it is necessary to add solid carbon so that Si/C of the mixture after solid carbon is added satisfies formula (3).

ここで、Yは第一工程で生成した混合物のSiO2/s
icノaffi比rアル。
Here, Y is SiO2/s of the mixture produced in the first step
ic no affi ratio.

また、本発明方法はいかなる装置でも実施できるが、第
1図ならびに第2図に示す装置によって実施できる。
Furthermore, although the method of the present invention can be carried out using any apparatus, it can be carried out by the apparatus shown in FIGS. 1 and 2.

まず、第1図は本発明方法を実施する装置の一例の配置
図であって、この装置においてはシャフト炉状の炉1(
以下、単にシャツi・炉1という。)でプラズマジェッ
ト中に3102粉末と共に炭化水素を吹込んでこのSi
O2粉末の一部を還元してSiO2の)昆合物を生成し
、その後、この混合物は溶融反応装置2内に入れられて
、そこで溶融反応により金属Siを生成し、金属Si4
は回収装置を成す水冷るつは5で冷却されて取出される
First, FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention. In this apparatus, a shaft furnace 1 (
Hereinafter, it will simply be referred to as shirt i/furnace 1. ), this Si was injected into a plasma jet together with 3102 powder.
A part of the O2 powder is reduced to produce a mixture of SiO2, and then this mixture is placed into the melting reactor 2, where it is melted to produce metallic Si and metallized Si4.
The water-cooled melt forming the recovery device is cooled and taken out at step 5.

づなわち、シャフト炉1の頂部(Sはプラズマトーチ6
とともにフィーダ7が設(」られ、プラズマトーチ6が
ら1.Lll7、Arcしく +J、(11,+ Ar
+のプラズマジIットが炉内に向(プて噴出され、この
ジェット中にノイーダ7を経て、 SiO2粉末8なら
びに炭化水素9が吹込まれて上記の如く混合物が生成り
る。また、シャフト炉状 は水冷るつば3を設置j、このるつ(よ3て混合物(J
冷却されてから取出される。
In other words, the top of the shaft furnace 1 (S is the plasma torch 6
At the same time, a feeder 7 is installed, and from the plasma torch 6 1.Lll7, Arc +J, (11, + Ar
+ plasma jet is ejected into the furnace, and SiO2 powder 8 and hydrocarbon 9 are blown into this jet through a noida 7 to form a mixture as described above. In this case, a water-cooled spit 3 is installed, and the mixture (J
Cool and then remove.

この混合物【JEナイクロン10でυFカスから分離さ
れ、ぞこて、必要の場合tまS i / C千M比を調
整し、溶融反応装置2に装入される。溶融反応装置2の
頂部にはプラズマトーチ11が設【ノられ、このトーチ
11がらのプラズマジェット中に向って混合物等の原料
が吹込口12から吹込まれると、SiCと3102とが
溶融反応し、金fisi4が水ン6るつは5で冷却され
て取出される。
This mixture is separated from the υF scum using a JE Nylon 10, the Si/C 1,000M ratio is adjusted as necessary, and the mixture is charged into the melting reactor 2. A plasma torch 11 is installed at the top of the melting reaction device 2, and when a raw material such as a mixture is blown into the plasma jet from the torch 11 from the inlet 12, SiC and 3102 undergo a melting reaction. , the gold is cooled in water and removed.

また、第2図は第1図(こ示す装置と相jRシて連続し
て第一工程から第二工程まで実施できるもので、この装
置はシャフト炉1の頂部にはプラスマド−チロを設(プ
ると共に、SiO7粉末がら吹込装置13と炭化水素の
吹込装置14を設ける。更に、プラズマトーチ6の下段
にはシャーノド炉1の外周を包囲さけて高置′i1コイ
ル15を設()、シャフト炉状 のように構成覆ると、プラズマ1〜−ヂ6からのプラズ
マジェット中にSiO2yJ未8と共に炭化水素9を吹
込むと、Sin、粉末の一部が還元されてSiCが生成
し、シA・ノ1〜炉途中の8周波コイル15により高周
波プラズマが発生し−Cいるため、SiCとSiO.と
の混合物は下降づる間に溶融反1・L・して金属Si4
を生成し、金属Si4は水冷るつほがら成る回収装置1
Gに収容されて冷五〇されてから取出される。また、こ
のように連続実施装置として構成すると、熱効率が改善
Cさ、消費Tネルギーが低減できる。また、プラスマド
−プロと高周波コイル15との間で更にSin、あるい
は炭化水素が添加できるよう構成すれば、混合物の成分
調整が容易に実施できる。
In addition, Fig. 2 can be used in conjunction with the apparatus shown in Fig. 1 to perform the first to second steps continuously. At the same time, an SiO7 powder blowing device 13 and a hydrocarbon blowing device 14 are installed.Furthermore, an elevated 'i1 coil 15 is installed at the lower stage of the plasma torch 6 to avoid surrounding the outer periphery of the Shah nod furnace 1. When configured like a furnace, when hydrocarbon 9 is injected together with SiO2yJ into the plasma jet from plasmas 1 to 6, part of the Si and powder is reduced to form SiC, and SiA - Since high-frequency plasma is generated by the 8-frequency coil 15 in the middle of the furnace, the mixture of SiC and SiO. melts while descending and becomes metal Si4.
The metal Si4 is recovered by a recovery device 1 consisting of a water-cooled melting shell.
It is stored in G and cooled for 50 minutes before being taken out. In addition, when configured as a continuous implementation device in this way, thermal efficiency can be improved and energy consumption can be reduced. Further, if the configuration is such that Sin or hydrocarbon can be further added between the plasma-producer and the high-frequency coil 15, the composition of the mixture can be easily adjusted.

なお、上記の通り、本発明は市販ならびに現在製造され
る5iO2yJ未全てに適用できるが、本発明はなるべ
く高純度、例えば、98%以トのものを原料とJるとき
には、イの効果は一諾発揮でき、とくに、99%台、更
には、99.99’1%やそれ以上の高純度のSiO2
粉末にし適用できる。
As mentioned above, the present invention can be applied to all commercially available and currently manufactured 5iO2yJ, but when the raw material is one with as high a purity as possible, for example, 98% or higher, In particular, high-purity SiO2 of 99% level, and even 99.99'1% or higher.
Can be applied in powder form.

また、ト記のところは第一工程にJ:り生成される混合
物【よSiCと未反応Sin、とがら成つ℃いる。しか
し、第一工程では己れら組成物のtまか、わずかに金属
SIが生成したり、Cが残存覆ることもあり、従って、
混合物は主としてSiCと未反応Sin、とがら成って
いるが、このほかに、金属S1やC等が含まれるもので
ある。
In addition, in the first step, there is a mixture formed of SiC and unreacted Sin. However, in the first step, a small amount of metal SI may be generated or C may remain in the composition.
The mixture mainly consists of SiC, unreacted Sin, and slag, but also contains metals S1, C, and the like.

第一工程で生成づる51ctこ(」、イの結晶構造より
β−3iCとα−3iCに大別されるが、本発明の方法
では、生成するSiCがこの何れの構造てあっても差支
えない。
The 51ct produced in the first step is roughly divided into β-3iC and α-3iC based on its crystal structure, but in the method of the present invention, the SiC produced can have either of these structures. .

実  施  例 実施例1゜ まず、第1図に示す装置を用い、ぞのシャフト炉1の1
・−ヂ6がらArまたはH2あるいはこの混合ガスをプ
ラズマジェットとして吹出し、このジェットに向けてC
114と共に5i0219)末を吹込み、そのSiO2
の40%以上をSiCになるように反応させた。この反
応生成物はシャフト炉下部で冷却後サイクロンで捕集し
、これを溶融反応装置内に装入し、Y口で、先に生成し
たSiCと未反応のSiO2とを反応させて溶融金属S
1を水冷るつぼに受けて回収した。
Example Example 1 First, using the apparatus shown in FIG.
・-6 Ar, H2, or a mixture thereof is blown out as a plasma jet, and C is directed toward this jet.
5i0219) was injected with 114, and the SiO2
40% or more of the SiC was reacted to form SiC. This reaction product is collected by a cyclone after being cooled in the lower part of the shaft furnace, and charged into the melting reactor, where the previously generated SiC and unreacted SiO2 are reacted at the Y port, and the molten metal S
1 was collected in a water-cooled crucible.

この際の第一ならびに第二の各1程の操業条11は第−
表に示す通りであり、とくに通常市販される高純度Ar
ガス、高純度H2ガスおよび99、999%以上に精製
したC]14カスとSiO2粉末を用いて99.999
%以上という8純度の81を1与る第  1  表 実施例2゜ 第2図に示づ装置を用いて、下部の高周波コイルに入力
することによって一部のSiO2の還元に供せられたガ
スを再度プラズマ化して、混合物の溶融反応を連続的に
行なって下部に設置した水冷るつぼ16に生成した金属
S1を冷却して回収した。この際の条件は第2表に示J
通りであって、この場合も第1表におけると同じの原料
を用いて高純度の金属S1を得ることができた。
In this case, each of the first and second operating articles 11 is
As shown in the table, especially commercially available high-purity Ar
99.999 using gas, high purity H2 gas, C]14 residue purified to 99,999% or more, and SiO2 powder.
Table 1 Example 2 Using the apparatus shown in Figure 2, the gas used to reduce some of the SiO2 by inputting it to the lower high-frequency coil was turned into plasma again, the mixture was continuously melted, and the metal S1 produced in the water-cooled crucible 16 installed at the bottom was cooled and collected. The conditions in this case are shown in Table 2.
In this case as well, high purity metal S1 could be obtained using the same raw materials as in Table 1.

これら実施例1ならびに2は何れも石炭やコークスなど
の精製のむずかしい固体炭素を還元材として使用しない
ため、Fe、Ti、 iなどの炭(Aに由来する不純物
を完全に除くことが−(ぎ、容易に高純度の金属S1を
得る口とがでさた。
In both Examples 1 and 2, solid carbon, which is difficult to purify, such as coal or coke, is not used as the reducing agent. , it was easy to obtain high purity metal S1.

第  2  表 〈発明の効果〉 以上述へた本発明方法は従来の石炭、コークスを用いる
方法と異なって、精製の容易な炭化水素を用いること、
および、耐火物との接触がほとんどないことがら特別な
金R31の精製なしに高純度の金属S1を得ることがで
きる。
Table 2 <Effects of the Invention> The method of the present invention described above differs from conventional methods using coal and coke in that it uses hydrocarbons that are easy to refine;
In addition, since there is almost no contact with refractories, high purity metal S1 can be obtained without special purification of gold R31.

また、生成物のSi/C比調整に加える固体炭素も極少
邑であるので、例えば、カーボンブラックなどの高純度
の炭素を使用しても製品価格に対する影響は非常に小ざ
いなど多くの利点を持つ。
In addition, the amount of solid carbon added to adjust the Si/C ratio of the product is very small, so even if high-purity carbon such as carbon black is used, the effect on the product price is very small, and many other advantages are obtained. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図ならびに第2図は本発明を実施する装置の一つの
例の各配置図である。 符号1・・・・・・シトフト炉  2・・・・・溶融艮
応装詔3・・・・・・水冷るつは  4・・・・・・金
属Si5・・・・・回収装置 6・・・・・・プラズマトーチ 7・・・・・・フィダー    8・・・・・・SiO
2粉末9・・・・・・炭化水素   10・・・・・・
→ブイクロン11・・・・・プラズマトーチ 12・・・・・吹込口 13・・・・・SiO2粉末の吹込装置14・・・・・
・炭化水素の吹込装置 15・・・・・・高周波コイル 16・・・・・回収装
置第1図 第2図
FIGS. 1 and 2 are layout diagrams of one example of an apparatus for carrying out the present invention. Code 1...Shitoft furnace 2...Melting treatment order 3...Water cooling melt 4...Metal Si5...Recovery device 6. ...Plasma torch 7 ... Feeder 8 ... SiO
2 Powder 9...Hydrocarbon 10...
→Vicron 11...Plasma torch 12...Blowing port 13...SiO2 powder blowing device 14...
・Hydrocarbon injection device 15...High frequency coil 16...Recovery device Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】 1)SiO_2粉末ならびに炭化水素を非酸化性でかつ
非窒化性ガスのプラズマジェット中に吹込んで、そのS
iO_2の吹込み重量の40%以上をSiCまで還元す
る第一工程と、この第一工程での還元生成物たるSiC
と残りのSiO_2とを含む混合物を高温下で反応溶解
させて金属珪素を得る第二工程とを具えて成ることを特
徴とする金属珪素の製造方法。 2)SiO_2粉末ならびに炭化水素を非酸化性でかつ
非窒化性ガスのプラズマジェット中に吹込んで、そのS
iO_2の吹込重量の40%以上をSiCまで還元する
第一工程と、この第一工程での還元生成物たるSiCと
残りのSiO_2とを含む混合物に固体炭素、および/
またはSiC、あるいはSiO_2粉末のうちの少なく
ともいずれか一つの調整材を添加してSi/C重量比を
調整する調整工程と、前記第一工程での還元生成物たる
SiCと残りのSiO_2ならびに前記調整材との混合
物を高温下で反応溶解させて金属珪素を得る第二工程を
特徴とする金属珪素の製造方法。 3)シャフト状の炉の炉頂部に、非酸化性でかつ非窒化
性のガスのプラズマジェットを吹込むトーチと、このプ
ラズマジェット中にSiO_2粉末ならびに炭化水素を
個別的若しくは同時に吹込む吹込み装置とを設ける一方
、前記プラズマトーチの下段に位置するよう、シャフト
炉に高周波プラズマを発生させる高周波コイルを設け、
更に、シャフト炉の下部に金属珪素を冷却して回収する
回収装置を連結して成ることを特徴とする金属珪素の製
造装置。
[Claims] 1) SiO_2 powder and hydrocarbon are injected into a plasma jet of non-oxidizing and non-nitriding gas, and the S
A first step of reducing 40% or more of the injected weight of iO_2 to SiC, and a reduction product of SiC in this first step.
and a second step of reacting and dissolving a mixture containing SiO_2 and the remaining SiO_2 at high temperature to obtain metallic silicon. 2) Inject SiO_2 powder and hydrocarbon into a plasma jet of non-oxidizing and non-nitriding gas to
A first step in which 40% or more of the injected weight of iO_2 is reduced to SiC, and solid carbon is added to the mixture containing SiC, which is the reduction product in this first step, and the remaining SiO_2.
or an adjustment step of adjusting the Si/C weight ratio by adding at least one adjustment material of SiC or SiO_2 powder; and SiC as the reduction product in the first step, the remaining SiO_2, and the adjustment. A method for producing metallic silicon, characterized by a second step of obtaining metallic silicon by reacting and dissolving a mixture with a material at high temperature. 3) A torch that blows a plasma jet of non-oxidizing and non-nitriding gas into the top of the shaft-shaped furnace, and a blowing device that blows SiO_2 powder and hydrocarbons individually or simultaneously into this plasma jet. and a high-frequency coil for generating high-frequency plasma in the shaft furnace, located below the plasma torch,
Furthermore, a metal silicon production apparatus characterized in that a recovery device for cooling and recovering metal silicon is connected to the lower part of the shaft furnace.
JP12509184A 1984-06-20 1984-06-20 Process and apparatus for preparing metallic silicon Pending JPS616114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12509184A JPS616114A (en) 1984-06-20 1984-06-20 Process and apparatus for preparing metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12509184A JPS616114A (en) 1984-06-20 1984-06-20 Process and apparatus for preparing metallic silicon

Publications (1)

Publication Number Publication Date
JPS616114A true JPS616114A (en) 1986-01-11

Family

ID=14901619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12509184A Pending JPS616114A (en) 1984-06-20 1984-06-20 Process and apparatus for preparing metallic silicon

Country Status (1)

Country Link
JP (1) JPS616114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007991A (en) * 2008-06-27 2010-01-14 Ryoju Estate Co Ltd Underfloor heat storage system and method
JP2010052951A (en) * 2008-08-26 2010-03-11 Central Glass Co Ltd Method for producing silicon
CN108046269A (en) * 2018-01-16 2018-05-18 常州大学 A kind of technique of the useless powder separation and recovery of solar silicon wafers cutting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007991A (en) * 2008-06-27 2010-01-14 Ryoju Estate Co Ltd Underfloor heat storage system and method
JP2010052951A (en) * 2008-08-26 2010-03-11 Central Glass Co Ltd Method for producing silicon
CN108046269A (en) * 2018-01-16 2018-05-18 常州大学 A kind of technique of the useless powder separation and recovery of solar silicon wafers cutting

Similar Documents

Publication Publication Date Title
FI68389B (en) SAETT ATT FRAMSTAELLA KISEL UR POWDER FORMIGT KISELDIOXIDHALTIGT MATERIAL
JPS6356171B2 (en)
JPS622602B2 (en)
EP4279453A2 (en) Process for the production of commercial grade silicon
US4526612A (en) Method of manufacturing ferrosilicon
JPH04193706A (en) Refining method for silicon
JPS616114A (en) Process and apparatus for preparing metallic silicon
JPH0411485B2 (en)
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JPS60251112A (en) Process and device for preparing silicon
JPS616113A (en) Manufacture of metallic silicon
EP0350989B1 (en) Method and apparatus for manufacturing flake graphite
JPS5926909A (en) Preparation of powder
JPS60251113A (en) Process and device for preparing silicon
SU1333229A3 (en) Method of producing silicon
JPS6037053B2 (en) Silicon carbide manufacturing method
JPH01115811A (en) Method and apparatus for continuous production of liquid silicon
JPS616115A (en) Manufacture of metallic silicon
JPS60255615A (en) Production of silicon
JPS63129009A (en) Production of metallic silicon
JPS602244B2 (en) Manufacturing method of rhombohedral boron nitride
KR101372524B1 (en) Monolithic arc reduction and slag refining apparatus
JP2003034511A (en) Method of manufacturing aluminum nitride powder
JPS616112A (en) Manufacture of metallic silicon
JPS6158806A (en) Manufacture of high-purity hexagonal boron nitride powder