JPS6158257B2 - - Google Patents

Info

Publication number
JPS6158257B2
JPS6158257B2 JP54101600A JP10160079A JPS6158257B2 JP S6158257 B2 JPS6158257 B2 JP S6158257B2 JP 54101600 A JP54101600 A JP 54101600A JP 10160079 A JP10160079 A JP 10160079A JP S6158257 B2 JPS6158257 B2 JP S6158257B2
Authority
JP
Japan
Prior art keywords
workpiece
machining
electrode
relative displacement
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54101600A
Other languages
Japanese (ja)
Other versions
JPS5627735A (en
Inventor
Tetsuro Ito
Toshiro Ooizumi
Shigeo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10160079A priority Critical patent/JPS5627735A/en
Priority to DE19803029971 priority patent/DE3029971A1/en
Priority to US06/176,432 priority patent/US4332995A/en
Priority to CH6039/80A priority patent/CH649022A5/en
Publication of JPS5627735A publication Critical patent/JPS5627735A/en
Publication of JPS6158257B2 publication Critical patent/JPS6158257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、工具電極を用いて被加工物を放電加
工する装置に関し、上記工具電極が被加工物に対
し主に加工する方向(以下Z軸と称する。)の他
に、該Z軸に垂直な平面(以下X―Y平面と称す
る。)においても、上記工具電極と被加工物の相
対位置を電極を回転することなく変位させるとと
もに、両者の間に所定の放電加工間隙(10〜100
μm)を維持するように上記相対位置の変位を制
御するようにした放電加工制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for electric discharge machining a workpiece using a tool electrode, in which the tool electrode mainly processes the workpiece in a direction other than the direction (hereinafter referred to as the Z axis). Also, in a plane perpendicular to the Z-axis (hereinafter referred to as the Machining gap (10~100
The present invention relates to an electric discharge machining control device that controls the displacement of the relative position so as to maintain the relative position (μm).

従来、例えば特公昭41―3594号公報において開
示されているように、工具電極と被加工物とをX
―Y平面において相対的に変位せしめることによ
つて、同じ工具電極を用いて複数の段階に及び粗
加工、中加工、中仕上加工、精仕上加工の加工プ
ロセスを行い、これとともに、放電加工によつて
生成する被加工物の切削粉と、放電時の高温アー
クによつて熱分解された絶縁加工液の変性物質
を、上記加工液を介して放電加工間隙から除去す
ることは公知である。また、工具電極よりも一応
に大きいか少さいかする加工を被加工物に対して
行うように、上記X―Y平面内の相対変位運動
は、公転軌道運動、あるいは星状軌道運動(放射
状運動)を与えるようにしている。これ等の相対
変位距離は、電極を変えないで粗加工から仕上加
工を行うことを目的としていることもあり、いわ
ゆる仕上代分の微少距離である50〜500μm程度
にすぎない。また、最近では上記の軌跡を、電極
と被加工物の間に与える方法としてN/C装置が
用いられ、被加工物を乗せたテーブルとか、電極
を取り付けたヘツドをX―Y平面で制御して動か
すようにし、上記加工を自動的にするようにして
いる。N/C装置ではまずあらかじめ所望の軌跡
を紙テープ等にプログラムするが、このプログラ
ムが本当に目的とする軌跡と一致しているかどう
かのチエツクはたとえば空運転で加工しないでテ
ーブルを動かしてみても、相対移動量が上記のよ
うにわずかなので、これを目視で確認すること
は、困難であつた。また、一旦加工を始めると、
加工の進行に伴う軌跡の状態を確認することは不
可能に近く、加工が終了して始めてどのように加
工されたかを知るといつた不具合があつた。
Conventionally, as disclosed in Japanese Patent Publication No. 41-3594, for example, a tool electrode and a workpiece are
- By making relative displacements in the Y plane, the same tool electrode can be used to perform multiple steps of rough machining, semi-finishing, semi-finishing, and fine finishing machining, as well as electrical discharge machining. It is known to remove the resulting cutting powder from the workpiece and modified substances of the insulation machining fluid thermally decomposed by the high-temperature arc during the discharge from the discharge machining gap via the machining fluid. In addition, in order to perform machining on a workpiece that is either larger or smaller than the tool electrode, the above-mentioned relative displacement movement in the I try to give. These relative displacement distances are only about 50 to 500 μm, which is a minute distance for so-called finishing allowance, because the purpose is to perform rough machining to finish machining without changing the electrode. Recently, N/C devices have been used to provide the above trajectory between the electrode and the workpiece, and control the table on which the workpiece is placed or the head to which the electrode is attached in the XY plane. The above processing is performed automatically. In an N/C device, a desired trajectory is first programmed onto a paper tape, etc., but checking whether this program really matches the desired trajectory can be done by, for example, moving the table without machining in idle operation. Since the amount of movement was small as described above, it was difficult to visually confirm this. Also, once processing begins,
It was nearly impossible to check the state of the trajectory as the machining progressed, and problems arose when we found out how the machining process had been completed only after the machining process had finished.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、微少な変位軌跡
を、目視チエツクできるように拡大し、しかもX
―Y平面における2次元の動きをブラウン管等の
表示装置上に表示できるようにした装置を提供す
ることを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and it enlarges minute displacement trajectories so that they can be visually checked, and also
- The object of the present invention is to provide a device that can display two-dimensional movement in the Y plane on a display device such as a cathode ray tube.

以下この発明の一実施例を図面を用いて説明す
る。図において、工具電極1と被加工物2はまず
主加工方向であるZ軸において相対運動を行いな
がら、加工用電源3から加工エネルギーの供給を
受けて加工を行う。次に、上記工具電極1と被加
工物2との間に、X―Y平面内において相対変位
を与えて加工を行う。X―Y平面における相対変
位は、例えば被加工物2を乗せたテーブル4を
N/C装置5によつてあらかじめ紙テープ6等に
プログラムした軌跡に従つて駆動用モータ7,8
により運動させることによつてなされる。この相
対変位をX軸,Y軸にそれぞれ取り付けた光学式
エンコーダ検出器9X,9Yによつて2相の位相
出力として取り出し、これをデイテクタ10X,
10Yを介して正方向、負方向のパルス出力に変
換する。上記にパルスはそれぞれ可逆カウンタ1
1X,11Yによつて計数され、現在位置は該カ
ウンタよりデイジタル的に記憶される。これらの
現在値をD/Aコンバータ12X,12Yにより
アナログ電圧値に変換して、ブラウン管13の垂
直増幅回路14と水平増幅器15により増幅し、
ブラウン管13上にX,Y座標として表示する。
工具電極1と被加工物2の相対変位の原点から相
対変位の最大点までの距離は、通常500μm程度
であるので、可逆カウンタ11X,11Y及び
D/Aコンバータ12X,12Yの必要ビツト数
は10ビツトもあればよいが、相対変位の原点が偏
つていると、可逆カウンタ11X,11Yがオー
バーフローになつてしまうとか、ブラウン管13
上でどこが原点かわからないので可逆カウンタ1
1X,11Yのリセツト端子16X,16Yを設
け、工具電極1と被加工物2の原点でリセツトス
イツチ17によりリセツトすることによつて常に
ブラウン管13の中心と原点が一致するようにす
る。これにより相対変位のX―Y座標がブラウン
管13上で明確に確認できる。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, a tool electrode 1 and a workpiece 2 first undergo machining by receiving machining energy from a machining power source 3 while performing relative motion in the Z axis, which is the main machining direction. Next, machining is performed by applying a relative displacement between the tool electrode 1 and the workpiece 2 in the XY plane. Relative displacement in the X-Y plane is determined by moving the table 4 on which the workpiece 2 is placed, for example, to the drive motors 7 and 8 according to a trajectory programmed in advance on the paper tape 6 or the like by the N/C device 5.
It is done by making it move. This relative displacement is extracted as a two-phase phase output by optical encoder detectors 9X and 9Y attached to the X-axis and Y-axis, respectively, and this is output to the detectors 10X and 9Y.
It is converted into positive direction and negative direction pulse output via 10Y. The above pulses are each reversible counter 1
1X and 11Y, and the current position is digitally stored from the counter. These current values are converted into analog voltage values by the D/A converters 12X and 12Y, and amplified by the vertical amplifier circuit 14 and horizontal amplifier 15 of the cathode ray tube 13.
It is displayed on the cathode ray tube 13 as X and Y coordinates.
Since the distance from the origin of relative displacement between tool electrode 1 and workpiece 2 to the maximum point of relative displacement is usually about 500 μm, the required number of bits for reversible counters 11X, 11Y and D/A converters 12X, 12Y is 10. It would be nice if there were bits, but if the origin of the relative displacement is biased, the reversible counters 11X and 11Y may overflow, or the cathode ray tube 13 may overflow.
Since I don't know where the origin is above, I use reversible counter 1.
Reset terminals 16X and 16Y of 1X and 11Y are provided, and a reset switch 17 is used to reset at the origin of the tool electrode 1 and workpiece 2, so that the center of the cathode ray tube 13 always coincides with the origin. As a result, the XY coordinates of the relative displacement can be clearly confirmed on the cathode ray tube 13.

更に、相対変位運動が高速で、N/C装置5の
指令との間に、ドループ、ハンテイング、遅れが
あつた場合の実際の動きも確認できる。また、数
100μmの微少変位を与えて加工をした後、別の
場所に工具電極1を移動してその場所で微少変位
を与えて加工をする場合には、上記リセツト端子
16X,16YをN/C装置5に接続し、微少変
位を与える時にカウンタのリセツトすれば、テー
ブル4のストロークが大きくても微少変位の状況
を常にブラウン管13上で確認できる。
Furthermore, it is also possible to check the actual movement when the relative displacement movement is high speed and there is droop, hunting, or delay between the command and the command from the N/C device 5. Also, a number
After machining is performed by applying a minute displacement of 100 μm, when moving the tool electrode 1 to another location and performing machining by applying a minute displacement at that location, the reset terminals 16X and 16Y are connected to the N/C device 5. If the counter is reset when a minute displacement is applied, the status of minute displacement can always be checked on the cathode ray tube 13 even if the stroke of the table 4 is large.

また上記実施例のブラウン管13は、静電偏
向、電磁偏向のものは無論、記憶、残光機能のあ
る例えばメモリスコープや、放電型プラズマデイ
スプレイ装置、液晶表示器等の表示装置でも可能
である。
Further, the cathode ray tube 13 of the above embodiment may be of course an electrostatic deflection type or an electromagnetic deflection type, or may be a display device having a memory or afterglow function, such as a memory scope, a discharge type plasma display device, a liquid crystal display device, or the like.

以上のようにこの発明によれば、電極と被加工
物の微少な相対変位を常に変位の原点を中心にし
て表示装置上で確認できるばかりでなく、変位軌
跡の指令値と本当の動きの差異を目視確認できる
という利点がある。
As described above, according to the present invention, not only can minute relative displacements between the electrode and the workpiece be confirmed on the display device with the origin of displacement always centered, but also the difference between the command value of the displacement trajectory and the actual movement. This has the advantage of being able to be visually confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例を示すものである。図
において1は工具電極、2は被加工物、4は5は
N/C装置、9X,9Yは光学式位置検出エンコ
ーダ、10X,10Yはデイテクタ、11X,1
1Yは可逆カウンタ、12X,12YはD/Aコ
ンバータ、13はブラウン管である。
The figure shows one embodiment of the invention. In the figure, 1 is a tool electrode, 2 is a workpiece, 4 is a 5 N/C device, 9X, 9Y are optical position detection encoders, 10X, 10Y are detectors, 11X, 1
1Y is a reversible counter, 12X and 12Y are D/A converters, and 13 is a cathode ray tube.

Claims (1)

【特許請求の範囲】 1 電極と被加工物の加工液を介した対向間隙に
通電する手段と、上記電極と被加工物の対向方向
を主加工方向と該方向に略直交する平面内におけ
る方向とに区分し、上記平面内における対向方向
において上記電極と被加工物に相対変位を与える
手段と、上記主加工方向と並行な被加工面との間
を、放電可能な間隙に維持するよう制御する手段
と、上記電極と被加工物に相対変位を与える手段
と上記放電可能な間隙に維持するよう制御する手
段に目的とする指令信号を与える手段と、上記電
極と被加工物の上記平面内における対向方向の実
際の相対変位を検出する手段と、上記検出手段に
より検出された上記実際の相対変位を、該変位の
中心位置を原点として表示装置に表示する手段を
具備する放電加工制御装置。 2 表示装置は拡大表示できることを特徴とする
特許請求の範囲第1項記載の放電加工制御装置。
[Scope of Claims] 1. A means for supplying current to opposing gaps between the electrode and the workpiece through a machining fluid, and a direction in which the facing direction of the electrode and the workpiece is set in a plane substantially orthogonal to the main machining direction. and a means for applying relative displacement between the electrode and the workpiece in opposing directions in the plane, and a workpiece surface parallel to the main machining direction, which is controlled to maintain a gap that allows electrical discharge. means for applying a relative displacement between the electrode and the workpiece; means for applying a desired command signal to the means for controlling the gap to maintain the dischargeable gap; An electric discharge machining control device comprising: means for detecting an actual relative displacement in opposing directions; and means for displaying the actual relative displacement detected by the detecting means on a display device with the center position of the displacement as the origin. 2. The electric discharge machining control device according to claim 1, wherein the display device is capable of enlarging display.
JP10160079A 1979-08-09 1979-08-09 Electric discharge machining controller Granted JPS5627735A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10160079A JPS5627735A (en) 1979-08-09 1979-08-09 Electric discharge machining controller
DE19803029971 DE3029971A1 (en) 1979-08-09 1980-08-07 MACHINING DEVICE FOR MACHINING A WORKPIECE BY ELECTRICALLY DISCHARGING UNDER ELECTRIC POWER SUPPLY TO THE WORKPIECE AND AN ELECTRODE
US06/176,432 US4332995A (en) 1979-08-09 1980-08-08 Electrical discharge machine
CH6039/80A CH649022A5 (en) 1979-08-09 1980-08-08 SPARK EDM MACHINE FOR ELECTRO-EROSIVELY MACHINING A WORKPIECE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160079A JPS5627735A (en) 1979-08-09 1979-08-09 Electric discharge machining controller

Publications (2)

Publication Number Publication Date
JPS5627735A JPS5627735A (en) 1981-03-18
JPS6158257B2 true JPS6158257B2 (en) 1986-12-10

Family

ID=14304873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160079A Granted JPS5627735A (en) 1979-08-09 1979-08-09 Electric discharge machining controller

Country Status (1)

Country Link
JP (1) JPS5627735A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710097Y2 (en) * 1989-03-09 1995-03-08 日本電信電話株式会社 Shaft coupling
KR20190132492A (en) 2018-03-20 2019-11-27 가부시키가이샤 나까타 코팅 Aqueous treatment agent, method of producing an aqueous treatment agent, and method of using the aqueous treatment agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111598A (en) * 1977-03-09 1978-09-29 Toshihiko Furukawa Electrospark working device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111598A (en) * 1977-03-09 1978-09-29 Toshihiko Furukawa Electrospark working device

Also Published As

Publication number Publication date
JPS5627735A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
JPS6158257B2 (en)
JPS62163109A (en) Numerical controller
CN110434376A (en) Center processing method
JPH09220685A (en) Method for measuring material to be machined in laser beam machine
US4332995A (en) Electrical discharge machine
JPS6258850B2 (en)
Lin et al. An effective-wire-radius compensation scheme for enhancing the precision of wire-cut electrical discharge machines
JPH0655415A (en) Measuring method for and secular change of machine tool
JPS6311226A (en) Wire cut electric discharge machine
JPH03131427A (en) Reference origin measuring method for electricity discharge machine and its device
JPH03270825A (en) Electric discharge machining
JPS60127084A (en) Control device for laser working
JPS6219703A (en) Non-contacting shape measuring method
JP2001269821A (en) Additional machining method and device by discharge
JPS5993256A (en) Positioning of machine tool
JPH03169490A (en) Follow-up control method for three-dimensional laser beam machine
JPS6056848A (en) Machining data producing system
JPH078457B2 (en) EDM method
JPS5973225A (en) Electric discharge machining device
JPS60108229A (en) Electric-discharge machining device
Kruth Automatic supervision in physical and chemical machining
JPH02145242A (en) Work device
JPS5854944B2 (en) Electrical discharge machining method and equipment
JP2000246547A (en) Deciding method of machining start position in wedg electric discharge machining
JPH0413083B2 (en)