JPS6157875B2 - - Google Patents

Info

Publication number
JPS6157875B2
JPS6157875B2 JP53036984A JP3698478A JPS6157875B2 JP S6157875 B2 JPS6157875 B2 JP S6157875B2 JP 53036984 A JP53036984 A JP 53036984A JP 3698478 A JP3698478 A JP 3698478A JP S6157875 B2 JPS6157875 B2 JP S6157875B2
Authority
JP
Japan
Prior art keywords
acid
group
acrylate
meth
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53036984A
Other languages
Japanese (ja)
Other versions
JPS54129034A (en
Inventor
Juzo Tsunoda
Yoshihei Meiwa
Masaaki Namikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP3698478A priority Critical patent/JPS54129034A/en
Priority to DE19792910714 priority patent/DE2910714A1/en
Publication of JPS54129034A publication Critical patent/JPS54129034A/en
Publication of JPS6157875B2 publication Critical patent/JPS6157875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • C08G18/683Unsaturated polyesters containing cyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/4255Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids derived from polyols containing oxyalkylated carbocyclic groups and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、活性エネルギー線、特に紫外線また
は電離放射線の照射により、極めて速やかに硬化
架橋し、機械的性質や可撓性の良好な硬化物を形
成し、また、例えば被覆材として用いた場合基材
に対する密着性の優れた塗膜を形成し得る被覆用
樹脂組成物に関する。 近年、省エネルギー、省力化、環境保全の立場
から、活性エネルギー線の照射により硬化する無
溶剤型樹脂の開発が活発になり、一部では実用化
の域に達している。その一般的なものはアクリロ
イル基、ビニル基、アクリルアミド基、アリル基
などの重合性不飽和基を含有するオリゴマー、モ
ノマー又はプレポリマー類を適宜組合せたラジカ
ル重合性化合物を主体とし、必要に応じて光増感
剤を添加したものである。これらの樹脂組成物を
基材に塗布し、活性エネルギー線を照射して硬化
させる場合硬化速度と基材に対する密着性は一般
に反比例の関係にある。すなわち、樹脂組成物中
の不飽和基濃度又は光増感剤量を上げて硬化速度
を早めると塗膜に内部ひずみが生じ、ころため基
材に対する密着性が悪くなり、可撓性も不良とな
る。逆に不飽和基濃度又は光増感剤量を下げると
密着性は向上するが、硬化速度が著しく遅くなる
(特開昭50−139189号公報参照)。更に、当然のこ
とながら密着性は基材の種類によつても著しく影
響されるが先行技術では市販の溶剤含有の酸化重
合型インキ、金属(特にブリキ、アルミニウムな
ど)、ガラスおよび合成樹脂などに対して、硬化
性と密着性がともに優れたものはほとんど見い出
されておらず、このことが活性エネルギー線照射
硬化性塗料の実用化に大きな障害となつていた。 そこで、本発明者らは活性エネルギー線の照射
により、空気中で速やかに硬化しインキ、金属、
ガラスおよび合成樹脂などの非吸収性の極性表面
に対して極めて密着性の優れた被覆用樹脂を得る
ため、鋭意研究を重ねた結果、本発明を完成する
に至つた。 即ち、本発明は、末端に水酸基を有するポリオ
キシアルキレンビスフエノールA誘導体(A)とポリ
イソシアネート化合物(B)とヒドロキシル基含有ア
クリレート及び/又はメタアクリレート(C)との反
応によつて得られる実質的に1分子中に2個以上
のアクリロイル基又はメタクリロイル基(以下
(メタ)アクリル基と記す)を有する(メタ)ア
クリルウレタン樹脂〔〕、及び該(メタ)アク
リルウレタン樹脂〔〕中に導入された末端の不
飽和基と共重合可能な重合性二重結合を有する化
合物〔〕を主成分として含有することを特徴と
する非吸収性の極性表面に対する密着性のすぐれ
た活性エネルギー線硬化性の被覆用樹脂組成物に
関するものである。 本発明において使用可能な樹脂成分のそれぞれ
について下記に詳細に説明する。 本発明に係るポリオキシアルキレンビスフエノ
ールA誘導体(A)はポリオキシアルキレンビスフエ
ノールA又は、ポリオキシアルキレンビスフエノ
ールAを化学構造式中に含み末端に水酸基を有す
る化合物である。ポリオキシアルキレンビスフエ
ノールAはビスフエノールAを酸化アルキレンと
反応させて得られる。使用可能な適当な酸化アル
キレンは例えば酸化エチレンおよび酸化プロピレ
ンを含む。本発明に有用なポリオキシアルキレン
ビスフエノールAの好ましい例は次式(イ)又は(ロ)で
表わす化合物である。 (式中R1は炭素数2乃至4のアルキレン基であ
り、Xはハロゲンまたはメチル基であり、aは1
ないし2に等しい整数であり、mおよびnはそれ
ぞれ少なくとも1に等しい整数であつて、その合
計は約2ないし8好ましくは2ないし6であ
る)。 上式(イ)または(ロ)中のmおよびnの合計はビスフ
エノールAのOH基と反応した酸化アルキレンの
モル数から決定される。使用される酸化アルキレ
ンの量が増加するに従つて樹脂の性質は変化しそ
して可撓性および伸びなどは改良されるが、同時
に熱ひずみ温度および引張強度などの性質は低下
する。mとnの合計が約8よりも大きい数に等し
いポリオキシアルキレンビスフエノールAから樹
脂を造ることも可能であるがこれらの樹脂は極め
て柔かく、従つて本発明の望ましい物質の範囲に
入らない。 本発明における末端水酸基を有するポリオキシ
アルキレンビスフエノールA誘導体(A)としては、
上式(イ)又は(ロ)で表わされるポリオキシアルキレン
ビスフエノールA以外にポリカルボン酸および/
又はそれらの酸無水物と上記ポリオキシアルキレ
ンビスフエノールAとの縮合反応生成物も含ま
れ、該縮合反応における酸成分とポリオキシアル
キレンビスフエノールA成分の反応割合はポリオ
キシアルキレンビスフエノールAと酸成分とのモ
ル比で3対2以上である。ここで酸無水物はカル
ボキシル基2モルに相当するものとする。ここに
おいてポリオキシアルキレンビスフエノールAと
酸成分との比率が上記の比率より小さい場合、樹
脂の硬化速度は遅く得られる樹脂の塗膜性能は悪
くなるという欠点がある。また、該縮合反応生成
物と上記ポリオキシアルキレンビスフエノールA
との任意の割合で混ぜた混合物も使用することが
できる。用いられるポリカルボン酸又はその無水
物としてはジカルボン酸又はその無水物が好まし
く、例えば、マロン酸、コハク酸、無水コハク
酸、グルタル酸、アジピン酸、ピメリン酸、スベ
リン酸、アゼライン酸、セバシン酸、などの脂肪
族の飽和二塩基酸もしくは飽和二塩基酸無水物、
マレイン酸、無水マレイン酸、フマル酸、シトラ
コン酸、イタコン酸などの脂肪族の不飽和二塩基
酸もしくは不飽和二塩基酸無水物、フタル酸、無
水フタル酸、イソフタル酸、テレフタル酸などの
芳香族の二塩基酸もしくは芳香族二塩基酸無水物
を挙げることができる。 上記ポリオキシアルキレンビスフエノールA誘
導体(A)の製造において、上記二塩基酸および/又
は二塩基酸無水物等第1番目の酸成分のほかに第
2番目のポリカルボン酸たとえば無水トリメリツ
ト酸の少量の使用が可能である。この2番目の酸
は芳香族または脂肪族酸の何れの型も可能であ
り、そして飽和または不飽和の何れも可能であ
る。これらの酸成分及びポリオキシアルキレンビ
スフエノールAはそれぞれ単独でも2種以上併用
しても用いることができる。 本発明において使用されるポリイソシアネート
化合物(B)としては次の如きものがその代表例とし
て挙げられる。すなわち、トリレンジイソシアネ
ート、ジフエニルメタン−4・4′−ジイソシアネ
ート、3・3′−ジメチルジフエニルメタン−4・
4′−ジイソシアネート、ナフチレン−1・5−ジ
イソシアネート、フエニレンジイソシアネート、
キシリレンジイソシアネート、1・6−ヘキサメ
チレンジイソシアネート、1・4−テトラメチレ
ンジイソシアネート、イソホロンジイソシアネー
ト、水添されたジフエニルメタン−4・4′−ジイ
ソシアネート、水添されたトリレンジイソシアネ
ート、部分的にカルボジイミド化されたジフエニ
ルメタン−4・4′−ジイソシアネート;あるいは
これら上記のジイソシアネートの2量体、もしく
は、これら上記のジイソシアネートと活性水素化
合物との付加化合物、すなわちエチレングリコー
ル、プロピレングリコール、テトラメチレングリ
コール、ネオペンチルグリコール、ブタンジオー
ル、1・6−ヘキサンジオール、ポリエチレング
リコール、ポリプロピレングリコール、トリメチ
ロールプロパン、グリセリン、ペンタエリスリト
ール、ビスフエノールAエチレンオキサイド付加
物、ビスフエノールAプロピレンオキサイド付加
物などと上記のジイソシアネートとの付加物であ
る。これらのポリイソシアネート化合物は単独で
も2種以上併用しても用いることができる。 本発明で使用されるポリイソシアネート(B)の量
は使用されるポリオキシアルキレンビスフエノー
ルA誘導体(A)中のOH基1個に対してイソシアネ
ート基が1.8〜5個好ましくは2.0〜3.0個となる量
である。ポリオキシアルキレンビスフエノールA
誘導体(A)中のOH基1個に対してポリイソシアネ
ート(B)中のイソシアネート基が1.8個より少ない
ときはこれによつて得られる樹脂の粘度が高す
ぎ、加工性が悪くなるという欠点がある。一方5
個より多いときはこれによつて得られる樹脂の塗
膜性能にもはやそれ以上の改良が見られないこと
が判明した。 本発明において使用されるヒドロキシル基含有
(メタ)アクリレート(C)としては次の一般式(ハ)〜
(ホ)で表わされる化合物が挙げられる。 (式中、R2は炭素数2ないし10のアルキレン基、
R3は水素原子又はメチル基、R4は水素原子又は
炭素数1ないし6の炭化水素基、pは1ないし3
の整数、qは1ないし3の整数、rは1ないし2
の整数である。)これらの化合物は公知の方法で
得られる。 上式(ハ)の整数pはアクリル酸またはメタクアク
リル酸1モルについて使用された酸化アルキレン
又はグリコールのモル数によつて決定される。約
3モル以上の酸化アルキレン又はグリコールが使
用される場合にはその結果得られる樹脂はより低
い熱ひずみ温度および小さい引張強さおよび小さ
い曲げ強さのような低下した物理的性質を有する
ことになる。 上記一般式(ハ)で表わされる使用可能な代表的な
(メタ)アクリレートとしては、例えばヒドロキ
シエチル(メタ)アクリレート、ヒドロキシプロ
ピル(メタ)アクリレート、ポリオキシエチレン
(2)(メタ)アクリレート、ポリオキシエチレン(3)
(メタ)アクリレート、ポリオキシプロピレン(2)
(メタ)アクリレート、ポリオキシプロピレン(3)
(メタ)アクリレートなどが挙げられる。 又、上記一般式(ニ)又は(ホ)で表わされる(メタ)
アクリレートエステルの代表的なものとしては、
トリメチロールエタンモノ(メタ)アクリレー
ト、トリメチロールエタンジ(メタ)アクリレー
ト、トリメチロールプロパンモノ(メタ)アクリ
レート、トリメチロールプロパンジ(メタ)アク
リレート、ペンタエリスリトールモノ(メタ)ア
クリレート、ペンタエリスリトールジ(メタ)ア
クリレート、ペンタエリスリトールトリ(メタ)
アクリレートなどが挙げられ、その他グリセリン
モノ(メタ)アクリレート、グリセリンジ(メ
タ)アクリレートなども使用できる。 また、このほかモノエポキシ化合物、例えばブ
チルグリシジルエーテル、アクリルグリシジルエ
ーテル、フエニルグリシジルエーテル、グリシジ
ル(メタ)アクリレートなどの(メタ)アクリル
酸付加物なども使用可能である。 上記ヒドロキシル基含有(メタ)アクリレート
化合物(C)は単一化合物として、又は、2種以上の
化合物の混合物としていずれでも使用可能であ
る。本発明において、ヒドロキシル基含有(メ
タ)アクリレート(C)の使用量は、この使用量をc
モル、このアクリレート(C)のヒドロキシル基の数
をzとした時、利用されるポリオキシアルキレン
ビスフエノールA誘導体(A)(1分子中の水酸基の
数x個)1モルとポリイソシアネート(B)(1分子
中のNCO基の数y個)の使用量bモルから、一
般に次に示すような式で表わされる。 c≧(by−x)/z 本発明に係る(メタ)アクリルウレタン樹脂
〔〕の製造は公知の方法によつて可能である。
代表的な製造法は1段反応法、または、はじめに
2種の成分を反応させ、引き続いて得られるプレ
ポリマーに第3成分を反応させる2段反応法であ
る。 この樹脂〔〕は何等溶剤を使用することなく
溶融物として造ることが可能であり、または反応
を適当な溶剤あるいは該(メタ)アクリルウレタ
ン樹脂〔〕中に導入された末端の不飽和基と共
重合可能な重合性二重結合を有する化合物の存在
下で行なうことも可能である。 1段反応法においてはまずポリオキシアルキレ
ンビスフエノールA誘導体(A)を溶融させ、この溶
融物にヒドロキシル基含有(メタ)アクリレート
(C)を混合する。次いでポリイソシアネート化合物
(B)を徐々に添加し、そしてその反応温度を少なく
とも約125℃まで上昇させる。次いで反応混合物
を実質的に全てのイソシアネート基が反応してし
まうまでこの温度に保つ。反応混合物中に溶剤あ
るいは重合性二重結合を有する化合物を使用する
場合、全ての成分はこの溶剤あるいは重合性二重
結合を有する化合物中に添加され、そして生じた
反応混合物を反応が完結するまで約50℃ないし約
85℃の温度に加熱する。実際に使用する温度は使
用する反応試剤、反応時間およびこれに類するも
のに応じて変化することが可能である。 本発明で用いる重合性二重結合を有する化合物
〔〕は(メタ)アクリルウレタン樹脂〔〕と
共重合し得る不飽和基を有する単量体であつて、
好ましいものは、水酸基を有する(メタ)アクリ
ル酸エステルである。更に好ましいものとして
は、2−ヒドロキシエチルアクリレート、2−ヒ
ドロキシエチルメタクリレート、2−ヒドロキシ
プロピルアクリレート、2−ヒドロキシプロピル
メタクリレート、3−クロロ−2−ヒドロキシプ
ロピルアクリレート、3−クロロ−2−ヒドロキ
シプロピルメタクリレート、ジプロピレングリコ
ールモノアクリレート、ジプロピレングリコール
モノメタクリレート、ジエチレングリコールモノ
アクリレート、ジエチレングリコールモノメタク
リレート、トリメチロールプロパンモノアクリレ
ート、トリメチロールプロパンモノメタクリレー
ト、ペンタエリスリトールモノアクリレート、ペ
ンタエリスリトールジアクリレートおよびペンタ
エリスリトールジメタクリレートを挙げることが
できる。これらは単独でもあるいは2種以上の混
合物の形でも使用することができる。 本発明で用いる重合性二重結合を有する化合物
〔〕は、その使用量の一部を水酸基を有しない
(メタ)アクリル酸エステルあるいは一般に使用
される通常の溶媒でおきかえることもできる。 本発明で用いる重合性二重結合を有する化合物
〔〕の使用量は、樹脂〔〕と重合性二重結合
を有する化合物〔〕との重量比が好ましくは
30:70〜95:5、より好ましくは60:40〜80:20
となるような量である。 本発明において非吸収性の極性表面とは表面が
金属結合、イオン結合、配位結合、及び極性結合
等を有する非吸収性の表面であり、このような表
面に対し本発明に係る組成物はすぐれた密着性を
発現する。特に金属面、印刷インキ面、ガラス
面、及び極性プラスチツク面、たとえばポリ塩化
ビニル、ポリスチレン、エポキシ樹脂、ポリエス
テル、ポリアクリロニトリル、酸化処理したポリ
エチレン、酸化処理したポリプロピレン、尿素樹
脂、メラミン樹脂、フエノール樹脂、ケトン樹脂
等のホルマリン樹脂、ウレタン樹脂、アクリル樹
脂、ポリビニルエステル、セロハン等の加工セル
ロース樹脂、ポリビニルアルコール、ポリビニル
アセタール樹脂、ポリビニルエーテル、ポリアミ
ド樹脂等々のプラスチツク面を挙げることができ
る。 以下に製造例、実施例により本発明を更に詳し
く具体的に説明する。例中の部は全て重量部であ
る。 製造例 1 ビスフエノールAの酸化プロピレン2モル付加
物2.0モル、無水マレイン酸1.01モルをフラスコ
に仕込みN2を吹きこみながら220℃にて酸価が8
以下になるまで反応させた後、ハイドロキノンを
全仕入量0.05重量%(0.40部、0.0037モル)添加
しポリエステルグリコールを調製した。更にこの
ポリエステルグリコールを100℃まで冷却し、2
−ヒドロキシエチルアクリレート(以下HEAを
略記する)2.02モルを混合後95℃に保ちながら減
圧にて脱水を行ない、水分含量を0.07重量%以下
にした。脱水後75℃まで冷却し、空気を吹き込み
ながらトリレンジイソシアネート(以下TDIと略
記する)2.0モルを徐々に滴下し、45分間、75℃
〜115℃の範囲で反応させ、更に125℃〜128℃に
て4時間熟成し、残存NCO%が0.1重量%になる
ようにした。このようにして淡黄色透明固体のア
クリルウレタン樹脂を得た。酸価(AV)=4.9、
水酸基価(OHV)=21.0、NCO%(重量)=
0.08。 製造例 2 製造例1におけるビスフエノールAの酸化プロ
ピレン2モル付加物の代りにビスフエノールAの
酸化プロピレン4モル付加物を用い、他は全く製
造例1と同様にして反応させ、淡黄色透明固体の
アクリルウレタン樹脂を得た。AV=6.0、OHV
=12.1、NCO%=0.1。 製造例 3 製造例1におけるHEAの代りに2−ヒドロキ
シエチルメタアクリレート(HEMA)を用い、
他は全く製造例1と同様にして、淡黄色透明固体
のメタアクリルウレタン樹脂を得た。AV=5.5、
OHV=20.3、NCO%=0.10。 製造例 4 製造例1において、ビスフエノールAの酸化プ
ロピレン2モル付加物の代りにビスフエノールA
の酸化エチレン8モル付加物を付加したものを用
い、他は全く製造例1と同様にして反応させ淡黄
色透明液状のアクリルウレタン樹脂を得た。AV
=7.3、OHV=14.3、NCO%=0.1。 製造例 5 製造例1におけるビスフエノールAの酸化プロ
ピレン2モル付加物の代りにビスフエノールAの
酸化プロピレン6モル付加物を用い、又、HEA
の代りにペンタエリスリトールリアクリレート
(PETA)を用い、他は全く製造例1と同様にし
て淡黄色透明液状のアクリルウレタン樹脂を得
た。AV=4.7、OHV=16.3、NCO%=0.1。 製造例 6 製造例1におけるビスフエノールAの酸化プロ
ピレン2モル付加物の代りにビスフエノールAの
酸化プロピレン6モル付加物を用いて製造したポ
リエステルグリコール1.05モル、HEA4.04モルを
フラスコに仕込み、95℃に保ちながら減圧にて水
分が0.07重量%以下になるまで脱水し、脱水後75
℃まで冷却した後空気を吹き込みながらトリメチ
ロールプロパンとヘキサメチレンジイソシアネー
トのアダクトポリイソシアネート〔75%酢酸エチ
ル溶液(商品名、コロネートHL、日本ポリウレ
タン株式会社製)として2016部〕2.0モルを徐々
に滴下し、75〜85℃の範囲で36分間反応させた。
次に125〜128℃にてコロネートHL中の酢酸エチ
ルを除去しながら4時間熟成しNCO%が0.1重量
%以下で反応の終点とした。更に減圧にして酢酸
エチルを除去し淡黄色透明液状のアクリルウレタ
ン樹脂を得た。AV=1.7、OHV=11.5、NCO%
=0.07。 製造例 7 フラスコにTDI1.0モル、ハイドロキノン0.15部
(0.0014モル)を仕込んで70℃迄昇温した、次に
空気を吹き込みながらHEA1.0モルを徐々に滴下
しながら70〜80℃にて1時間反応させた。更に80
℃にて1時間熟成し、NCO%が14.5重量%の未
端NCOのアクリルウレタンプレポリマーを調製
した。一方他のフラスコにビスフエノールAの酸
化プロピレン2モル付加物1.05モルを仕込み、95
℃に保ちながら50mmHgに減圧して水分が0.07重
量%以下になるまで脱水した。脱水後75℃まで冷
却し、空気を吹き込みながら先に調製した末端
NCOのアクリルウレタンプレポリマー2.0モルを
徐々に滴下しながら75〜115℃の範囲で1時間反
応させた。更に、125〜128℃にて4時間熟成し、
残在NCO%が0.1重量%以下になつたことを確認
し、淡黄色透明固体のアクリルウレタン樹脂を得
た。AV=1.4、OHV=20.5、NCO%=0.08。 製造例 8 ビスフエノールAの酸化プロピレン4モル付加
物1.0モルをフラスコに仕込み、95℃に保ちなが
ら50mmHgに減圧して水分が0.07重量%以下にな
るまで脱水した。脱水後75℃まで冷却し、空気を
吹き込みながら製造例7で調製した末端NCOの
アクリルウレタンプレポリマー2.0モルを徐々に
滴下しながら75〜115℃の範囲で1時間反応させ
た。更に125〜128℃にて4時間熟成し、残存
NCO%が0.1重量%以下になつたことを確認し、
淡黄色透明固体のアクリルウレタン樹脂を得た。 AV=1.3、OHV=32.9、NCO%=0.09 製造例 9 ビスフエノールAの酸化プロピレン2モル付加
物2.0モル、コハク酸1.0モルをN2気流中220℃に
て酸価が8以下になるまで反応させた後、ハイド
ロキノンを全仕込み量の0.05重量%(0.41部、
0.0037モル)添加し、ポリエステルグリコールを
調製した。更にこのポリエステルグリコールを
100℃まで冷却し、ヒドロキシプロピルアクリレ
ート(HPA)を2.02モル加え次に製造例1と全く
同じ物を用い、同じ操作により淡黄色透明固体の
アクリルウレタン樹脂を得た。AV=4.3、OHV
=6.7、NCO%=0.05。 製造例 10 製造例9におけるコハク酸の代りにアジピン酸
を用いるほかは全く同様にして淡黄色透明固体の
アクリルウレタン樹脂を得た。AV=4.2、OHV
=8.9、NCO%=0.04。 製造例 11 製造例9において調製したポリエステルグリコ
ール1.0モルを100℃まで冷却し、HEA9.0モルを
混合後95℃に保ちながら減圧脱水し、水分含量を
0.1重量%以下にした。脱水後75℃まで冷却し、
空気を吹き込みながらTDI2.55モルを徐々に滴下
し、75〜115℃の範囲で1時間反応させた後、125
℃にて5時間熟成し、残存NCO%が0.1重量%以
下にした。このようにして淡黄色透明液状のアク
リルウレタン樹脂を得た。AV=7.5、OHV=
157.6、NCO%=0.03。 製造例 12 シエル社製エポキシ樹脂エピコート1001(エポ
キシ当量471)942部(2エポキシ当量)、ハイド
ロキノン0.54部(0.0049モル)をフラスコ内で空
気の気流中110℃に加熱した。次にアクリル酸2.0
モルとDMP−30(トリジメチルアミノメチルフ
エノール、ロームアンドハース社製)5.4部
(0.020モル)を室温にて数分間混合したものを上
記エポキシ樹脂中にフラスコを冷却しながら徐々
に滴下しながら110〜120℃にて1時間反応させ
た。更に120℃で4時間熟成し、酸価が5以下で
あることを確認して淡黄色透明固体の樹脂を得
た。AV=5.5、オキシラン酸素%(重量)=
0.10。 製造例 13 シエル社製エポキシ樹脂エピコート828(エポ
キシ当量186)558部(3エポキシ当量)、ハイド
ロキノン0.39部(0.0035モル)、DMP−303.9部
(0.015モル)、アクリル酸216.3部(3.0モル)を用
い、製造例12と同じようにし酸価5以下であるこ
とを確認し、淡黄色透明の粘稠樹脂を得た。AV
=0.54、オキシラン酸素%(重量)=0.05。 製造例 14 フラスコにアクリル酸1.0モル、無水フタル酸
1.0モル、エピコート828(エポキシ当量186)
0.34モル、DMP30 1.7部(0.0064モル)およびハ
イドロキノン0.17部(0.0015モル)を仕込み、80
〜90℃にて撹拌しながらプロピレンオキサイド
1.8モルを徐々に滴下して反応させた。滴下終了
後、85〜90℃にて5時間熟成後、酸価が10以下に
なつたことを確認してから空気を吹き込みながら
未反応でのプロピレンオキサイドを徐去し淡黄色
透明粘稠なエポキシアクリレート樹脂を得た。
AV=9.1、OHV=117.6。 製造例 15 フラスコにHEA2モル、ハイドロキノン0.3部
(0.0027モル)を加え、空気を吹き込みながら85
℃まで昇温しTDI1モルを滴下しながら85〜90℃
にて30分反応させた。更に90℃にて5時間熟成
し、NCO%が0.4重量%以下の淡黄色透明なビニ
ルウレタン粘稠樹脂を得た。 AV=3.4、OHV=18.7、NCO%=0.29。 製造例 16 ペンタエリスリトールトリアクリレート2.0モ
ルとハイドロキノン0.38部(0.0035モル)をフラ
スコに仕込み空気を吹き込みながら、70℃まで昇
温し、その後、ヘキサメチレンジイソシアネート
1.0モルを徐々に滴下し、70〜90℃にて1時間で
滴下終了した。更に90℃にて7時間熟成し、淡黄
色透明粘稠なビニルウレタン樹脂を得た。AV=
3.2、OHV=64.5、NCO%=2.01。 製造例 17 フラスコにTDI1モル、ハイドロキノン0.15部
(0.0014モル)を仕込んで70℃迄昇温した。次に
空気を吹き込みながら、HEA1モルを徐々に滴下
しながら70〜80℃にて1時間反応させた。更に80
℃にて1時間熟成し、NCO%が14重量%の未端
NCOのビニルウレタンプレポリマーを調製し
た。このビニルウレタンプレポリマー0.75モルを
更に80℃に昇温した後、あらかじめ加熱熔融させ
たトリメチロールプロパン0.25モルを徐々に滴下
しながら80〜90℃にて30分間反応させた。更に、
110〜125℃にて3時間熟成し、NCO%が0.4重量
%以下になつたことを確認し、淡黄色透明なビニ
ルウレタン粘稠樹脂を得た。AV=1.5、OHV=
23.0、NCO%=0.37。 製造例 18 フラスコに、ポリエチレングリコール(分子量
400)1.0モル、ペンタエリスリトールトリアクリ
レート(PETA)2.0モルおよびハイドロキノン
0.67部(0.0061モル)を仕込み、空気を吹き込み
ながら120℃まで昇温した。次ぎにTDI 2.0モル
を徐々に滴下しながら120〜125℃にて1時間反応
させた後125℃にて5時間熟成しNCOが0.5重量
%以下になつたことを確認し、淡黄色透明粘稠な
ビニルウレタン樹脂を得た。AV=9.7、OHV=
25.7、NCO%=0.48。 製造例 19 製造例17で調製したビニルウレタンプレポリマ
ー2.0モルを空気を吹き込みながら80℃まで昇温
し、あらかじめ70℃に加熱しておいた末端水酸基
のポリ−1・4−ブタンジオールアジペート
(PBA、ニツポラン4009、日本ポリウレタン(株)
製)1.0モルを徐々に滴下し75〜90℃にて1時間
反応させた後、更に90℃にて1時間熟成しNCO
が0.3重量%以下になつたことを確認し、淡黄色
透明粘稠なビニルウレタン樹脂を得た。AV=
0.93、OHV=11.1、NCO%=0.28。 製造例 20 フラスコにアクリル酸1.5モル、無水フタル酸
1.5モル、ハイドロキノン0.35部(0.0032モル)、
DMP−303.5部(0.013モル)を仕込み80〜90℃に
て撹拌しながらプロピレンオキサイド5.4モルを
ゆつくり滴下し反応させた。滴下終了後、80℃に
て2時間熟成し、酸価が10以下になつたことを確
認した後、空気を吹き込みながら未反応のプロピ
レンオキサイドを除去し、末端に水酸基を有する
透明粘稠なポリエステルモノアクリレートを得
た。次いでこれを50℃まで冷却してからヘキサメ
チレンジイソシアネート0.3モルを徐々に滴下し
ながら50〜70℃に2時間反応させ、残存NCOが
0.1重量%以下になつたことを確認し淡黄色透明
粘稠なポリエステルウレタンアクリレート樹脂を
得た。AV=8.3、OHV=102.5、NCO%=0.08。 製造例 21 フラスコ中にビスフエノールAの酸化エチレン
2モル付加物1.0モル、ジメチルアミノエチルメ
タクリレート5部(0.032モル)、ブチルアクリレ
ート390部(3.05モル)を仕込み、反応温度を50
℃に維持しつつ窒素気流中にてヘキサメチレンジ
イソシアネート2.0モルを2時間にわたつて滴下
した。次いでHEA0.21モルを60℃で2時間にわ
たつて滴下し、滴下終了後70℃で3時間熟成した
淡黄色透明液状の樹脂を得た。 AV=0.48、OHV=1.3、NCO%=6.8。 実施例 1 第1表記載の樹脂成分とモノマー成分に増感剤
としてベンゾインイソブチルエーテル5部を加え
た樹脂組成物を酸化重合型インキ(紅、黒:いず
れも東華色素化学工業(株)製スーパーグロリア)を
印刷したアート紙上にバーコーターで5ミクロン
厚に塗布し、2KWの高圧水銀灯(日本電池株式
会社製)にて80mmの距離から所定時間紫外線を照
射して硬化させた。塗膜は完全に硬化しており、
塗布表面同士のブロツキングは起こさなかつた。
塗膜のセロテープ剥離試験および180゜折曲げ試
験の結果は第1表に示した通りである。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第1表に示
した。 尚、以下の第1表〜第9表記載の塗膜性能の評
価基準は次のとおりである。 1 鉛筆硬度:4B〜6Hの硬度の三菱ユニ鉛筆を
用いて塗膜を引つかき、キズの生成ない最高の
硬度で示した。 2 セロテープ剥離性:塗膜に25mm×25mm角にセ
ロテープ(積水化学製)を貼りつけ一瞬のうち
にセロテープをはがしたときの塗膜状態を次の
3段階基準で評価した。 3 全く異常なし 2 一部剥離する 1 完全に剥離する 3 クロスカツト(Xcut)剥離性:塗膜に1mm
間隔で縦、横各々11本の直線を基材表面に届く
まで切り、100個の正方形のゴバン目を作り、
この塗膜にセロテープ(積水化学製)を貼りつ
け、一瞬のうちにセロテープをはがした時のは
がれずに残つた正方形の数を示した。 4 エリクセン試験:エリクセン押出試験器を用
い、わずかにヒビ割れが発生しはじめる時の押
出し深さを示した。 5 屈曲性:実施例1を除いて、折曲げ試験器を
用いた。塗膜面を外側にして曲げの曲率半径2
mm、曲げ角度180゜における塗膜状態を下記の
3段階基準で評価した。実施例1の場合は、塗
膜面を外側にして、完全に180゜折り曲げ、そ
の時の塗膜状態を次の3段階基準で評価した。 3 全く異常なし 2 一部ヒビ割れが発生 1 全体にヒビ割れが発生
The present invention cures and crosslinks extremely quickly by irradiation with active energy rays, particularly ultraviolet rays or ionizing radiation, and forms a cured product with good mechanical properties and flexibility. The present invention relates to a coating resin composition capable of forming a coating film with excellent adhesion to materials. In recent years, from the standpoint of energy saving, labor saving, and environmental protection, the development of solvent-free resins that are cured by irradiation with active energy rays has become active, and some have reached the stage of practical use. Commonly used radically polymerizable compounds are mainly composed of appropriate combinations of oligomers, monomers, or prepolymers containing polymerizable unsaturated groups such as acryloyl groups, vinyl groups, acrylamide groups, and allyl groups. A photosensitizer is added. When these resin compositions are applied to a substrate and cured by irradiation with active energy rays, the curing speed and adhesion to the substrate are generally inversely proportional. In other words, if the curing speed is accelerated by increasing the concentration of unsaturated groups or the amount of photosensitizer in the resin composition, internal distortion will occur in the coating film, resulting in poor adhesion to the substrate and poor flexibility. Become. Conversely, if the concentration of unsaturated groups or the amount of photosensitizer is lowered, the adhesion will be improved, but the curing speed will be significantly slower (see JP-A-50-139189). Furthermore, as a matter of course, adhesion is significantly affected by the type of substrate, but in the prior art, adhesion has been applied to commercially available solvent-containing oxidative polymerization inks, metals (especially tinplate, aluminum, etc.), glass, and synthetic resins. On the other hand, very few coatings with excellent curability and adhesion have been found, and this has been a major obstacle to the practical application of active energy ray curable coatings. Therefore, the present inventors have discovered that by irradiating active energy rays, the ink, metal, etc.
In order to obtain a coating resin that has excellent adhesion to non-absorbent polar surfaces such as glass and synthetic resins, the present invention has been completed as a result of extensive research. That is, the present invention provides a substance obtained by reacting a polyoxyalkylene bisphenol A derivative (A) having a hydroxyl group at the end, a polyisocyanate compound (B), and a hydroxyl group-containing acrylate and/or methacrylate (C). A (meth)acrylic urethane resin [] having two or more acryloyl groups or methacryloyl groups (hereinafter referred to as (meth)acrylic group) in one molecule, and introduced into the (meth)acrylic urethane resin []. An active energy ray-curable compound with excellent adhesion to non-absorbing polar surfaces, which is characterized by containing as a main component a compound having a polymerizable double bond copolymerizable with the terminal unsaturated group. The present invention relates to a coating resin composition. Each of the resin components that can be used in the present invention will be explained in detail below. The polyoxyalkylene bisphenol A derivative (A) according to the present invention is polyoxyalkylene bisphenol A or a compound containing polyoxyalkylene bisphenol A in its chemical structural formula and having a hydroxyl group at the terminal. Polyoxyalkylene bisphenol A is obtained by reacting bisphenol A with alkylene oxide. Suitable alkylene oxides that can be used include, for example, ethylene oxide and propylene oxide. Preferred examples of polyoxyalkylene bisphenol A useful in the present invention are compounds represented by the following formula (a) or (b). (In the formula, R 1 is an alkylene group having 2 to 4 carbon atoms, X is a halogen or a methyl group, and a is 1
m and n are each integers at least equal to 1, the sum of which is about 2 to 8, preferably 2 to 6). The sum of m and n in the above formula (a) or (b) is determined from the number of moles of alkylene oxide reacted with the OH group of bisphenol A. As the amount of alkylene oxide used increases, the properties of the resin change and properties such as flexibility and elongation improve, but at the same time properties such as heat strain temperature and tensile strength decrease. Although it is possible to make resins from polyoxyalkylene bisphenols A where the sum of m and n equals a number greater than about 8, these resins are extremely soft and therefore do not fall within the scope of the preferred materials of this invention. The polyoxyalkylene bisphenol A derivative (A) having a terminal hydroxyl group in the present invention includes:
In addition to polyoxyalkylene bisphenol A represented by the above formula (a) or (b), polycarboxylic acid and/or
It also includes condensation reaction products of these acid anhydrides and the above polyoxyalkylene bisphenol A, and the reaction ratio of the acid component and the polyoxyalkylene bisphenol A component in the condensation reaction is the same as that of the polyoxyalkylene bisphenol A and the acid. The molar ratio with the components is 3:2 or more. Here, the acid anhydride corresponds to 2 moles of carboxyl groups. Here, if the ratio of polyoxyalkylene bisphenol A to the acid component is smaller than the above ratio, there is a drawback that the curing speed of the resin is slow and the resulting resin has poor coating film performance. Further, the condensation reaction product and the polyoxyalkylene bisphenol A
It is also possible to use a mixture of these in any proportion. The polycarboxylic acid or anhydride thereof used is preferably a dicarboxylic acid or anhydride thereof, such as malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, aliphatic saturated dibasic acids or saturated dibasic acid anhydrides, such as
Aliphatic unsaturated dibasic acids or unsaturated dibasic acid anhydrides such as maleic acid, maleic anhydride, fumaric acid, citraconic acid, and itaconic acid; aromatic acids such as phthalic acid, phthalic anhydride, isophthalic acid, and terephthalic acid; dibasic acids or aromatic dibasic acid anhydrides. In the production of the polyoxyalkylene bisphenol A derivative (A), in addition to the first acid component such as the dibasic acid and/or dibasic acid anhydride, a small amount of a second polycarboxylic acid such as trimellitic anhydride is added. It is possible to use This second acid can be of any type, aromatic or aliphatic, and can be either saturated or unsaturated. These acid components and polyoxyalkylene bisphenol A can be used alone or in combination of two or more. Representative examples of the polyisocyanate compound (B) used in the present invention include the following. Namely, tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,
4'-diisocyanate, naphthylene-1,5-diisocyanate, phenylene diisocyanate,
Xylylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane-4,4'-diisocyanate, hydrogenated tolylene diisocyanate, partially carbodiimidized diphenylmethane-4,4'-diisocyanate; or dimers of these above diisocyanates, or addition compounds of these above diisocyanates and active hydrogen compounds, i.e. ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, Adducts of the above diisocyanates with butanediol, 1,6-hexanediol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol, bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, etc. be. These polyisocyanate compounds can be used alone or in combination of two or more. The amount of polyisocyanate (B) used in the present invention is such that the number of isocyanate groups is 1.8 to 5, preferably 2.0 to 3.0 per OH group in the polyoxyalkylene bisphenol A derivative (A) used. This is the amount. Polyoxyalkylene bisphenol A
When the number of isocyanate groups in the polyisocyanate (B) is less than 1.8 per 1 OH group in the derivative (A), the viscosity of the resulting resin is too high, resulting in poor processability. be. On the other hand 5
It has been found that when the amount is greater than 1, no further improvement is seen in the coating film performance of the resulting resin. The hydroxyl group-containing (meth)acrylate (C) used in the present invention has the following general formula (c) -
Examples include compounds represented by (e). (In the formula, R 2 is an alkylene group having 2 to 10 carbon atoms,
R 3 is a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and p is 1 to 3
q is an integer from 1 to 3, r is an integer from 1 to 2
is an integer. ) These compounds can be obtained by known methods. The integer p in the above formula (c) is determined by the number of moles of alkylene oxide or glycol used per mole of acrylic acid or methacrylic acid. If more than about 3 moles of alkylene or glycol oxide is used, the resulting resin will have lower heat strain temperatures and reduced physical properties such as lower tensile strength and lower flexural strength. . Typical usable (meth)acrylates represented by the above general formula (c) include, for example, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, polyoxyethylene
(2) (meth)acrylate, polyoxyethylene (3)
(meth)acrylate, polyoxypropylene (2)
(meth)acrylate, polyoxypropylene (3)
Examples include (meth)acrylate. Also, (meta) represented by the above general formula (d) or (e)
Typical acrylate esters include:
Trimethylolethane mono(meth)acrylate, trimethylolethane di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol mono(meth)acrylate, pentaerythritol di(meth)acrylate Acrylate, pentaerythritol tri(meth)
Examples include acrylate, and other examples include glycerin mono(meth)acrylate and glycerin di(meth)acrylate. In addition, monoepoxy compounds such as (meth)acrylic acid adducts such as butyl glycidyl ether, acrylic glycidyl ether, phenyl glycidyl ether, and glycidyl (meth)acrylate can also be used. The above hydroxyl group-containing (meth)acrylate compound (C) can be used either as a single compound or as a mixture of two or more compounds. In the present invention, the amount of hydroxyl group-containing (meth)acrylate (C) used is c
mole, when the number of hydroxyl groups in this acrylate (C) is z, 1 mole of the polyoxyalkylene bisphenol A derivative (A) to be used (number of hydroxyl groups in 1 molecule x number) and polyisocyanate (B) It is generally expressed by the following formula based on the amount b moles used (the number y of NCO groups in one molecule). c≧(by-x)/z The (meth)acrylic urethane resin [] according to the present invention can be produced by a known method.
A typical production method is a one-stage reaction method or a two-stage reaction method in which two components are first reacted, and then the resulting prepolymer is reacted with a third component. This resin [] can be produced as a melt without using any solvent, or the reaction can be carried out with a suitable solvent or with a terminal unsaturated group introduced into the (meth)acrylic urethane resin []. It is also possible to carry out the reaction in the presence of a compound having a polymerizable double bond. In the one-stage reaction method, the polyoxyalkylene bisphenol A derivative (A) is first melted, and the hydroxyl group-containing (meth)acrylate is added to the melt.
Mix (C). Then polyisocyanate compound
(B) is added slowly and the reaction temperature is increased to at least about 125°C. The reaction mixture is then maintained at this temperature until substantially all the isocyanate groups have reacted. If a solvent or a compound containing polymerizable double bonds is used in the reaction mixture, all components are added to this solvent or compound containing polymerizable double bonds, and the resulting reaction mixture is heated until the reaction is complete. Approximately 50℃ or approx.
Heat to a temperature of 85 ° C. The actual temperature used can vary depending on the reaction reagents used, reaction time, and the like. The compound having a polymerizable double bond used in the present invention [] is a monomer having an unsaturated group that can be copolymerized with the (meth)acrylic urethane resin [],
Preferred are (meth)acrylic esters having a hydroxyl group. More preferred are 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl acrylate, 3-chloro-2-hydroxypropyl methacrylate, Mention may be made of dipropylene glycol monoacrylate, dipropylene glycol monomethacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, trimethylolpropane monoacrylate, trimethylolpropane monomethacrylate, pentaerythritol monoacrylate, pentaerythritol diacrylate and pentaerythritol dimethacrylate. can. These can be used alone or in the form of a mixture of two or more. A part of the amount of the compound having a polymerizable double bond used in the present invention [] can be replaced with a (meth)acrylic ester having no hydroxyl group or a commonly used solvent. The amount of the compound having a polymerizable double bond used in the present invention [ ] is preferably determined by the weight ratio of the resin [ ] and the compound having a polymerizable double bond [ ].
30:70-95:5, more preferably 60:40-80:20
The amount is such that In the present invention, a non-absorbing polar surface is a non-absorbing surface having metal bonds, ionic bonds, coordinate bonds, polar bonds, etc., and the composition according to the present invention is applied to such surfaces. Demonstrates excellent adhesion. In particular metal surfaces, printing ink surfaces, glass surfaces and polar plastic surfaces, such as polyvinyl chloride, polystyrene, epoxy resins, polyester, polyacrylonitrile, oxidized polyethylene, oxidized polypropylene, urea resins, melamine resins, phenolic resins, Examples include plastic surfaces such as formalin resins such as ketone resins, urethane resins, acrylic resins, polyvinyl esters, processed cellulose resins such as cellophane, polyvinyl alcohol, polyvinyl acetal resins, polyvinyl ethers, and polyamide resins. The present invention will be explained in more detail below using production examples and examples. All parts in the examples are parts by weight. Production example 1 2.0 mol of propylene oxide 2 mol adduct of bisphenol A and 1.01 mol of maleic anhydride were placed in a flask and heated to 220°C while blowing N 2 until the acid value reached 8.
After reacting until the following amount was reached, 0.05% by weight (0.40 parts, 0.0037 mol) of hydroquinone was added in total to prepare polyester glycol. Furthermore, this polyester glycol was cooled to 100℃, and
- After mixing 2.02 mol of hydroxyethyl acrylate (hereinafter abbreviated as HEA), dehydration was performed under reduced pressure while maintaining the temperature at 95°C to reduce the water content to 0.07% by weight or less. After dehydration, cool to 75℃, gradually add 2.0 mol of tolylene diisocyanate (hereinafter abbreviated as TDI) dropwise while blowing air, and heat at 75℃ for 45 minutes.
The reaction was carried out at a temperature of 115°C to 115°C, and further aged for 4 hours at 125°C to 128°C, so that the residual NCO% was 0.1% by weight. In this way, a pale yellow transparent solid acrylic urethane resin was obtained. Acid value (AV) = 4.9,
Hydroxyl value (OHV) = 21.0, NCO% (weight) =
0.08. Production Example 2 A 4 mole adduct of bisphenol A and propylene oxide was used instead of the 2 mole adduct of propylene oxide of bisphenol A in Production Example 1, and the reaction was carried out in the same manner as in Production Example 1, resulting in a pale yellow transparent solid. Acrylic urethane resin was obtained. AV = 6.0, OHV
= 12.1, NCO% = 0.1. Production Example 3 Using 2-hydroxyethyl methacrylate (HEMA) instead of HEA in Production Example 1,
Otherwise, a pale yellow transparent solid methacrylic urethane resin was obtained in the same manner as in Production Example 1. AV=5.5,
OHV=20.3, NCO%=0.10. Production Example 4 In Production Example 1, bisphenol A was used instead of the 2 mole adduct of propylene oxide of bisphenol A.
The reaction was carried out in the same manner as in Production Example 1 except that 8 moles of ethylene oxide adduct was added thereto, and an acrylic urethane resin in the form of a pale yellow transparent liquid was obtained. A.V.
= 7.3, OHV = 14.3, NCO% = 0.1. Production Example 5 A 6 mole adduct of bisphenol A and propylene oxide was used instead of the 2 mole adduct of bisphenol A and propylene oxide in Production Example 1, and HEA
A pale yellow transparent liquid acrylic urethane resin was obtained in the same manner as in Production Example 1 except that pentaerythritol acrylate (PETA) was used instead of PETA. AV=4.7, OHV=16.3, NCO%=0.1. Production Example 6 1.05 mol of polyester glycol and 4.04 mol of HEA, which were produced by using a 6 mol adduct of bisphenol A and propylene oxide instead of the 2 mol adduct of bisphenol A and propylene oxide in Production Example 1, were charged into a flask. Dehydrated under reduced pressure while keeping at ℃ until the water content becomes 0.07% by weight or less.
After cooling to ℃, 2.0 mol of an adduct polyisocyanate of trimethylolpropane and hexamethylene diisocyanate [2016 parts as a 75% ethyl acetate solution (trade name, Coronate HL, manufactured by Nippon Polyurethane Co., Ltd.)] was gradually added dropwise while blowing air. , and reacted for 36 minutes at a temperature ranging from 75 to 85°C.
Next, the mixture was aged at 125 to 128° C. for 4 hours while removing ethyl acetate in Coronate HL, and the reaction was terminated when NCO% was 0.1% by weight or less. Ethyl acetate was further removed under reduced pressure to obtain a pale yellow transparent liquid acrylic urethane resin. AV=1.7, OHV=11.5, NCO%
=0.07. Production Example 7 A flask was charged with 1.0 mole of TDI and 0.15 part (0.0014 mole) of hydroquinone and heated to 70°C. Next, 1.0 mole of HEA was gradually added dropwise while blowing air and heated at 70 to 80°C. Allowed time to react. 80 more
C. for 1 hour to prepare an acrylic urethane prepolymer with an unterminated NCO having an NCO% of 14.5% by weight. Meanwhile, in another flask, 1.05 mol of bisphenol A adduct with 2 mol of propylene oxide was charged, and 95
While maintaining the temperature at °C, the pressure was reduced to 50 mmHg and dehydration was performed until the water content was 0.07% by weight or less. After dehydration, cool to 75℃ and blow air into the terminal prepared earlier.
While gradually dropping 2.0 mol of NCO's acrylic urethane prepolymer, the mixture was reacted at a temperature of 75 to 115° C. for 1 hour. Furthermore, it is aged for 4 hours at 125-128℃,
It was confirmed that the residual NCO% was 0.1% by weight or less, and a pale yellow transparent solid acrylic urethane resin was obtained. AV=1.4, OHV=20.5, NCO%=0.08. Production Example 8 1.0 mole of an adduct of 4 moles of propylene oxide of bisphenol A was charged into a flask, and dehydrated under reduced pressure to 50 mmHg while maintaining the temperature at 95°C until the water content became 0.07% by weight or less. After dehydration, the mixture was cooled to 75°C, and while blowing air, 2.0 mol of the terminal NCO acrylic urethane prepolymer prepared in Production Example 7 was gradually added dropwise to react at a temperature of 75 to 115°C for 1 hour. Further aged at 125-128℃ for 4 hours, remaining
Confirm that NCO% is 0.1% by weight or less,
A pale yellow transparent solid acrylic urethane resin was obtained. AV = 1.3, OHV = 32.9, NCO% = 0.09 Production example 9 2.0 mol of propylene oxide adduct of bisphenol A with 2 mol of propylene oxide and 1.0 mol of succinic acid were reacted at 220°C in a N 2 stream until the acid value became 8 or less. After that, add hydroquinone to 0.05% by weight (0.41 parts,
0.0037 mol) was added to prepare polyester glycol. Furthermore, this polyester glycol
The mixture was cooled to 100° C., 2.02 mol of hydroxypropyl acrylate (HPA) was added, and then the same material as in Production Example 1 was used and the same procedure was performed to obtain a pale yellow transparent solid acrylic urethane resin. AV=4.3, OHV
= 6.7, NCO% = 0.05. Production Example 10 A pale yellow transparent solid acrylic urethane resin was obtained in exactly the same manner as in Production Example 9 except that adipic acid was used instead of succinic acid. AV=4.2, OHV
= 8.9, NCO% = 0.04. Production Example 11 1.0 mol of polyester glycol prepared in Production Example 9 was cooled to 100°C, mixed with 9.0 mol of HEA, and then dehydrated under reduced pressure while maintaining the temperature at 95°C to reduce the water content.
The content was set to 0.1% by weight or less. After dehydration, cool to 75℃,
2.55 mol of TDI was gradually added dropwise while blowing air, and after reacting for 1 hour in the range of 75 to 115°C,
The mixture was aged at ℃ for 5 hours, and the residual NCO% was reduced to 0.1% by weight or less. In this way, a pale yellow transparent liquid acrylic urethane resin was obtained. AV=7.5, OHV=
157.6, NCO%=0.03. Production Example 12 942 parts (2 epoxy equivalents) of epoxy resin Epicoat 1001 (epoxy equivalent: 471) manufactured by Ciel and 0.54 parts (0.0049 mol) of hydroquinone were heated to 110° C. in a stream of air in a flask. Then acrylic acid 2.0
A mixture of 5.4 parts (0.020 mol) of DMP-30 (tridimethylaminomethylphenol, manufactured by Rohm and Haas) at room temperature for several minutes was gradually added dropwise to the above epoxy resin while cooling the flask. The reaction was carried out at ~120°C for 1 hour. The mixture was further aged at 120° C. for 4 hours, and the acid value was confirmed to be 5 or less, yielding a light yellow transparent solid resin. AV = 5.5, oxirane oxygen % (weight) =
0.10. Production Example 13 Using 558 parts (3 epoxy equivalents) of epoxy resin Epicoat 828 (epoxy equivalent: 186) manufactured by Ciel, 0.39 parts (0.0035 mol) of hydroquinone, 303.9 parts (0.015 mol) of DMP-3, and 216.3 parts (3.0 mol) of acrylic acid. It was confirmed that the acid value was 5 or less in the same manner as in Production Example 12, and a pale yellow transparent viscous resin was obtained. A.V.
= 0.54, oxirane oxygen % (weight) = 0.05. Production example 14 1.0 mol of acrylic acid and phthalic anhydride in a flask
1.0 mol, Epicote 828 (epoxy equivalent weight 186)
80
Propylene oxide with stirring at ~90°C
1.8 mol was gradually added dropwise to react. After dropping, mature at 85-90°C for 5 hours, and after confirming that the acid value is below 10, unreacted propylene oxide is slowly removed while blowing air to form a pale yellow transparent viscous epoxy. An acrylate resin was obtained.
AV=9.1, OHV=117.6. Production example 15 Add 2 moles of HEA and 0.3 parts (0.0027 moles) of hydroquinone to a flask, and add 85% while blowing air.
Raise the temperature to 85-90℃ while dropping 1 mol of TDI.
The reaction was carried out for 30 minutes. The mixture was further aged at 90° C. for 5 hours to obtain a pale yellow transparent vinyl urethane viscous resin with an NCO% of 0.4% by weight or less. AV=3.4, OHV=18.7, NCO%=0.29. Production example 16 2.0 mol of pentaerythritol triacrylate and 0.38 part (0.0035 mol) of hydroquinone were placed in a flask and heated to 70°C while blowing air, and then hexamethylene diisocyanate was added.
1.0 mol was gradually added dropwise, and the addition was completed in 1 hour at 70 to 90°C. The mixture was further aged at 90°C for 7 hours to obtain a pale yellow transparent viscous vinyl urethane resin. AV=
3.2, OHV=64.5, NCO%=2.01. Production Example 17 A flask was charged with 1 mol of TDI and 0.15 parts (0.0014 mol) of hydroquinone, and the temperature was raised to 70°C. Next, while blowing air, 1 mol of HEA was gradually added dropwise to react at 70 to 80°C for 1 hour. 80 more
Aged for 1 hour at ℃ and finished with an NCO% of 14% by weight.
A vinyl urethane prepolymer of NCO was prepared. After 0.75 mol of this vinyl urethane prepolymer was further heated to 80°C, 0.25 mol of trimethylolpropane, which had been heated and melted in advance, was gradually added dropwise to react at 80 to 90°C for 30 minutes. Furthermore,
After aging at 110 to 125°C for 3 hours, it was confirmed that the NCO% was 0.4% by weight or less, and a pale yellow transparent vinyl urethane viscous resin was obtained. AV=1.5, OHV=
23.0, NCO%=0.37. Production example 18 In a flask, add polyethylene glycol (molecular weight
400) 1.0 mol, pentaerythritol triacrylate (PETA) 2.0 mol and hydroquinone
0.67 part (0.0061 mol) was charged, and the temperature was raised to 120°C while blowing air. Next, 2.0 mol of TDI was gradually added dropwise and reacted at 120 to 125℃ for 1 hour, and then aged at 125℃ for 5 hours, and it was confirmed that the NCO content was 0.5% by weight or less, and the mixture became pale yellow and transparent viscous. A vinyl urethane resin was obtained. AV=9.7, OHV=
25.7, NCO% = 0.48. Production Example 19 2.0 mol of the vinyl urethane prepolymer prepared in Production Example 17 was heated to 80°C while blowing air, and poly-1,4-butanediol adipate (PBA) with terminal hydroxyl groups was heated to 70°C in advance. , Nipporan 4009, Nippon Polyurethane Co., Ltd.
After gradually dropping 1.0 mol of NCO
It was confirmed that the amount was 0.3% by weight or less, and a pale yellow transparent viscous vinyl urethane resin was obtained. AV=
0.93, OHV=11.1, NCO%=0.28. Production example 20 1.5 mol of acrylic acid and phthalic anhydride in a flask
1.5 mol, hydroquinone 0.35 part (0.0032 mol),
3.5 parts (0.013 mol) of DMP-3 was charged, and 5.4 mol of propylene oxide was slowly added dropwise while stirring at 80 to 90°C to cause a reaction. After dropping, it was aged at 80°C for 2 hours, and after confirming that the acid value was below 10, unreacted propylene oxide was removed while blowing air, resulting in a transparent viscous polyester with hydroxyl groups at the end. Monoacrylate was obtained. Next, this was cooled to 50°C, and 0.3 mol of hexamethylene diisocyanate was gradually added dropwise to react at 50 to 70°C for 2 hours to remove residual NCO.
It was confirmed that the concentration was 0.1% by weight or less, and a pale yellow transparent viscous polyester urethane acrylate resin was obtained. AV = 8.3, OHV = 102.5, NCO% = 0.08. Production Example 21 1.0 mol of bisphenol A 2 mol ethylene oxide adduct, 5 parts (0.032 mol) of dimethylaminoethyl methacrylate, and 390 parts (3.05 mol) of butyl acrylate were placed in a flask, and the reaction temperature was set to 50 mol.
While maintaining the temperature at °C, 2.0 mol of hexamethylene diisocyanate was added dropwise over 2 hours in a nitrogen stream. Next, 0.21 mol of HEA was added dropwise at 60°C over 2 hours, and after the dropwise addition was completed, a pale yellow transparent liquid resin was obtained which was aged at 70°C for 3 hours. AV = 0.48, OHV = 1.3, NCO% = 6.8. Example 1 A resin composition prepared by adding 5 parts of benzoin isobutyl ether as a sensitizer to the resin components and monomer components listed in Table 1 was used as an oxidative polymerization type ink (red, black: both manufactured by Toka Shiki Kagaku Kogyo Co., Ltd.). Gloria) was coated on art paper with a thickness of 5 microns using a bar coater, and cured by irradiating it with ultraviolet rays from a distance of 80 mm for a predetermined period of time using a 2KW high-pressure mercury lamp (manufactured by Nippon Battery Co., Ltd.). The paint film is completely cured,
No blocking occurred between coated surfaces.
The results of the Sellotape peel test and 180° bending test of the coating film are shown in Table 1. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 1. The evaluation criteria for the coating film performance described in Tables 1 to 9 below are as follows. 1 Pencil hardness: The coating film was drawn using a Mitsubishi Uni-pencil with a hardness of 4B to 6H, and the highest hardness without scratches was indicated. 2 Sellotape removability: Sellotape (manufactured by Sekisui Chemical Co., Ltd.) was attached to a 25 mm x 25 mm square on the paint film, and the sellotape was instantly removed. The condition of the paint film was evaluated using the following 3-level criteria. 3 No abnormality at all 2 Partial peeling 1 Complete peeling 3 Cross cut (Xcut) removability: 1 mm on the coating film
Cut 11 straight lines vertically and horizontally at intervals until they reach the surface of the base material, creating 100 square gobbins.
Sellotape (manufactured by Sekisui Chemical Co., Ltd.) was applied to this coating, and the number of squares that remained without being peeled off when the sellotape was instantly removed was shown. 4. Erichsen test: Using an Erichsen extrusion tester, the extrusion depth at which slight cracking begins to occur is shown. 5 Flexibility: Except for Example 1, a bending tester was used. Curvature radius of bending with the coating surface outside 2
The condition of the coating film at a bending angle of 180° was evaluated using the following three-level criteria. In the case of Example 1, the film was bent completely 180° with the coated surface facing outward, and the state of the coated film at that time was evaluated using the following three-level criteria. 3 No abnormality at all 2 Partial cracks 1 Cracks all over

【表】 実施例 2 実施例1における酸化重合型インキを印刷した
アート紙の代りに基材として酸化重合型インキ
(紅:東華色素化学工業(株)製スーパーグロリアSG
−G紅A−31)を印刷したブリキ板を用い、他は
全く実施例1と同様にして鉛筆硬度、セロテープ
剥離性、エリクセンおよび屈曲性を評価した。樹
脂組成物および試験結果は第2表に示した通りで
ある。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第2表に示
した。
[Table] Example 2 In place of the art paper printed with the oxidation polymerization ink in Example 1, an oxidation polymerization ink (red: Super Gloria SG manufactured by Toka Shiki Kagaku Kogyo Co., Ltd.) was used as a base material.
-G Red A-31) was used to evaluate pencil hardness, cellophane removability, Erichsen and bending properties in the same manner as in Example 1, except that the tin plate was printed with A-G Red A-31). The resin composition and test results are shown in Table 2. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 2.

【表】 実施例 3 実施例1における酸化重合型インキを印刷した
アート紙の代りに基材としてアセトン処理したブ
リキ板(大佑機材製JIS G−3303(SPTE))を
用い、他は全く実施例1と同様にして鉛筆硬度
(三菱鉛筆「ユニ」使用)、セロテープ剥離性、ク
ロスカツト剥離性、エリクセンおよび屈曲性を評
価した。樹脂組成物および試験結果は第3表に示
した通りである。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第3表に示
した。
[Table] Example 3 An acetone-treated tin plate (JIS G-3303 (SPTE) manufactured by Daiyu Kiwaki Co., Ltd.) was used as the base material instead of the art paper printed with the oxidative polymerization type ink in Example 1, and the other examples were completely the same. Pencil hardness (using Mitsubishi Pencil "UNI"), sellotape removability, cross-cut removability, Erichsen and flexibility were evaluated in the same manner as in Example 1. The resin composition and test results are shown in Table 3. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 3.

【表】 実施例 4 実施例3におけるアセトン処理したブリキ板の
代りに、基材としてアセトン処理したアルミニウ
ム板(大佑機材製JIS H−4000(A1050P))を用
い、他は全く実施例3と同様にして鉛筆硬度、セ
ロテープ剥離性、クロスカツト剥離性およびエリ
クセンを評価した。樹脂組成物および試験結果は
第4表に示した通りである。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第4表に示
した。
[Table] Example 4 Instead of the acetone-treated tin plate in Example 3, an acetone-treated aluminum plate (JIS H-4000 (A1050P) manufactured by Daisuke Kizai Co., Ltd.) was used as the base material, and the rest was exactly the same as in Example 3. Pencil hardness, Sellotape releasability, cross-cut releasability and Erichsen were evaluated. The resin composition and test results are shown in Table 4. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 4.

【表】 実施例 5 実施例3におけるアセトン処理したブリキ板の
代りに基材としてアセトン処理した普通板ガラス
(JIS R−3201)を用い、他は全く実施例3と同
様にして鉛筆硬度、セロテープ剥離性およびクロ
スカツト剥離性を評価した。樹脂組成物および試
験結果は第5表に示した通りである。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第5表に示
した。
[Table] Example 5 Acetone-treated ordinary plate glass (JIS R-3201) was used as the base material instead of the acetone-treated tin plate in Example 3, and the pencil hardness and sellotape peeling were conducted in the same manner as in Example 3. The cross-cut releasability and cross-cut releasability were evaluated. The resin composition and test results are shown in Table 5. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 5.

【表】 実施例 6 実施例3におけるアセトン処理したブリキ板の
代りに基材として中性洗剤(花王石鹸(株)製フアミ
リー)で洗浄した各種合成樹脂板を用い他は全く
実施例3と同様にして鉛筆硬度、セロテープ剥離
性およびクロスカツト剥離性を評価した。樹脂組
成物および試験結果は第6表に示した通りであ
る。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第6表に示
した。
[Table] Example 6 In place of the acetone-treated tin plate in Example 3, various synthetic resin plates washed with a neutral detergent (Family manufactured by Kao Soap Co., Ltd.) were used as the base material, and the rest was completely the same as in Example 3. Pencil hardness, Sellotape releasability and cross-cut releasability were evaluated. The resin compositions and test results are shown in Table 6. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 6.

【表】 実施例 7 第7表記載の樹脂成分とモノマー成分からなる
樹脂組成物をアセトン処理したブリキ板(大佑機
材製JIS G−3303(SPTE))上にバーコーター
で6ミクロン厚に塗布し、室温において加速電圧
300KV、線量率30Mrad/秒なる条件で電子線を
5Mrad照射したところ塗膜は完全に硬化した。得
られた塗膜について鉛筆硬度、セロテープ剥離、
クロスカツト剥離性、エリクセンおよび屈曲性を
評価した。樹脂組成物および試験結果は第7表に
示した通りである。 なお、比較のために本発明品以外の樹脂組成物
についても同様に試験し、その結果も第7表に示
した。
[Table] Example 7 A resin composition consisting of the resin components and monomer components listed in Table 7 was coated with a bar coater to a thickness of 6 microns on an acetone-treated tin plate (JIS G-3303 (SPTE) manufactured by Daisuke Kizai Co., Ltd.). , accelerating voltage at room temperature
Electron beam at 300KV and dose rate 30Mrad/sec.
When irradiated with 5 Mrad, the coating was completely cured. Pencil hardness, Sellotape peeling,
Cross-cut peelability, Erichsen and bendability were evaluated. The resin compositions and test results are shown in Table 7. For comparison, resin compositions other than those of the present invention were also tested in the same manner, and the results are also shown in Table 7.

【表】 実施例 8 実施例7におけるアセトン処理したブリキ板の
代りに基材としてアセトン処理した普通ガラス板
(JIS R−3201)を用い、他は全く実施例7と同
様にして、鉛筆硬度、セロテープ剥離性およびク
ロスカツト剥離性を評価した。樹脂組成物および
試験結果は第8表に示した通りである。 なお、比較のために、本発明品以外の樹脂組成
物についても同様に試験し、その結果も第8表に
示した。
[Table] Example 8 An acetone-treated ordinary glass plate (JIS R-3201) was used as the base material instead of the acetone-treated tin plate in Example 7, and the other things were the same as in Example 7, and the pencil hardness, Sellotape removability and cross-cut removability were evaluated. The resin compositions and test results are shown in Table 8. For comparison, resin compositions other than those of the present invention were similarly tested, and the results are also shown in Table 8.

【表】 実施例 9 基材への密着性に及ぼす基材表面の吸収性の影
響を調べた。非吸収性基材として、実施例3のア
セトン処理ブリキ板と実施例5のアセトン処理普
通板ガラスを用い、吸収性基材としてアート紙と
木質基板を用い、他は全く実施例3と同様にして
試験しクロスカツト剥離性あるいはセロテープ剥
離性を評価した。樹脂組成物および試験結果は第
9表に示した通りである。 なお、比較のために、本発明品以外の樹脂組成
物についても同様に試験し、その結果も第9表に
示した。第9表から明らかな様に密着性は基材表
面の吸収性によつて著しく影響されること、およ
び本発明の樹脂組成物は、特に非吸収性基材に対
して著しく密着性の優れていることがわかる。
[Table] Example 9 The influence of the absorbency of the substrate surface on the adhesion to the substrate was investigated. The acetone-treated tin plate of Example 3 and the acetone-treated plain glass of Example 5 were used as the non-absorbent substrates, and art paper and wood substrate were used as the absorbent substrates, but otherwise the procedure was the same as in Example 3. Tests were conducted to evaluate cross-cut releasability or sellotape releasability. The resin compositions and test results are shown in Table 9. For comparison, resin compositions other than those of the present invention were similarly tested, and the results are also shown in Table 9. As is clear from Table 9, adhesion is significantly affected by the absorbency of the substrate surface, and the resin composition of the present invention has particularly excellent adhesion to non-absorbent substrates. I know that there is.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 次式 または (式中R1は炭素数2乃至4のアルキレン基、Xは
ハロゲン又はメチル基であり、aは1ないし2の
整数であり、mおよびnはそれぞれ少なくとも1
である整数であつて、m+nは2ないし8の整数
である。) で表わされる化合物、及びこれらの化合物とポリ
カルボン酸又はその無水物との縮合反応生成物で
あつて末端ヒドロキシル基を有する化合物からな
る群から選ばれるポリオキシアルキレンビスフエ
ノールA誘導体(A)とポリイソシアネート(B)とヒド
ロキシル基含有アクリレート及び/又はメタクリ
レート(C)との反応によつて得られる(メタ)アク
リルウレタン樹脂〔〕及び該(メタ)アクリル
ウレタン樹脂〔〕中に導入された末端の不飽和
基と共重合可能な水酸基を有する(メタ)アクリ
レート〔〕を主成分として含有する非吸収性の
極性表面に対する密着性のすぐれた活性エネルギ
ー線硬化性被覆用樹脂組成物。 2 式(イ)又は(ロ)で表わされる化合物において、ア
ルキレン基R1がプロピレン基又はエチレン基で
ある特許請求の範囲第1項記載の活性エネルギー
線硬化性被覆用樹脂組成物。 3 ポリカルボン酸又はその無水物が、ジカルボ
ン酸又はジカルボン酸無水物である特許請求の範
囲第1項記載の活性エネルギー線硬化性被覆用樹
脂組成物。 4 式(イ)又は(ロ)で表わされる化合物において、m
+nが2乃至6である特許請求の範囲第1項記載
の活性エネルギー線硬化性被覆用樹脂組成物。 5 ポリオキシアルキレンビスフエノールA誘導
体(A)が式(イ)又は(ロ)で表わされる化合物とポリカル
ボン酸とをモル比3対2以上で縮合反応させて得
られるエステルである特許請求の範囲第1項記載
の活性エネルギー線硬化性被覆用樹脂組成物。 6 ポリイソシアネート(B)がトリレンジイソシア
ネート、ジフエニルメタン−4・4′−ジイソシア
ネート又はヘキサメチレンジイソシアネートであ
る特許請求の範囲第1項記載の活性エネルギー線
硬化性被覆用樹脂組成物。 7 ヒドロキシル基含有アクリレート又はメタク
リレート(C)が次式(ハ)〜(ホ)で表わされる化合物から
選ばれる特許請求の範囲第1項記載の活性エネル
ギー線硬化性被覆用樹脂組成物。 (式中R2は炭素数2乃至10のアルキレン基、R3
水素原子又はメチル基、R4は水素原子又は炭素
数1乃至6の炭化水素基、pは1乃至3の整数、
qは1乃至3の整数、rは1乃至2の整数であ
る。) 8 (メタ)アクリルウレタン樹脂〔〕が、ポ
リイソシアネート(B)のイソシアネート基とポリオ
キシアルキレンビスフエノールA誘導体(A)のヒド
ロキシル基との比が1.8乃至5であり、且つヒド
ロキシル基含有アクリレート及び/又はメタクリ
レート(C)がポリオキシアルキレンビスフエノール
A誘導体(A)1モルに対して次式 c≧(by−x)/z (式中cはヒドロキシル基含有アクリレート及
び/又はメタクリレート(C)のモル数、zはヒドロ
キシル基含有アクリレート及び/又はメタクリレ
ート(c)のヒドロキシル基の数、bはポリイソシア
ネート(B)のモル数、yはポリイソシアネート(B)が
1分子中に有するイソシアネート基の数、xはポ
リオキシアルキレンビスフエノールA誘導体(A)の
1分子中のヒドロキシル基の数を表わす。) に従がうような量で反応して得られるものである
特許請求の範囲第1項記載の活性エネルギー線硬
化性被覆用樹脂組成物。 9 (メタ)アクリルウレタン樹脂〔〕と水酸
基を有する(メタ)アクリレート〔〕との重量
比が30対70ないし95対5である特許請求の範囲第
1項記載の活性エネルギー線硬化性被覆用樹脂組
成物。 10 非吸収性の極性表面がインク面、ガラス
面、金属面、又は極性プラスチツク面である特許
請求の範囲第1項記載の活性エネルギー線硬化性
被覆用樹脂組成物。 11 ジカルボン酸がマロン酸、コハク酸、グル
タル酸、アジピン酸、ピメリン酸、スベリン酸、
アゼライン酸、セバシン酸、マレイン酸、フマル
酸、シトラコン酸、イタコン酸、フタル酸、イソ
フタル酸、テレフタル酸からなる群から選ばれる
化合物である特許請求の範囲第3項記載の活性エ
ネルギー線硬化性被覆用樹脂組成物。 12 ヒドロキシル基含有アクリレート又はメタ
クリレート(C)が、ヒドロキシエチルアクリレー
ト、ヒドロキシエチルメタクリレート、ヒドロキ
シプロピルアクリレート、ヒドロキシプロピルメ
タクリレート、トリメチロールプロパンジアクリ
レート、トリメチロールプロパンジメタクリレー
ト、ペンタエリストリトールトリアクリレート、
ペンタエリストリトールトリメタクリレートから
なる群から選ばれる化合物である特許請求の範囲
第7項記載の活性エネルギー線硬化性被覆用樹脂
組成物。 13 (メタ)アクリルウレタン樹脂〔〕中に
導入された末端の不飽和基と共重合可能な水酸基
を有する(メタ)アクリレート〔〕が2−ヒド
ロキシエチルアクリレート、2−ヒドロキシエチ
ルメタクリレート、2−ヒドロキシプロピルアク
リレート、2−ヒドロキシプロピルメタクリレー
ト、3−クロロ−2−ヒドロキシプロピルアクリ
レート、3−クロロ−2−ヒドロキシプロピルメ
タクリレート、ジエチレングリコールモノアクリ
レート、ジエチレングリコールモノメタクリレー
ト、ジプロピレングリコールモノアクリレート、
ジプロピレングリコールモノメタクリレート、ト
リメチロールプロパンモノアクリレート、トリメ
チロールプロパンモノメタクリレート、ペンタエ
リストールモノアクリレート、ペンタエリスリト
ールモノメタクリレート、ペンタエリスリトール
ジアクリレート及びペンタエリストールジメタク
リレートからなる群から選ばれる化合物である特
許請求の範囲第1項記載の活性エネルギー線硬化
性被覆用樹脂組成物。 14 (メタ)アクリルウレタン樹脂〔〕と水
酸基を有する(メタ)アクリレート〔〕との重
量比が60対40ないし80対20である特許請求の範囲
第9項記載の活性エネルギー線硬化性被覆用樹脂
組成物。
[Claims] Linear formula or (In the formula, R 1 is an alkylene group having 2 to 4 carbon atoms, X is a halogen or methyl group, a is an integer of 1 to 2, and m and n are each at least 1
, where m+n is an integer from 2 to 8. ), and polyoxyalkylene bisphenol A derivatives (A) selected from the group consisting of compounds represented by the following: and compounds having terminal hydroxyl groups that are condensation reaction products of these compounds and polycarboxylic acids or their anhydrides; A (meth)acrylic urethane resin obtained by the reaction of polyisocyanate (B) with a hydroxyl group-containing acrylate and/or methacrylate (C) and a terminal end introduced into the (meth)acrylic urethane resin []. An active energy ray-curable coating resin composition containing as a main component a (meth)acrylate having a hydroxyl group copolymerizable with an unsaturated group and having excellent adhesion to a non-absorbing polar surface. 2. The active energy ray-curable coating resin composition according to claim 1, wherein in the compound represented by formula (a) or (b), the alkylene group R 1 is a propylene group or an ethylene group. 3. The active energy ray-curable coating resin composition according to claim 1, wherein the polycarboxylic acid or its anhydride is a dicarboxylic acid or a dicarboxylic acid anhydride. 4 In the compound represented by formula (a) or (b), m
The active energy ray-curable resin composition for coating according to claim 1, wherein +n is 2 to 6. 5 Claims in which the polyoxyalkylene bisphenol A derivative (A) is an ester obtained by a condensation reaction between a compound represented by formula (a) or (b) and a polycarboxylic acid at a molar ratio of 3 to 2 or more. 2. The active energy ray-curable coating resin composition according to item 1. 6. The active energy ray-curable resin composition for coating according to claim 1, wherein the polyisocyanate (B) is tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, or hexamethylene diisocyanate. 7. The active energy ray-curable coating resin composition according to claim 1, wherein the hydroxyl group-containing acrylate or methacrylate (C) is selected from compounds represented by the following formulas (c) to (v). (In the formula, R 2 is an alkylene group having 2 to 10 carbon atoms, R 3 is a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, p is an integer of 1 to 3,
q is an integer from 1 to 3, and r is an integer from 1 to 2. ) 8 The (meth)acrylic urethane resin [] has a ratio of the isocyanate group of the polyisocyanate (B) to the hydroxyl group of the polyoxyalkylene bisphenol A derivative (A) of 1.8 to 5, and contains a hydroxyl group-containing acrylate and / or methacrylate (C) per mole of polyoxyalkylene bisphenol A derivative (A) according to the following formula c≧(by-x)/z (where c is hydroxyl group-containing acrylate and/or methacrylate (C)) The number of moles, z is the number of hydroxyl groups in the hydroxyl group-containing acrylate and/or methacrylate (c), b is the number of moles of polyisocyanate (B), y is the number of isocyanate groups that polyisocyanate (B) has in one molecule , x represents the number of hydroxyl groups in one molecule of the polyoxyalkylene bisphenol A derivative (A). active energy ray-curable resin composition for coating. 9. Active energy ray-curable coating resin according to claim 1, wherein the weight ratio of (meth)acrylic urethane resin [] to (meth)acrylate having a hydroxyl group is from 30:70 to 95:5. Composition. 10. The active energy ray-curable coating resin composition according to claim 1, wherein the non-absorbing polar surface is an ink surface, a glass surface, a metal surface, or a polar plastic surface. 11 Dicarboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid,
The active energy ray-curable coating according to claim 3, which is a compound selected from the group consisting of azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, phthalic acid, isophthalic acid, and terephthalic acid. Resin composition for use. 12 Hydroxyl group-containing acrylate or methacrylate (C) is hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, pentaerythritol triacrylate,
The active energy ray-curable resin composition for coating according to claim 7, which is a compound selected from the group consisting of pentaerythritol trimethacrylate. 13 The (meth)acrylate [] having a hydroxyl group copolymerizable with the terminal unsaturated group introduced into the (meth)acrylic urethane resin [] is 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Acrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl acrylate, 3-chloro-2-hydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, dipropylene glycol monoacrylate,
A patent claim that is a compound selected from the group consisting of dipropylene glycol monomethacrylate, trimethylolpropane monoacrylate, trimethylolpropane monomethacrylate, pentaerythritol monoacrylate, pentaerythritol monomethacrylate, pentaerythritol diacrylate, and pentaerythritol dimethacrylate The active energy ray-curable resin composition for coating according to item 1. 14 Active energy ray-curable coating resin according to claim 9, wherein the weight ratio of (meth)acrylic urethane resin [] and (meth)acrylate [] having a hydroxyl group is from 60:40 to 80:20. Composition.
JP3698478A 1978-03-30 1978-03-30 Coating resin composition curable with actinic energy radiation Granted JPS54129034A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3698478A JPS54129034A (en) 1978-03-30 1978-03-30 Coating resin composition curable with actinic energy radiation
DE19792910714 DE2910714A1 (en) 1978-03-30 1979-03-19 Radiation-curable synthetic resin coating compsn. - with excellent adhesion to polar surfaces is based on acrylo-urethane! resin and hydroxy-alkyl acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3698478A JPS54129034A (en) 1978-03-30 1978-03-30 Coating resin composition curable with actinic energy radiation

Publications (2)

Publication Number Publication Date
JPS54129034A JPS54129034A (en) 1979-10-06
JPS6157875B2 true JPS6157875B2 (en) 1986-12-09

Family

ID=12485006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3698478A Granted JPS54129034A (en) 1978-03-30 1978-03-30 Coating resin composition curable with actinic energy radiation

Country Status (2)

Country Link
JP (1) JPS54129034A (en)
DE (1) DE2910714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341782U (en) * 1986-09-03 1988-03-18

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182830A (en) * 1978-07-24 1980-01-08 Ici Americas Inc. Vinyl ester urethanes
DE3200907A1 (en) * 1982-01-14 1983-07-21 Bayer Ag, 5090 Leverkusen RADIATION-curable aqueous binder emulsions
BR8303781A (en) * 1982-07-28 1984-04-24 Goodyear Tire & Rubber Unsaturated polyurethane and process for its production
JP3220221B2 (en) * 1992-04-20 2001-10-22 ジェイエスアール株式会社 Liquid curable resin composition
NL9201304A (en) * 1992-07-21 1994-02-16 Dsm Nv A method of producing a coated, three-dimensionally shaped object.
US7375144B2 (en) 2005-06-16 2008-05-20 Eastman Chemical Company Abrasion resistant coatings
CN116082944B (en) * 2023-02-23 2024-03-12 芜湖春风新材料有限公司 Dual UV (ultraviolet) curing coating with ultrahigh boiling resistance, and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341782U (en) * 1986-09-03 1988-03-18

Also Published As

Publication number Publication date
DE2910714A1 (en) 1979-10-11
JPS54129034A (en) 1979-10-06

Similar Documents

Publication Publication Date Title
JP2505559B2 (en) Radiation curable compositions based on unsaturated polyesters and compounds having at least two vinyl ether groups
JP2540708B2 (en) Radiation curable composition and method of use
US5616630A (en) Ester/urethane acrylate hybrid oligomers
JPS6049206B2 (en) Polymerizable prepolymer with excellent adhesion
JPS6241982B2 (en)
US4902727A (en) Compounds having a polymerizable acylurethane structure, and their production and process of using
JPH0724411A (en) Coating method using radioactive hardenable composition
JPS6116970A (en) Coating composition curable with active energy rays
JPS6157875B2 (en)
EP0264948B1 (en) Aromatic dicarboxylic acid diallyl ester derivative, prepolymer derived from the derivative and curable resin composition containing the derivative
JPH0748422A (en) Active energy ray-curable resin composition
JPS6146482B2 (en)
JPS6024825B2 (en) photosensitive adhesive composition
EP0177791B1 (en) Radiation curable primer coating compositions
JPH0473448B2 (en)
JP2842899B2 (en) Photocurable resin composition
JP3164004B2 (en) Active energy ray-curable resin composition
JPS5829814A (en) Polymerizable resin composition
JPS63142035A (en) Film for masking type
JP2765023B2 (en) Optical fiber coating resin composition
JPH0251517A (en) Preparation of laminate of steel sheet and film and adhesive composition
WO1998023683A1 (en) Radiation curable compositions based on unsaturated polyester, vinyl ether and urethane vinyl ether compounds
JPS6054351B2 (en) Active energy beam-curable resin composition for coating
JPH10507480A (en) Radiation curable coatings based on lignin derivatives
JPS6150113B2 (en)