JPS6157870A - Three-phase equivalent testing method of breaker - Google Patents

Three-phase equivalent testing method of breaker

Info

Publication number
JPS6157870A
JPS6157870A JP59179264A JP17926484A JPS6157870A JP S6157870 A JPS6157870 A JP S6157870A JP 59179264 A JP59179264 A JP 59179264A JP 17926484 A JP17926484 A JP 17926484A JP S6157870 A JPS6157870 A JP S6157870A
Authority
JP
Japan
Prior art keywords
phase
circuit
voltage
circuit breaker
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179264A
Other languages
Japanese (ja)
Inventor
Hiroshi Miura
宏 三浦
Shoji Yamashita
正二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59179264A priority Critical patent/JPS6157870A/en
Publication of JPS6157870A publication Critical patent/JPS6157870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To reduce the capacity of a voltage source for applying a recovery voltage and to eliminate the danger of the dielectric breakdown of a breaker to be tested by applying the high-voltage side voltage of a transformer to two break phases of the breaker to be tested with the opposite polarities, and testing the cutoff performance. CONSTITUTION:The breaker 5 to be tested and auxiliary breakers 7b and 7c are turned on and a three-phase short-circuit current is supplied from a three- phase short-circuit generator 4 to open the object breaker 5. Then, an arc begins to be generated between contactors and the 1st phase in which a current zero point is obtained firstly is cut off. Then, the 2nd and the 3rd phases are cut off at an electric angle 90 deg., and the auxiliary breakers 7b and 7c are turned off simultaneously with the cutoff of the 2nd phase, thereby disconnecting a current source circuit 6. A voltage source circuit 8, on the other hand, starts a three-point gap G by a starting device 13 which is operated with the signal of a current zero-point detecting device 12 to apply high voltages to the 2nd and the 3rd phases from a transformer T, thereby testing the 2nd and the 3rd phase cutoff performance.

Description

【発明の詳細な説明】 に電力系統に用いられる三相一括タンク形遮断器の短絡
試験において、遮断容量が試験設備能力を上回るため直
接試験ができない場合に適用する三相等価試験方法の改
良に関する。
[Detailed Description of the Invention] This invention relates to an improvement in a three-phase equivalent test method applied when a direct test cannot be performed because the breaking capacity exceeds the test equipment capacity in a short-circuit test of a three-phase bulk tank type circuit breaker used in an electric power system. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

系統の三相遮断は遮断器の開極後、まず1相が遮断し、
続いて2,3相が電気角で90°後に同時に遮断する形
で行われる。最初を第1相遮断といい、後を第2.第3
相遮断という。(以下第2゜第3相遮断を第2相遮断と
略記する。)従って三相遮断器の等価試験を行う時も、
第1相及び第2相双方の異る遮断現象に対して遮断性能
を検証する必要がある。
For three-phase shutdown of a system, after the circuit breaker is opened, one phase is shut off first,
Subsequently, the 2nd and 3rd phases are simultaneously cut off after 90 degrees in electrical angle. The first phase is called the first phase cutoff, and the second phase is called the second phase cutoff. Third
This is called phase cutoff. (Hereinafter, 2nd and 3rd phase interruption will be abbreviated as 2nd phase interruption.) Therefore, when performing an equivalence test on a three-phase circuit breaker,
It is necessary to verify the interruption performance for different interruption phenomena of both the first phase and the second phase.

三相一括タンク形遮断器は同一タンク内に近接して三相
の遮断部を配置するので、遮断時に遮断部相互間が影響
しあうと考えられる。このため、大電流遮断性能を検証
する時は三相等価試験を行わなければならない。
Since a three-phase bulk tank type circuit breaker has three phase cut-off parts arranged close to each other in the same tank, it is thought that the cut-off parts influence each other when shutting off. For this reason, a three-phase equivalent test must be performed when verifying large current interrupting performance.

従来の三相等価試験法を用いて、第2相遮断性能を検証
する場合、次のような問題点がある。すなわち従来の回
復電圧印加方法では第2相遮断後1相に電圧源電圧を印
加し、他相は電流源回復電圧を用いることにより、両相
の差電圧を規定の相間電圧に合せるものであった。この
ため片相の印加電圧が過大になる問題点があった。
When verifying the second phase interruption performance using the conventional three-phase equivalent test method, there are the following problems. In other words, in the conventional recovery voltage application method, the voltage source voltage is applied to one phase after the second phase is shut off, and the current source recovery voltage is used for the other phases to adjust the differential voltage between the two phases to the specified phase-to-phase voltage. Ta. Therefore, there was a problem in that the voltage applied to one phase was excessive.

また、遮断後の印加電圧がコンデンサを主とした電圧源
から供給されるため、商用周波回復電圧領域では直流と
して残り、実系統の回復電圧を再現しにくいという問題
点があった。
In addition, since the applied voltage after shutoff is supplied from a voltage source mainly composed of capacitors, it remains as a direct current in the commercial frequency recovery voltage region, making it difficult to reproduce the recovery voltage of the actual system.

上記の問題点につき現象例を用いて詳細に説明する。第
7図は系統の短絡事故遮断現象を示したものである。す
なわち実線エム、IB、IOは短絡事故中のA、B、C
相短絡電流であって、遮断器が三相とも同時に開極し、
各相の遮断部にアークが発生している状態である。三相
のうちアーク電流が最初に零点をむかえた相、図示では
人相の電流が遮断されて(イ)時刻において第1相遮断
が行われる。
The above problem will be explained in detail using a phenomenon example. Figure 7 shows a short-circuit failure phenomenon in the system. In other words, the solid lines M, IB, and IO are A, B, and C during the short circuit accident.
It is a phase short circuit current, and the circuit breaker opens on all three phases at the same time,
This is a state in which an arc is generated at the cutoff section of each phase. The current in the phase in which the arc current first reaches zero among the three phases, the human phase in the figure, is interrupted, and the first phase is interrupted at time (A).

人相の電流IAを遮断した直後、実線1で示すように商
用周波電圧の初期部に再起電圧をともなった回復電圧V
Aが立ち上る。その後、残りの2相には単相となった電
流が流れ続け、第1相遮断後電気角で90°の(CI)
時刻において第2相遮断が行われ、Voが逆向き位相で
立ち上るから、B及びC相それぞれの遮断部間には差電
圧がかかる。
Immediately after cutting off the human-phase current IA, a recovery voltage V with a restart voltage appears in the initial part of the commercial frequency voltage, as shown by solid line 1.
A stands up. After that, the single-phase current continues to flow through the remaining two phases, and after the first phase is cut off, the electrical angle (CI) is 90°.
Since the second phase cutoff is performed at the time and Vo rises in the opposite phase, a voltage difference is applied between the cutoff portions of the B and C phases.

ここで系統の線間電圧なEとし、非有効接地系168k
Vを例にとって、第1相、第2遮断時の回復電圧値を説
明すると、第1相遮断時に極間に現れとなり、第2相遮
断時に第2相及び第3相にそれ圧波高値が現れるから遮
断部の第2相、第3相間には166 X2=322(k
V)の相間再起電圧波高値がかかる。
Here, the line voltage of the system is E, and the non-effective grounding system is 168k.
Taking V as an example, to explain the recovery voltage value when the first phase and second phase are cut off, it appears between the poles when the first phase is cut off, and the pressure wave peak value appears in the second and third phases when the second phase is cut off. 166 X2 = 322 (k
V) is applied.

第8図は前述した従来の三相等価試験法の一例による遮
断現象を示したものである。第2相遮断後、B相に電圧
源電圧2′を印加し、C相は電流源回復電圧3′を印加
する。電圧の点線で示したものは第7図に系統の電圧軌
跡としてかいたものを等価試験との比較のため示したも
のである。この電圧印加法は電流源回復電圧の波高値が
、実情では30kV程度しか取れないために、B = 
168kVの場合を例にとれば波高値で約300kVも
の電圧源電圧印加を必要とする。
FIG. 8 shows an interruption phenomenon according to an example of the conventional three-phase equivalent test method described above. After the second phase is shut off, a voltage source voltage 2' is applied to the B phase, and a current source recovery voltage 3' is applied to the C phase. The voltage shown by the dotted line is the voltage trajectory of the system shown in FIG. 7 for comparison with the equivalent test. In this voltage application method, the peak value of the current source recovery voltage can only be about 30 kV in actual circumstances, so B =
Taking the case of 168 kV as an example, it is necessary to apply a voltage source voltage of approximately 300 kV at the peak value.

この結果、第2相遮断の対地印加条件を超過すると同時
に第1相遮断時に検証する極間印加条件(波高値288
kV )をも上回る苛酷な電圧をかけることになり、系
統の実情に台ないだけでなく供試器の絶縁破壊をまねく
危険性があった。
As a result, when the ground voltage application condition for second phase cutoff was exceeded, the voltage applied condition (peak value 288
This meant applying a severe voltage exceeding even 1,000 volts (kV), which not only undermined the actual status of the system but also risked dielectric breakdown of the equipment under test.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考慮してなされたもので、その目的
とするところは、回復電圧を印加する電圧源の容量を低
減することができ、かつ供試遮断器の絶縁破壊をまねく
おそれのない遮断器の三相等価試験方法を提供すること
にある。
The present invention has been made in consideration of the above points, and its purpose is to reduce the capacity of the voltage source that applies the recovery voltage, and to reduce the risk of dielectric breakdown of the circuit breaker under test. The purpose of the present invention is to provide a three-phase equivalent test method for circuit breakers.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明によれば、三相短絡
発電機の少なくとも2相にそれぞれ補助遮断器を挿入接
続した三相電流回路に、三相一括タンク形の供試遮断器
の片極を接続し、対向する極を短絡接地して、三相短絡
回路を構成する一方、高圧側の中間タップ付の変圧器の
高圧側巻線両端と中間タップ間それぞれに波形調整用コ
ンデンサと波形調整用抵抗を直列1;シて接続し、変圧
器の低圧側巻線には第2,3相遮断回復電圧と同期した
単相交流電源と三点ギャップとを直列接続して電圧源回
路を構成し、高圧側巻線の両端を供試遮断器と補助遮断
器の接続部に接続するとともに中間タップを接地して、
変圧器の高圧側巻線と供試遮断器の第2,3相に逆極性
で並列に接続し、三相短絡電流の第2,3相同時遮断後
に、電圧源回路の三点ギャップを始動させて、変圧器を
交流励磁することにより、変圧器の高圧側に発生する電
圧を供試遮断器の2遮断相に互いに逆極性となるように
印加して、第2,3相遮断性能の検証を行うことにより
、回復電圧を印加する電圧源の容量を低減することがで
き、かつ供試遮断器の絶縁破壊をまねくおそれのないこ
とを特徴とする。
To achieve this object, the present invention provides a three-phase current circuit in which auxiliary circuit breakers are inserted and connected to at least two phases of a three-phase short-circuit generator, and one pole of a three-phase collective tank-type test circuit breaker is connected to the three-phase current circuit. Connect the opposite poles and short-circuit and ground them to form a three-phase short circuit. On the other hand, connect waveform adjustment capacitors and waveform adjustment capacitors between both ends of the high-voltage side winding and the intermediate tap of a transformer with an intermediate tap on the high-voltage side. A voltage source circuit is constructed by connecting two resistors in series, and a single-phase AC power source synchronized with the second and third phase cut-off recovery voltages and a three-point gap connected in series to the low-voltage winding of the transformer. Then, connect both ends of the high-voltage side winding to the connection between the test circuit breaker and the auxiliary circuit breaker, and ground the intermediate tap.
Connect the high-voltage side winding of the transformer and the 2nd and 3rd phases of the test breaker in parallel with opposite polarity, and start the three-point gap of the voltage source circuit after simultaneously interrupting the 2nd and 3rd phases of the three-phase short circuit current. Then, by AC excitation of the transformer, the voltage generated on the high voltage side of the transformer is applied to the two breaking phases of the test circuit breaker so that they have opposite polarities, and the 2nd and 3rd phase breaking performance is evaluated. By performing the verification, the capacity of the voltage source that applies the recovery voltage can be reduced, and there is no risk of dielectric breakdown of the test circuit breaker.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の遮断器の三相等価試験方法の一実施例を第
1図及び第2図を参照して説明する。すなわち、三相短
終発電機4のA、B、C相を三相一括タンク形の供試遮
断器5の片側の極に接続し、これと対向した他側の極を
一括短絡接地して三相電流源回路6を構成する。そして
第2相遮断(前述したように第2,3相遮断を第2相遮
断と略記する)を行うB、C相には補助遮断器7b、7
cを接続する。
An embodiment of the three-phase equivalent test method for a circuit breaker according to the present invention will be described below with reference to FIGS. 1 and 2. That is, the A, B, and C phases of the three-phase short-terminus generator 4 are connected to one pole of a three-phase bulk tank-type test circuit breaker 5, and the opposite pole of the other side is collectively short-circuited and grounded. A phase current source circuit 6 is configured. Auxiliary circuit breakers 7b and 7 are used for the B and C phases to perform second phase shutoff (as mentioned above, the second and third phase shutoffs are abbreviated as second phase shutoff).
Connect c.

一方電圧源回路8は変圧器Tの端子9,1oを有する高
圧側巻線鼎に中間タップ11を設け、低圧側巻線乳に単
相交流電源ACと三点ギャップGを直列接続する。また
、高圧側巻線鼎の端子9,1゜と中間タップ11間に波
形調整用コンデンサCeと波形調整用R,eとを直列接
続してそれぞれ接続する。
On the other hand, in the voltage source circuit 8, an intermediate tap 11 is provided on the high voltage side winding having terminals 9 and 1o of the transformer T, and a single phase AC power supply AC and a three-point gap G are connected in series to the low voltage side winding. Further, a waveform adjusting capacitor Ce and a waveform adjusting capacitor R and e are connected in series between the terminals 9 and 1° of the high voltage side winding and the intermediate tap 11, respectively.

また変圧器Tの高圧側巻線鼎を電圧印加特性に合せて供
試遮断器5のB、C相間に接続する。さらに低圧側巻線
乳に単相交流電源ACと三点ギャップGとを直列接続す
る。三点ギャップGは例えばC相に設けられる電流零点
検出装置12と始動装置13とに接続されて電圧源回路
8が構成される。そして、電圧源回路8の単相交流電源
ACの励磁電圧を規定の相間電圧波高値が得られるよう
に設定する。また人相が第1相遮断、B、C相が第2,
3遮断となるように供試遮断器5の開極位相、アーク時
間を設定しておく。
Further, the high voltage side winding of the transformer T is connected between the B and C phases of the test circuit breaker 5 in accordance with the voltage application characteristics. Further, a single-phase alternating current power supply AC and a three-point gap G are connected in series to the low-voltage side winding milk. The three-point gap G is connected to, for example, a current zero point detection device 12 and a starter device 13 provided in the C phase, thereby forming a voltage source circuit 8. Then, the excitation voltage of the single-phase alternating current power supply AC of the voltage source circuit 8 is set so as to obtain a specified phase-to-phase voltage peak value. Also, the human phase is the first phase cutoff, the B and C phases are the second phase,
The opening phase and arcing time of the test circuit breaker 5 are set so that three interruptions occur.

このような回路において、その動作は供試遮断器、及び
補助遮断器7b、7cを投入してから三相短終発電機4
より三相短絡電流を供給し、供試遮断器4を開極させる
と、その接触子間でアークを引き始め、最初に電流零点
を迎える人相、すなわち第1相が遮断される。
In such a circuit, the operation is such that the test circuit breaker and the auxiliary circuit breakers 7b and 7c are turned on, and then the three-phase short-terminal generator 4 is turned on.
When a three-phase short-circuit current is supplied and the test circuit breaker 4 is opened, an arc begins to be drawn between the contacts, and the phase that reaches the current zero point first, that is, the first phase, is interrupted.

続いてB相、C相すなわち第2,3相が電気角で90°
後に遮断されるが、この$2相遮断と同時に補助遮断器
7b、 7cを遮断し、電流源回路6を切り離す。
Next, the B phase and C phase, that is, the second and third phases, are at 90° electrical angle.
Although it will be cut off later, the auxiliary circuit breakers 7b and 7c are cut off at the same time as this $2 phase cutoff, and the current source circuit 6 is cut off.

一方電圧源回路8は電流零点検出装置12の信号で動作
する始動装置13が三点ギャップGを始動して、第2相
遮断時にB、C相に変圧器Tがら電圧を印加する。
On the other hand, in the voltage source circuit 8, a starting device 13 operated by a signal from the current zero point detection device 12 starts the three-point gap G, and applies voltage to the B and C phases from the transformer T when the second phase is cut off.

そして第2図は本発明の遮断器の三相等価試験方法によ
り、三相一括タンク形の供試遮断器5の第2相遮断試験
を行った時の再起電圧波形を示したものである。電圧波
形V’B 、 ’V’oは電圧印加したB相、C相の回
復電圧の初期部分を測定したもので、規定の相間電圧波
高値をV’n 、 V’Oで1/2ずつうまく分散して
いることがわかる。また第1波の立ち上り部分も再起電
圧規格に適合している。
FIG. 2 shows the re-electromotive voltage waveform when the second phase breaking test of the three-phase bulk tank type test circuit breaker 5 was conducted using the three-phase equivalent test method for circuit breakers of the present invention. The voltage waveforms V'B and 'V'o are measured at the initial part of the recovery voltage of the B and C phases to which voltage is applied, and the specified phase-to-phase voltage peak value is halved by V'n and V'O. It can be seen that it is well distributed. The rising portion of the first wave also complies with the re-electromotive voltage standard.

上述した結果から明らかなように本発明の電圧源回路を
用いることにより、第2相遮断性能の検証を行う際、印
加電圧を2相へ均等に分担することが容易であること、
また回復電圧の再起電圧部分を規格通り発生させること
ができ、商用周波部分を作り出せるため系統の現象に近
い試験が可能であることがわかる。さらに定格電圧30
0kVまで広範な試験条件に適合させることを確認して
いる。
As is clear from the above results, by using the voltage source circuit of the present invention, it is easy to equally distribute the applied voltage to the two phases when verifying the second phase cutoff performance.
In addition, it is possible to generate the re-electromotive voltage part of the recovery voltage according to the specifications, and to generate the commercial frequency part, making it possible to perform tests that are similar to system phenomena. Furthermore, the rated voltage is 30
It has been confirmed that it is compatible with a wide range of test conditions down to 0kV.

次に本発明の第2の実施例を第3図を参照して説明する
。第1図と同一部分は同符号を付しである。第1図の電
流源回路6の人相に補助遮断器7aを接続し、電流重畳
電圧源回路15から第1相、すなわち人相にも電圧印加
することにより、第1相。
Next, a second embodiment of the present invention will be described with reference to FIG. The same parts as in FIG. 1 are given the same reference numerals. The auxiliary circuit breaker 7a is connected to the human phase of the current source circuit 6 in FIG. 1, and a voltage is applied from the current superimposed voltage source circuit 15 to the first phase, that is, the human phase.

第2相遮断性能検証を同時に行うことができる。Second phase cutoff performance verification can be performed at the same time.

なお電流重畳電圧源回路15の電流重畳電圧源装置16
は供試遮断器5の補助遮断器7a側の人相と、三相−指
摘地側との間に接続され、また電流重畳電圧源装置16
は三相一括接地された人相に装着された電流零点検出装
置17と接続される始動装置18によって始動されるよ
うに接続される。電流重畳電圧源装置16は図示しない
コンデンサを主体として構成される。この回路の動作は
第1相遮断と同時に補助遮断器7aを遮断して人相の電
流源回路6を切り離すとともに、電流零点検出装置17
により、始動装置18を動作させ、電流重畳電圧源装置
16を−   始動させる。
Note that the current superimposed voltage source device 16 of the current superimposed voltage source circuit 15
is connected between the human phase on the auxiliary circuit breaker 7a side of the test circuit breaker 5 and the three-phase - pointed-out side, and the current superimposed voltage source device 16
is connected so as to be started by a starter 18 connected to a current zero point detection device 17 attached to a human body whose three phases are collectively grounded. The current superimposed voltage source device 16 is mainly composed of a capacitor (not shown). The operation of this circuit is to cut off the auxiliary breaker 7a at the same time as the first phase is cut off to disconnect the human phase current source circuit 6, and also to cut off the current zero point detection device 17.
As a result, the starting device 18 is operated, and the current superimposed voltage source device 16 is started.

第4図は第3図の回路における遮断時の現象を示す線図
である。人相が(イ)時刻において遮断され再起電圧1
“が印加され、電気角90°遅れて、(ロ)時刻におい
て、B相、C相に互に逆極性の再起電圧2“、3“がそ
れぞれ印加される。
FIG. 4 is a diagram showing a phenomenon when the circuit of FIG. 3 is interrupted. The physiognomy is interrupted at (a) time and the restart voltage is 1
" is applied, and after a delay of 90 electrical degrees, at time (b), re-electromotive voltages 2" and 3" of opposite polarity are applied to the B and C phases, respectively.

次に本発明の第3の実施例を第5図を参照して説明する
。第1図と同一部分あるいは同一機能を有する部分は同
符号及び同記号を付しである。この実施例においては、
2台の特性がほぼ同一な変圧器TA 、TBを接続して
第1図におけるタップ付きの変圧器Tに相当させている
。すなわち、変圧器1人、TBの高圧巻線WH人、 W
HIIを並列接続して片側の端子9,10をそれぞれB
相、C相に接続するとともに、他方の端子11a、ll
bをそれぞれ接地する。。
Next, a third embodiment of the present invention will be described with reference to FIG. The same parts or parts having the same functions as those in FIG. 1 are given the same reference numerals and symbols. In this example,
Two transformers TA and TB having almost the same characteristics are connected to correspond to the tapped transformer T in FIG. That is, 1 transformer, TB high voltage winding WH person, W
Connect HII in parallel and connect terminals 9 and 10 on one side to B respectively.
phase, C phase, and the other terminal 11a, ll
Ground each b. .

また高圧側巻線WHA 、 WHBには波形調整用コン
デンサCeと波形調整用抵抗Reとを直接接続してそれ
ぞれに接続する。また低圧側巻線WLA 、 WLBを
並列に接続し、この並列接続した端子間に並列にリアク
トルLを接続し、一方の端子側にコンデンサCsを接続
し、このコンデンサ・C3にはスイッチSを介して充電
装置PSを接続する。そしてリアクトルLとコンデンサ
Csとの直列回路に並列に三点ギャップGを接続し、一
方何を接地する。三点ギャップGは例えば供試遮断器5
の三相一括短絡接地されたC相に電流零点検出装置12
を装着し、これと接続される始動装置13をギャップに
接続して構成される。
Further, a waveform adjustment capacitor Ce and a waveform adjustment resistor Re are directly connected to the high voltage side windings WHA and WHB, respectively. Also, the low voltage side windings WLA and WLB are connected in parallel, a reactor L is connected in parallel between the parallel connected terminals, a capacitor Cs is connected to one terminal side, and a switch S is connected to this capacitor C3. Connect the charging device PS. A three-point gap G is connected in parallel to the series circuit of the reactor L and the capacitor Cs, and one is grounded. The three-point gap G is, for example, the test circuit breaker 5.
A current zero point detection device 12 is installed on the C phase which is short-circuited and grounded.
is installed, and the starter device 13 connected thereto is connected to the gap.

この回路の動作は、コンデンサCsを充電後、スイッチ
Sで充電装置PSを切り離しておく。そして電圧源動作
時に3点ギャップGで放電させれば、リアクトルLと変
圧器TA 、 ’I’、の巻線との合成インダクタンス
とコンデンサCsの直列回路が共振して、変圧器Tム、
TBを励磁する。リアクトルLとコンデンサCsとの選
択で共振周波数を商用周波数に調整できるから、第1図
の第1の実施例で示した単相交流源ACと同等の作用を
させることができる。なお、中間タップ付の変圧器の結
線方法を上記の2台並列の結線に合せれば、低圧側回路
に第5図と同様の構成を設ければ同等の作用が得られる
The operation of this circuit is such that after charging the capacitor Cs, a switch S disconnects the charging device PS. Then, when the voltage source is operated, if it is discharged with a three-point gap G, the series circuit of the combined inductance of the reactor L and the windings of the transformers TA and 'I' and the capacitor Cs will resonate, and the transformer T,
Energize TB. Since the resonant frequency can be adjusted to the commercial frequency by selecting the reactor L and the capacitor Cs, it is possible to achieve the same effect as the single-phase alternating current source AC shown in the first embodiment of FIG. Incidentally, if the method of connecting the transformers with intermediate taps is adapted to the above-mentioned connection of two transformers in parallel, the same effect can be obtained by providing the same configuration as that shown in FIG. 5 in the low voltage side circuit.

次に本発明の第4の実施例を第6図に示す。第1図と同
一部分は同符号を付しである。実用面では必要に応じて
付加する装置、素子、試験場における設備面から定常的
に挿入されるものを付加した構成などがある。三相短絡
発電機4から例えば保護遮断器21.投入器22.リア
クトル23.短絡変圧器加を接続し、各相に補助遮断器
7a、7b、7cを接続し、供試遮断器5を接続し、こ
の供試遮断器5の一方側は三相−指摘地される。短絡変
圧器20と補助遮断器7a、7b、7cと接続され各相
に電流源素子25を介して接地し、各相を一括して補助
遮断器部を介して、アーク延長装置31と供試遮断器5
の三相一括短絡接地側の各相に電流零点検出装置29が
接続される。また補助遮断器と供試遮断器5との電流重
畳電圧装置18を接続し、供試遮断器5の一括接地した
第1相に設けた電流零点検出装置17と始動装置工8と
によって電流重畳電圧装置16を始動するように接続さ
れる。補助遮断器7b、7cと供試遮断器5と接続され
る第2.3相は補助遮断器部を介して電圧源装置32に
接続され、これは三相一括接地した供試遮断器5の第3
相に設けられる電流零点検出装置12と始動装置13に
よって始動されるように接続される。その他測定系の各
種素子。
Next, a fourth embodiment of the present invention is shown in FIG. The same parts as in FIG. 1 are given the same reference numerals. In practical terms, there are configurations in which devices and elements are added as needed, and things that are regularly inserted from the equipment perspective at the testing site. From the three-phase short-circuit generator 4, for example, a protective circuit breaker 21. Inserter 22. Reactor 23. A short-circuit transformer is connected, auxiliary breakers 7a, 7b, and 7c are connected to each phase, and a test circuit breaker 5 is connected, and one side of the test circuit breaker 5 is connected to a three-phase terminal. The short-circuit transformer 20 and the auxiliary breakers 7a, 7b, and 7c are connected to each other, each phase is grounded via the current source element 25, and each phase is connected to the arc extension device 31 and the test sample via the auxiliary breaker section. Breaker 5
A current zero point detection device 29 is connected to each phase on the three-phase collective short circuit grounding side. In addition, the current superimposition voltage device 18 of the auxiliary circuit breaker and the test circuit breaker 5 is connected, and the current is superimposed by the current zero point detection device 17 and the starting device 8 provided in the first phase of the test circuit breaker 5 that is collectively grounded. Connected to start voltage device 16. The 2nd and 3rd phases connected to the auxiliary circuit breakers 7b and 7c and the test circuit breaker 5 are connected to the voltage source device 32 via the auxiliary circuit breaker section, which connects the test circuit breaker 5 with three phases collectively grounded. Third
It is connected to be started by a current zero point detection device 12 and a starting device 13 provided in each phase. Other various measurement system elements.

装置、制御装置等図示していないものの付加あるいは削
除がある。
There may be additions or deletions of devices, control devices, etc. that are not shown.

本発明の第5の実施例として、第1図の本発明の第1の
実施例において、変圧器Tと単相交流電源ACよりなる
電圧源回路8の波形調整用コンデンサCe及び波形調整
用抵抗Reを変圧器Tの高圧側巻線器から低圧側巻線W
Lに移して゛も実用上の便を考慮して実施することがで
きる。
As a fifth embodiment of the present invention, in the first embodiment of the present invention shown in FIG. Re from the high voltage side winding of transformer T to the low voltage side winding W
The transfer to L can also be carried out considering practical convenience.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の方法によれば、供試遮断器
の片側の極に少なくとも第2,3相に補助遮断器を介し
て三相短絡発電機を接続し、供試遮断器の他側の極を三
相一括接地し、供試遮断器の補助遮断器側の第2,3相
に互に逆極性の電圧を印加する電圧源回路を接続し、第
1相遮断後に、第2,3相に互に逆極性の再起電圧を印
加するこ1  とにより、電圧源の容量を低減すること
ができ、かつ供試遮断器の絶縁破壊をまねくおそれのな
い遮断器の三相等価試験方法を提供することができる。
As explained above, according to the method of the present invention, a three-phase short-circuit generator is connected to at least the second and third phases of one pole of the test circuit breaker via the auxiliary circuit breaker, and A voltage source circuit that applies voltages of opposite polarity to each other is connected to the second and third phases of the auxiliary circuit breaker under test, and after the first phase is shut off, the second A three-phase equivalent test of a circuit breaker in which the capacity of the voltage source can be reduced by applying re-electromotive voltages of mutually opposite polarities to the three phases, and there is no risk of dielectric breakdown of the circuit breaker under test. method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の遮断器の三相等価試験方法の回路図、
第2図は第1図の本発明の遮断器の三相等価試験方法に
妙第2相遮断試験時における再起電圧波形の線図、第3
図は本発明の第2の実施例の回路図、第4図は第3図の
回路における遮断時の現象を示す線図、第5図は本発明
の第3の実施例の回路図、第6図は本発明の第4の実施
例の回路図、第7図及び第8図は従来の遮断器の三相等
価試験方法による遮断現象を示すそれぞれ線図である。 4・・・三相短絡発電機、 5・・・供試遮断器。 6・−・三相電流源回路。 7a、7b、7c・・・補助遮断器、8・・・電圧源回
路。 9.10・・・高圧巻線端子、11・・・中間タップ。 12 、17・・・電流零点検出装置。 13 、1.8・・・始動装置。 15・・・電流重畳電圧源回路。 16・・・電流重畳電圧源回路。 T・・・変圧器、      WH・・・高圧側巻線。 WL・・・低圧側巻線、    AC・−・単相交流電
源。 G・・・三点ギャップ。 Ce・・・波形調整用コンデンサ。 Be・・・波形調整用抵抗。
FIG. 1 is a circuit diagram of the three-phase equivalent test method for circuit breakers of the present invention;
Figure 2 is a diagram of the re-electromotive voltage waveform during the second phase cut-off test according to the three-phase equivalent test method of the circuit breaker of the present invention in Figure 1;
The figure is a circuit diagram of the second embodiment of the present invention, FIG. 4 is a line diagram showing the phenomenon at the time of interruption in the circuit of FIG. FIG. 6 is a circuit diagram of a fourth embodiment of the present invention, and FIGS. 7 and 8 are diagrams showing a breaking phenomenon according to a conventional three-phase equivalent test method for a circuit breaker. 4... Three-phase short-circuit generator, 5... Test circuit breaker. 6.--Three-phase current source circuit. 7a, 7b, 7c... Auxiliary circuit breaker, 8... Voltage source circuit. 9.10...High voltage winding terminal, 11...Intermediate tap. 12, 17... Current zero point detection device. 13, 1.8... Starting device. 15...Current superimposed voltage source circuit. 16...Current superimposed voltage source circuit. T...Transformer, WH...High voltage side winding. WL...Low voltage side winding, AC...Single phase AC power supply. G...Three point gap. Ce...Capacitor for waveform adjustment. Be...Resistance for waveform adjustment.

Claims (4)

【特許請求の範囲】[Claims] (1)三相短絡発電機の少なくとも2相にそれぞれ補助
遮断器を挿入接続した三相電流回路に、三相一括タンク
形の供試遮断器の片極を接続し、対向する極を短絡接地
して、三相短絡回路を構成する一方、高圧側の中間タッ
プ付の変圧器の高圧側巻線両端と中間タップ間それぞれ
に波形調整用コンデンサと波形調整用抵抗を直列にして
接続し、前記変圧器の低圧側巻線には第2、3相遮断回
復電圧と同期した単相交流電源と三点ギャップとを直列
接続して電圧源回路を構成し、前記高圧側巻線の両端を
前記供試遮断器と補助遮断器の接続部に接続するととも
に前記中間タップを接地して、前記変圧器の高圧側巻線
と前記供試遮断器の第2、3相に逆極性で並列に接続し
てなり、三相短絡電流の第2、3相同時遮断後に、前記
電圧源回路の三点ギャップを始動させて、前記変圧器を
交流励磁することにより、前記変圧器の高圧側に発生す
る電圧を前記供試遮断器の2遮断相に互いに逆極性とな
るように印加して、第2、3相遮断性能の検証を行うこ
とを特徴とする遮断器の三相等価試験方法。
(1) Three-phase short-circuit Connect one pole of a three-phase bulk tank-type test breaker to a three-phase current circuit in which an auxiliary circuit breaker is inserted and connected to at least two phases of the generator, and the opposite pole is short-circuited and grounded. While constructing a three-phase short circuit, a waveform adjustment capacitor and a waveform adjustment resistor are connected in series between both ends of the high voltage side winding of a transformer with an intermediate tap on the high voltage side and the intermediate tap, respectively. A voltage source circuit is constructed by connecting in series a single-phase AC power supply synchronized with the second and third phase cut-off recovery voltages and a three-point gap to the low-voltage winding of the transformer, and connecting both ends of the high-voltage winding to the Connect to the connecting part of the test circuit breaker and the auxiliary circuit breaker, and ground the intermediate tap, and connect in parallel with the high voltage side winding of the transformer and the second and third phases of the test circuit breaker with opposite polarity. After the second and third phases of the three-phase short-circuit current are simultaneously cut off, the three-point gap of the voltage source circuit is started to excite the transformer with alternating current, thereby generating a short-circuit current on the high voltage side of the transformer. A three-phase equivalent test method for a circuit breaker, characterized in that voltages are applied to the two breaking phases of the test circuit breaker with opposite polarities to verify the second and third phase breaking performance.
(2)電圧源回路は変圧器の低圧側巻線に充電装置を有
するコンデンサと三点ギャップを直列接続するとともに
低圧側巻線に並列にリアクトルを接続し、第2、3相遮
断後に、予め充電した前記コンデンサを前記三点ギャッ
プを介して放電させる特許請求の範囲第1項記載の遮断
器の三相等価試験方法。
(2) The voltage source circuit connects a capacitor with a charging device and a three-point gap in series to the low-voltage winding of the transformer, and connects a reactor in parallel to the low-voltage winding. The three-phase equivalent test method for a circuit breaker according to claim 1, wherein the charged capacitor is discharged through the three-point gap.
(3)電流源回路が三相とも補助遮断器を接続してなり
、別の補助遮断器を介して供試遮断器の第1相に並列に
コンデンサ、リアクトル、抵抗及び放電ギャップからな
る電圧源回路を接続した特許請求の範囲第1項記載の遮
断器の三相等価試験方法。
(3) The current source circuit has an auxiliary circuit breaker connected to all three phases, and a voltage source consisting of a capacitor, reactor, resistor, and discharge gap is connected in parallel to the first phase of the circuit breaker under test via another auxiliary circuit breaker. A three-phase equivalent test method for a circuit breaker according to claim 1, in which a circuit is connected.
(4)電圧源回路は特性の揃つた2台の変圧器を備えた
特許請求の範囲第1項記載の遮断器の三相等価試験方法
(4) A three-phase equivalent test method for a circuit breaker according to claim 1, wherein the voltage source circuit includes two transformers with the same characteristics.
JP59179264A 1984-08-30 1984-08-30 Three-phase equivalent testing method of breaker Pending JPS6157870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59179264A JPS6157870A (en) 1984-08-30 1984-08-30 Three-phase equivalent testing method of breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179264A JPS6157870A (en) 1984-08-30 1984-08-30 Three-phase equivalent testing method of breaker

Publications (1)

Publication Number Publication Date
JPS6157870A true JPS6157870A (en) 1986-03-24

Family

ID=16062808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179264A Pending JPS6157870A (en) 1984-08-30 1984-08-30 Three-phase equivalent testing method of breaker

Country Status (1)

Country Link
JP (1) JPS6157870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191083A (en) * 1987-02-04 1988-08-08 Toshiba Corp Equivalent three-phase test for circuit breaker
CN101847305A (en) * 2010-05-11 2010-09-29 安徽海圣电气有限公司 All-around current electrical fire alarm monitor of 400V low-voltage distribution network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191083A (en) * 1987-02-04 1988-08-08 Toshiba Corp Equivalent three-phase test for circuit breaker
CN101847305A (en) * 2010-05-11 2010-09-29 安徽海圣电气有限公司 All-around current electrical fire alarm monitor of 400V low-voltage distribution network

Similar Documents

Publication Publication Date Title
JP2591525B2 (en) Circuit breaker test equipment
JPS6157870A (en) Three-phase equivalent testing method of breaker
JPH04363677A (en) Synthetic test circuit for breaker
JP3103262B2 (en) Circuit breaker test circuit for switchgear
JP2001320828A (en) Ground relay with failed-area determining function
JPS60207079A (en) Synthesis test of breaker
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
JPH0145592B2 (en)
JPH0355110Y2 (en)
JPH063425A (en) Testing circuit for switch
JPH0735831A (en) Method and apparatus for testing breaker
JPH06186309A (en) Interruption test circuit for switch
JPS61195366A (en) Testing instrument for lightening arrestor disconnecting device
JPS61155780A (en) Equivalence tester for small leading current of breaker
SU1737615A1 (en) Device for compensation of emf of faulty phase under single- phase short-circuits in network with ungrounded neutral
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JPS61225675A (en) Method and apparatus for testing switch gear
JPH065652Y2 (en) Shiya disconnector testing device
JPS63191083A (en) Equivalent three-phase test for circuit breaker
JPH01123176A (en) Arc extension circuit
JPS59109873A (en) Testing method of three-phase common tank-type breaker
JPH0563748B2 (en)
JPH03249580A (en) Composite test device for small advancing current
JPS59119285A (en) Testing circuit for breaking contact of breaker
JPH055067B2 (en)