JPH03249580A - Composite test device for small advancing current - Google Patents

Composite test device for small advancing current

Info

Publication number
JPH03249580A
JPH03249580A JP2045956A JP4595690A JPH03249580A JP H03249580 A JPH03249580 A JP H03249580A JP 2045956 A JP2045956 A JP 2045956A JP 4595690 A JP4595690 A JP 4595690A JP H03249580 A JPH03249580 A JP H03249580A
Authority
JP
Japan
Prior art keywords
test
voltage
circuit
current
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2045956A
Other languages
Japanese (ja)
Inventor
Takeshi Kuniyone
国米 毅
Shoji Yamashita
正二 山下
Nobuyuki Miyake
信之 三宅
Hisatoshi Ikeda
久利 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2045956A priority Critical patent/JPH03249580A/en
Publication of JPH03249580A publication Critical patent/JPH03249580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To enable a composite test for small advancing current without using a test equipment with large capacity by making a connection so that two transformers for test are connected to a power source for test in cascade for a circuit breaker to be tested, and grounding a connection point of the high voltage winding. CONSTITUTION:First of all, the circuit breaker 1 to be tested and auxiliary breakers 3a, 3b are kept in the closed state, and a lagging current il is made to flow in the breaker 1 from a short-circuited generator 2 through the transformers 8,9 for test and auxiliary breaker 3a. A voltage of the power source for test is made to keep the value adjusted beforehand so that the voltages generated in the transformers 9,10 for test after the current is interrupted become 1/2 of the testing voltage respectively. When the breaker 1 to be tested and the auxiliary breakers 3a,3b are opened almost simultaneously at the time point of P-P', the test current il is interrupted. Then, a voltage appeared in a resonance circuit is oscillated with the frequency decided by a capacitance 6 and an inductance 7. By this procedure, the test for small advancing current at the frequency actually used in the breaker is made possible with making the frequency of power source voltage to change arbitrarily.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は遮断器の周波数適用範囲を改善した進み小電流
合成試験装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a leading small current synthesis test device that improves the frequency application range of a circuit breaker.

(従来の技術) 一般に電力用遮断器は、通常の故障時のような大電流の
遮断性能の他に、無負荷送電線路や、電カケープル等の
充電電流(数10(A)から数1000(A))に対す
る遮断性能も重要視される。
(Prior Art) In general, power circuit breakers have the ability to interrupt large currents such as those at normal failures, as well as charging currents (several 10s (A) to several 1000s (A) of The blocking performance for A)) is also important.

そして、電圧より位相がπ/2進む電流が流れる容量性
回路の遮断は、誘導性回路の遮断に比べて特異性があり
、J EC−2300(交流遮断器規格)においても、
各定格電圧に対し検証条件が定められており、また合成
試験法についても認められているように、遮断器の性能
検証の中でも重要な項目の一つである。
The breaking of a capacitive circuit in which a current flows with a phase that leads the voltage by π/2 is more specific than that of an inductive circuit, and even in JEC-2300 (AC circuit breaker standard),
Verification conditions are determined for each rated voltage, and as the synthetic test method is also recognized, it is one of the important items in the performance verification of circuit breakers.

以下、第3図及び第4図を参照して従来の単一周波数の
みの進み小電流合成試験法について説明する。
Hereinafter, a conventional leading small current synthesis test method using only a single frequency will be explained with reference to FIGS. 3 and 4.

供試遮断器の定格電圧が高くなり、試験電源のみの容量
を上回る場合は、合成試験法が適用されている。第3図
は進み小電流遮断の合成試験回路の一例である。
If the rated voltage of the circuit breaker under test becomes high and exceeds the capacity of the test power supply alone, the composite test method is applied. FIG. 3 is an example of a composite test circuit for advanced small current interruption.

第3図は供試遮断器1に対して短絡発電機2を電源とし
て、電流を補助遮断器3を介して供給する電流源回路と
、この回路と並列に試験用変圧器5を接続し、キャパシ
タンス4を介して供試遮断器1に電圧を供給する電圧源
回路とからなり、更に供試遮断器1の片棒側は接地され
ている。この合成試験回路で供試遮断器1には電流源回
路を流れる進み電流1iと電圧源回路を流れる進み電流
icの合成された試験電流ipが流れる。
FIG. 3 shows a current source circuit that supplies current to the circuit breaker under test 1 using a short-circuit generator 2 as a power source through an auxiliary circuit breaker 3, and a test transformer 5 connected in parallel with this circuit. It consists of a voltage source circuit that supplies voltage to the test circuit breaker 1 via a capacitance 4, and one bar side of the test circuit breaker 1 is grounded. In this composite test circuit, a test current ip which is a composite of a leading current 1i flowing through the current source circuit and a leading current ic flowing through the voltage source circuit flows through the circuit breaker under test 1.

進み電流、試験電流の遮断時における電気的現象を第4
図に示す。
The electrical phenomenon at the time of cutting off the lead current and test current is explained in the fourth section.
As shown in the figure.

第4図におけるP−P’の時点で供試遮断器1と補助遮
断器3をほぼ同時に開極すると、最初の電流零点Q−Q
’ において試験電流1pは供試遮断器1によって遮断
される。この時遅れ電流IQも補助遮断器3によって遮
断されるため電流源回路は切離される。
When the test circuit breaker 1 and the auxiliary circuit breaker 3 are opened almost simultaneously at the point P-P' in Fig. 4, the first current zero point Q-Q
At ', the test current 1p is interrupted by the circuit breaker 1 under test. This time-delayed current IQ is also cut off by the auxiliary circuit breaker 3, so the current source circuit is disconnected.

電圧源ecは電流零の瞬時の電圧すなわち電圧波高値に
相当する電圧が残留し、 esとeCの合成電圧が供試
遮断器1の極間に印加され電圧は1/2サイクル後に電
源電圧波高値の2倍まで上昇する。
In the voltage source ec, the instantaneous voltage when the current is zero, that is, the voltage corresponding to the voltage peak value remains, and the combined voltage of es and eC is applied between the poles of the test circuit breaker 1, and the voltage changes to the power supply voltage wave after 1/2 cycle. It will rise to twice the high price.

この試験では供試遮断器1の片側の端子には全電圧が印
加されることになり電気的に非常に苛酷な条件にある。
In this test, full voltage is applied to one terminal of the circuit breaker 1 under test, which results in very severe electrical conditions.

さらに、遮断電流及び給与電圧が供給された回路構成と
なり比較的大容量の試験設備容量が必要であった。
Furthermore, the circuit configuration was such that a breaking current and a supply voltage were supplied, requiring a relatively large test equipment capacity.

(発明が解決しようとする課題) 上記遮断器の進み小電流遮断の合成試験法では、電流遮
断後の回復電圧を片側から印加することになり、実使用
状態に沿った試験になっていなかった。
(Problems to be Solved by the Invention) In the above-mentioned synthetic test method for advanced small current interruption of the circuit breaker, the recovery voltage after current interruption was applied from one side, and the test was not conducted in accordance with actual usage conditions. .

また、進み小電流遮断試験は遮断器が電流遮断後、接触
子間に加わる2倍の電圧に耐えられるか否かを検証する
もので、遮断器接触子の開離距離が不十分であると、接
触子間の絶縁が破壊して再び電流が流れる。この現象が
発生すると回路に異常電圧を発生するため系統の機器の
絶縁を脅かすことになってしまう。
In addition, the advanced small current interruption test verifies whether the circuit breaker can withstand twice the voltage applied between the contacts after the current is interrupted. , the insulation between the contacts breaks down and current flows again. When this phenomenon occurs, abnormal voltage is generated in the circuit, which threatens the insulation of system equipment.

この進み小電流遮断試験で問題になるが、遮断器が適用
される回路の電源周波数と、試験場の試験周波数とが異
なる場合である。
A problem with this advanced small current interruption test is when the power frequency of the circuit to which the circuit breaker is applied differs from the test frequency at the test site.

例えば60)1z系統で使用される遮断器を50Hzで
試験した場合、電流遮断後に遮断器接触子に加わる電圧
が波高値になるまでの時間が60Hzでは8.3msで
あるのに対して50Hzでは10o+sとなり遮断器に
とって一般には楽な試験となってしまう。また、これを
カバーするために、60Hz系統電圧の波高値までの時
間と50[(zの試験電圧のものでカバーされるように
試験電圧を1.2倍にして試験が行われる場合があが、
電流遮断後6 、8+msを越えると60Hz電源で試
験を行った時とほぼ同じ波形であるが6 、8msを越
えると60Hz電源で試験を行った時に比べて高い電圧
が印加されることになり、遮断器にとって苛酷な試験と
なってしまう。
For example, when a circuit breaker used in a 60) 1z system is tested at 50Hz, the time it takes for the voltage applied to the circuit breaker contact to reach its peak value after current interruption is 8.3ms at 60Hz, but at 50Hz it is 10o+s, which is generally an easy test for circuit breakers. In addition, in order to cover this, the test voltage may be multiplied by 1.2 to cover the time to the peak value of the 60Hz system voltage and the test voltage of 50[z]. but,
If it exceeds 6.8+ms after the current is cut off, the waveform will be almost the same as when testing with a 60Hz power supply, but if it exceeds 6.8ms, a higher voltage will be applied than when testing with a 60Hz power supply. This will be a harsh test for the circuit breaker.

第5図はこの50Hz電源と60)1z電源を使用した
時の遮断器接触子間にかかる電圧波形を比較して示した
ものである。
FIG. 5 shows a comparison of the voltage waveforms applied between the circuit breaker contacts when this 50Hz power supply and the 60)1z power supply are used.

本発明は一定の試験電源周波数で、電流遮断後に遮断器
接触子間に加わる電圧の周波数を任意に変化させ、実際
に使用される周波数にすることができると共に、遮断器
の両側から定格電圧の1/2をそれぞれ逆の極性にして
印加することで接触子間には2倍の電圧を加えることが
でき、更に試験電源から電流源と電圧源を分は組合わせ
ることにより、さまざまな定格の遮断器の進み小電流遮
断性能を実使用状態に近い状態で検証できる合成試験装
置を提供することを目的とする。
The present invention can arbitrarily change the frequency of the voltage applied between the circuit breaker contacts after the current is cut off at a constant test power supply frequency, making it possible to adjust the frequency to the frequency actually used. By applying 1/2 with opposite polarity, twice the voltage can be applied between the contacts, and by combining the current source and voltage source from the test power supply, various ratings can be applied. The purpose of the present invention is to provide a synthetic test device that can verify the advanced small current breaking performance of a circuit breaker under conditions close to actual usage conditions.

〔発明の構成〕 (課題を解決するための手段) 上記目的を達成するために本発明では、供試遮断器に対
して試験用電源に2台の試験用変圧器がカスケード接続
されるように接続し、その高圧巻線の接続点を接地し、
そしてこの高圧巻線の各々の端子にそれぞれ補助遮断器
を接続する。更にその補助遮断器の反対側を供試遮断器
に接続して電流現回路を構成し、この回路と並列に前記
試験用電源に別の2台の試験用変圧器もカスード接続さ
れるように構成し、この変圧器の高圧巻線も接続点を接
地し、そして低圧巻線の片側に補助遮断器を接続し、共
振回路のインダクタンスを前記補助遮断器の片端と前記
低圧巻線の中間点と低圧巻線の片端とに並列に接続し、
前記高圧巻線と並列に共振回路のキャパシタンスを接続
し、高圧巻線の各々端子にそれぞれキャパシタンスを接
続し、その反対側を供試遮断器と補助遮断器の接続点に
接続する電圧源回路を構成した。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a method in which two test transformers are connected in cascade to the test power supply for the circuit breaker under test. and ground the connection point of its high voltage winding,
An auxiliary circuit breaker is connected to each terminal of this high voltage winding. Furthermore, the other side of the auxiliary circuit breaker is connected to the test circuit breaker to form a current current circuit, and two other test transformers are also connected in cascade to the test power supply in parallel with this circuit. The high voltage winding of this transformer also has its connection point grounded, and an auxiliary circuit breaker is connected to one side of the low voltage winding, and the inductance of the resonant circuit is connected to the midpoint between one end of the auxiliary circuit breaker and the low voltage winding. and one end of the low voltage winding in parallel,
A voltage source circuit is provided in which a capacitance of a resonant circuit is connected in parallel with the high voltage winding, a capacitance is connected to each terminal of the high voltage winding, and the opposite side is connected to a connection point between the circuit breaker under test and the auxiliary circuit breaker. Configured.

(作 用) 上記回路構成によると、供試遮断器の片極のみから電圧
を印加する必要がなくなり、供試遮断器の両極はほぼ実
系統と同等のストレスになり、電流零点で電流を遮断す
ると同時に補助遮断器によって試験電源から電流源と電
圧源の発電機側を切離してしまうことによりインダクタ
ンスとキャパシタンスの振動電圧と残留電圧の合成電圧
が印加される。このインダクタンスとキャパシタンスの
値により、電圧源電圧の周波数を任意に変化させて実際
に遮断器が使用される周波数での進みノコ1電流試験が
可能となる。
(Function) According to the above circuit configuration, it is no longer necessary to apply voltage from only one pole of the test circuit breaker, and both poles of the test circuit breaker are subjected to almost the same stress as the actual system, and the current is interrupted at the current zero point. At the same time, the auxiliary circuit breaker disconnects the generator side of the current source and voltage source from the test power supply, so that a composite voltage of the oscillating voltage of the inductance and capacitance and the residual voltage is applied. These inductance and capacitance values make it possible to arbitrarily change the frequency of the voltage source voltage and perform a leading saw single current test at the frequency at which the circuit breaker is actually used.

(実施例) 以下本発明の一実施例について第1図及び第2図を用い
て説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の回路の一例を示している。FIG. 1 shows an example of the circuit of the present invention.

供試遮断器1に対し、試験用電源となる短絡発電機2に
2台の試験用変圧器8と9がカスケードに接続されるよ
うに構成し、その高圧巻線の接続点を接地する。
The test circuit breaker 1 is configured such that two test transformers 8 and 9 are connected in cascade to a short-circuit generator 2 serving as a test power source, and the connection point of the high voltage winding is grounded.

また高圧巻線の各々の端子CとDにそれぞれ補助遮断器
3aの片極を接続し、補助遮断器3aのもう一方に極を
供試遮断器1に接続して電流源を構成する。
Further, one pole of the auxiliary circuit breaker 3a is connected to each terminal C and D of the high voltage winding, and the other pole of the auxiliary circuit breaker 3a is connected to the test circuit breaker 1 to constitute a current source.

この電流源と並列に前記短絡発電機2に別の2台の試験
用変圧器10とIIがカスケードになるように接続され
、その高圧巻線の接続点を接地する。
Two other test transformers 10 and II are connected to the short-circuit generator 2 in parallel with this current source in a cascade manner, and the connection point of their high voltage windings is grounded.

短絡発電機2からの一端に補助遮断器3bを接続し、補
助遮断器3bのもう一方を試験用変圧器9に接続する。
An auxiliary circuit breaker 3b is connected to one end from the short circuit generator 2, and the other end of the auxiliary circuit breaker 3b is connected to the test transformer 9.

共振用インダクタンス7をこの試験用変圧器の低圧側と
並列になるようGとHに接続する。
A resonant inductance 7 is connected to G and H in parallel with the low voltage side of this test transformer.

共振用キャパシタンス6をこの高圧巻線と並列になるよ
うに各々の端子EとFに接続し、その端子EとFにそれ
ぞれキャパシタンス4の片側をそれぞれ接続し、キャパ
シタンス4のもう一方を供試遮断器1と補助遮断器3a
の接続点に接続する電圧源回路を構成する。
A resonance capacitor 6 is connected to each terminal E and F in parallel with this high voltage winding, one side of the capacitance 4 is connected to each of the terminals E and F, and the other side of the capacitance 4 is connected to the test cutoff. circuit breaker 1 and auxiliary circuit breaker 3a
Configure a voltage source circuit that connects to the connection point.

次に遮断試験の現象について第2図を用いて説明する。Next, the phenomenon of the interruption test will be explained using FIG. 2.

先ず供試遮断器1と補助遮断器3aと3bを閉状態にし
ておき短絡発電機2より試験用変圧器8と9及び補助遮
断器3aを介して供試遮断器1に遅れ電流iQを流す。
First, the test circuit breaker 1 and the auxiliary circuit breakers 3a and 3b are closed, and a delayed current iQ is caused to flow from the short-circuit generator 2 to the test circuit breaker 1 via the test transformers 8 and 9 and the auxiliary circuit breaker 3a. .

試験電源の電圧は電流遮断後に試験用変圧器9及び10
に発生する電圧がそれぞれ試験電圧の1/2になるよう
に、あらかじめ調整した値にしておく。
The voltage of the test power supply is changed to the test transformers 9 and 10 after the current is cut off.
Adjust the voltages in advance to be 1/2 of the test voltage.

次に、P−P’時点で供試遮断器1と補助遮断器3a及
び3bをほぼ同時に開極すると最初の電流零点Q−Q’
で試験電流IQは遮断され、電圧残留用キャパシタンス
4及び共振用キャパシタンス6とインダクタンス7は孤
立するため、Q−Q’時の電圧即ち波高値電圧がキャパ
シタンス4により残り、そして共振用キャパシタンス6
とインダクタンス7との共振回路に現われる電圧はキャ
パシタンス6とインダクタンス7により決まる周波数で
振動する。この電圧の合成したものが供試遮断器1の極
間に印加されることになる。
Next, when the test circuit breaker 1 and the auxiliary circuit breakers 3a and 3b are opened almost simultaneously at the point P-P', the first current zero point Q-Q'
The test current IQ is cut off and the residual voltage capacitance 4, the resonance capacitance 6, and the inductance 7 are isolated, so the voltage at Q-Q', that is, the peak value voltage remains due to the capacitance 4, and the resonance capacitance 6
The voltage appearing in the resonant circuit of the capacitance 6 and the inductance 7 oscillates at a frequency determined by the capacitance 6 and the inductance 7. A combination of these voltages will be applied between the poles of the circuit breaker 1 under test.

従って回復電圧の振動分を60Hzに調整している場合
は、供試遮断器1の極間に電流遮断点のQQ′後の8 
、3ms後に電圧波波高値が来ることになる。
Therefore, when the oscillation component of the recovery voltage is adjusted to 60 Hz, the 8
, the voltage wave peak value will arrive 3ms later.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明の装置によれば、電流遮断
後は補助遮断器により試験電源からの電流及び電圧を全
て切離してしまい、電圧残留キャパシタンスと共振素子
のインダクタンス及びキャパシタンスによる合成電圧が
発生する回路構成であるため、単一周波数の試験電源で
あっても任意の周波数の電圧を発生させることができ、
また供試速断器の両側から定格電圧の172の電圧を逆
の曲製で印加させることにより定格相当のブッシングを
必要としない。また試験設備面でも電流源と電圧源を組
合わせて供給できる回路構成であるため大容量の試験設
備を必要とせず進み小電流遮断性能の検証ができる。
As described above, according to the device of the present invention, after the current is cut off, the auxiliary circuit breaker disconnects all current and voltage from the test power supply, and a composite voltage is generated due to the voltage residual capacitance and the inductance and capacitance of the resonant element. Because of the circuit configuration, it is possible to generate voltage at any frequency even with a single frequency test power supply.
Further, by applying the rated voltage of 172 from both sides of the test speed breaker in a reverse curved manner, bushings corresponding to the rated voltage are not required. In terms of test equipment, the circuit configuration allows for a combination of current and voltage sources to be supplied, making it possible to verify advanced small current interrupting performance without the need for large-capacity test equipment.

しかも、複雑な試験制御を行うことなく極めて信頼性の
高い進み小電流合成試験装置を提供できる。
Furthermore, it is possible to provide an extremely reliable lead small current synthesis test device without performing complicated test control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す進み小電流合成試験装
置の回路構成図、第2図は第1図に示す装置における試
験現象の電圧、電流を示す波形図、第3図は従来の合成
試験による進み小電流試験回路図、第4図は第3図に示
す装置における試験現象の電圧、電流を示す波形図、第
5図は第3図に示す装置において50Hzと60Hzの
電源を使用した時の遮断器接触子間にかかる電圧を比較
した波形図である。 1・・・供試遮断器。 3a 、 3b・・・補助遮断器、 6・・・共振用キャパシタンス、 8.9,10.11・・・試験用変圧器。 2・・・短絡発電機、 4・・・キャパシタンス。 7・・・共振用インダクタンス。
Fig. 1 is a circuit configuration diagram of an advanced small current synthesis test device showing an embodiment of the present invention, Fig. 2 is a waveform diagram showing the voltage and current of the test phenomenon in the device shown in Fig. 1, and Fig. 3 is a conventional 4 is a waveform diagram showing the voltage and current of the test phenomenon in the device shown in FIG. It is a waveform diagram comparing the voltage applied between the circuit breaker contacts when in use. 1... Test circuit breaker. 3a, 3b...Auxiliary circuit breaker, 6...Resonance capacitance, 8.9, 10.11...Test transformer. 2... Short circuit generator, 4... Capacitance. 7... Resonant inductance.

Claims (1)

【特許請求の範囲】[Claims] 短絡発電機を用いた試験用電源に2台の電流源変圧器の
低圧巻線をそれぞれ並列に接続し、前記変圧器の高圧巻
線を直列に接続し、その中間を接地するとともに、高圧
巻線の各々端子にそれぞれ補助遮断器の一方端子を接続
し、その反対側端子を供試遮断器の両側端子に接続して
成る電流源回路と、前記試験用電源に補助遮断器を接続
し、2台の電圧源用変圧器の低圧巻線を前記直列接続し
た回路と並列に接続し、共振回路のインダクタンスを前
記電圧源用変圧器の低圧巻線と並列に接続して閉回路を
構成し、一方前記電圧源用変圧器の高圧巻線を直列に接
続し、その接続点を接地し、直列にした高圧巻線と並列
に共振回路のキャパシタンスを接続し、その高圧巻線の
各々端子にそれぞれキャパシタンスを直列に接続し、そ
の反対側を供試遮断器と補助遮断器の各々の接続点に接
続して閉回路を構成した電圧源回路とから成ることを特
徴とする進み小電流合成試験装置。
The low voltage windings of two current source transformers are connected in parallel to a test power supply using a short-circuit generator, the high voltage windings of the transformers are connected in series, the middle is grounded, and the high voltage windings of the transformers are connected in series. A current source circuit comprising one terminal of an auxiliary breaker connected to each terminal of the line and the opposite terminal connected to both terminals of the breaker under test, and an auxiliary breaker connected to the test power supply, The low voltage windings of the two voltage source transformers are connected in parallel with the series-connected circuit, and the inductance of the resonant circuit is connected in parallel with the low voltage winding of the voltage source transformer to form a closed circuit. On the other hand, the high voltage windings of the voltage source transformer are connected in series, the connection point is grounded, the capacitance of the resonant circuit is connected in parallel with the series high voltage windings, and each terminal of the high voltage windings is connected. An advanced small current composite test characterized by consisting of a voltage source circuit in which capacitances are connected in series and the opposite sides are connected to the respective connection points of the test circuit breaker and the auxiliary circuit breaker to form a closed circuit. Device.
JP2045956A 1990-02-28 1990-02-28 Composite test device for small advancing current Pending JPH03249580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045956A JPH03249580A (en) 1990-02-28 1990-02-28 Composite test device for small advancing current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045956A JPH03249580A (en) 1990-02-28 1990-02-28 Composite test device for small advancing current

Publications (1)

Publication Number Publication Date
JPH03249580A true JPH03249580A (en) 1991-11-07

Family

ID=12733723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045956A Pending JPH03249580A (en) 1990-02-28 1990-02-28 Composite test device for small advancing current

Country Status (1)

Country Link
JP (1) JPH03249580A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025152A (en) * 1973-07-06 1975-03-17
JPH01101479A (en) * 1987-10-15 1989-04-19 Toshiba Corp Testing device for leading small current break of breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025152A (en) * 1973-07-06 1975-03-17
JPH01101479A (en) * 1987-10-15 1989-04-19 Toshiba Corp Testing device for leading small current break of breaker

Similar Documents

Publication Publication Date Title
Li et al. Impact research of inductive FCL on the rate of rise of recovery voltage with circuit breakers
JP2591525B2 (en) Circuit breaker test equipment
JPH03249580A (en) Composite test device for small advancing current
JP3103262B2 (en) Circuit breaker test circuit for switchgear
JPH04363677A (en) Synthetic test circuit for breaker
JP2675649B2 (en) Switchgear test method and device
JPH0145592B2 (en)
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
JPH0563748B2 (en)
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPH065652Y2 (en) Shiya disconnector testing device
JPH06186309A (en) Interruption test circuit for switch
JPS60207079A (en) Synthesis test of breaker
JP2666946B2 (en) Capacitor switching performance test equipment
JPS6157870A (en) Three-phase equivalent testing method of breaker
JPH058533Y2 (en)
JPS6030900B2 (en) Equivalent test method for breaker
Stokes et al. Balanced synthetic circuit: new circuit for high-power testing with low-frequency transient recovery voltage
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JPS59109873A (en) Testing method of three-phase common tank-type breaker
JPH10253680A (en) Test method for short-time withstand current of switchgear
JPH05288815A (en) Composite short-circuit tester for circuit breaker with resistor
JPS61225675A (en) Method and apparatus for testing switch gear
SU1486964A1 (en) Device for synthetic disconnecting testing of ac disconnecting switches
JPS6247564A (en) Leading current cut-off testing circuit for switch