JPS6153732A - Etching method of silicon oxide film by irradiation of light - Google Patents

Etching method of silicon oxide film by irradiation of light

Info

Publication number
JPS6153732A
JPS6153732A JP17589784A JP17589784A JPS6153732A JP S6153732 A JPS6153732 A JP S6153732A JP 17589784 A JP17589784 A JP 17589784A JP 17589784 A JP17589784 A JP 17589784A JP S6153732 A JPS6153732 A JP S6153732A
Authority
JP
Japan
Prior art keywords
light
source
silicon oxide
oxide film
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17589784A
Other languages
Japanese (ja)
Inventor
Arata Yokoyama
新 横山
Zenko Hirose
広瀬 全孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP17589784A priority Critical patent/JPS6153732A/en
Publication of JPS6153732A publication Critical patent/JPS6153732A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To locally etch the silicon film by irradiating a fluorine source or a mixture of such fluorine source and hydrogen source with a light of predetermined wavelength and then placing it in contact with a silicon oxide film. CONSTITUTION:A silicon film is locally etched by irradiating the fluorine source or a mixture of such fluorine source and hydrogen source with the light in the wavelength of 150-400nm and then placing it with silicon oxide film. This fluorine source should be hydrogen fluoride, C2Cl2F4, CHF2CH, SF6, XeF2, C2F6, C2F8, CHF3, CClF3, hydrogen trifluoride, carbon tetrafluoride, CBrF3, CClF2, C3ClF5, CHClF2 or silicon tetrafluoride. As a light source which generates the light, the excimer laser, Xe-H8 lamp or low pressure H8 lamp is used. Content of fluorine source in the mixture is set to 1vol% and a silicon film is locally etched.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリコン酸化膜のエツチング方法、特に光線を
照射する二゛とによりシリコン酸化11λをエツチング
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of etching a silicon oxide film, and more particularly to a method of etching silicon oxide 11λ by irradiating it with light.

(従来の技術) 従来、シリコン酸化膜のエツチングを行なう方法として
プラズマエツチング法が知られている。
(Prior Art) Plasma etching is conventionally known as a method for etching a silicon oxide film.

この方法は、一般にプラズマ中に存在する高エネルギー
イオンによる物理的衝撃のためにシリコン酸化膜の基板
であるシリコン表面までが若干損傷を受け、また、高温
度における操作のためにVLSrデバイスの微細化に適
さず装置上も冷却器の設置を要するなどの欠点がある。
This method generally suffers some damage to the silicon surface, which is the substrate of the silicon oxide film, due to physical impact from high-energy ions present in the plasma, and also requires miniaturization of VLSr devices due to operation at high temperatures. It has drawbacks such as being unsuitable for use and requiring the installation of a cooler on the equipment.

一般にレーザー光線等の光線によるエツチングは、その
ような物理的衝撃がきわめて小さく、また高温も必要と
しないので、プラズマエツチング法の欠点の解消が期待
される。
In general, etching using a light beam such as a laser beam causes very little physical impact and does not require high temperatures, so it is expected to eliminate the drawbacks of plasma etching methods.

しかしながら、レーザー光線等の光線によるエツチング
については、シリコンについて若干報告があるが、シリ
コン酸化膜については全く知られていない。
However, although there are some reports regarding etching with light beams such as laser beams for silicon, there is no knowledge of etching for silicon oxide films.

(発明が解決しようとする問題、克) 本発明の目的は、レーザー光線等の光線にょるシリコン
酸化膜のエツチング方法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method of etching a silicon oxide film using a light beam such as a laser beam.

(問題点を解決するための手段) 本発明は波長157〜400nmの光線をフッ素源又は
これと水素源との混合物に照射して、これをシリフン酸
化膜に接触させることを特徴とするシリコン酸化膜のエ
ツチング方法に係る。
(Means for Solving the Problems) The present invention is a silicon oxidation method characterized by irradiating a fluorine source or a mixture of the fluorine source and a hydrogen source with a light beam having a wavelength of 157 to 400 nm and bringing this into contact with a silicon oxide film. It relates to a film etching method.

本発明においてフッ索源とはフッ素又は光照射によりフ
ッ素を発生する気体化合物をいう。例えばフッ索、フッ
化水素、C2C12F、、sF6、XeF2、C2F、
、c、F、、CHF3、CCIF、、三フッ化窒素、四
フッ化炭素、CBrF3、CCl2F2、CF、CI、
C2ClF5、CHCI F□2又は四フッ化ケイ素等
が挙げられ、特に炭素汚染のないこと、光分解率の大き
さ、〃スの安全性の点から三フッ化窒素が好ましい。 
              1本発明において水素源
とは水素又は光照射により水素を発生する気体化合物を
いう。例えば水素、A(蒸気等が挙げられ、特に〃スの
取扱いが容易な点から水素が好ましい。
In the present invention, the fluorine source refers to fluorine or a gaseous compound that generates fluorine upon irradiation with light. For example, fluoride, hydrogen fluoride, C2C12F, sF6, XeF2, C2F,
, c, F, , CHF3, CCIF, , nitrogen trifluoride, carbon tetrafluoride, CBrF3, CCl2F2, CF, CI,
Examples include C2ClF5, CHCI F□2, silicon tetrafluoride, etc., and nitrogen trifluoride is particularly preferred from the viewpoints of no carbon contamination, high photodecomposition rate, and safety of the gas.
1 In the present invention, the hydrogen source refers to hydrogen or a gaseous compound that generates hydrogen upon irradiation with light. Examples include hydrogen, A (steam), etc., and hydrogen is particularly preferred from the viewpoint of easy handling of the gas.

水素源は、エツチング速度を増大させる効果を有する。The hydrogen source has the effect of increasing the etching rate.

フッ素源と水素源との混合物中のフッ素源の含有量は、
少なくとも1容量%必要である。
The content of the fluorine source in the mixture of fluorine source and hydrogen source is
At least 1% by volume is required.

これより低いときはエツチングされない。水素源の含有
量は4容量%以下が好ましい。4容量%を越えるとシリ
コン酸化膜表面に薄膜の堆積が観測されるが、水素源の
含有量が0容量%と比べてエツチング速度の増大効果が
ある。好ましい範囲は0〜4容量%である。
If it is lower than this, it will not be etched. The content of the hydrogen source is preferably 4% by volume or less. When the hydrogen source content exceeds 4% by volume, a thin film is observed to be deposited on the surface of the silicon oxide film, but this has the effect of increasing the etching rate compared to when the content of the hydrogen source is 0% by volume. The preferred range is 0-4% by volume.

本発明において光線は例えばArFエキシマ−レーザー
、Xe  HHランプ、低圧Hgランプ等を用いて照射
されるが、特に光強度の点からArFエキシマ−レーザ
ーが好ましい。光線の波長は157〜400 n to
 、特に170〜250口mの範囲が好ましい。
In the present invention, the light beam is irradiated using, for example, an ArF excimer laser, a Xe HH lamp, a low pressure Hg lamp, etc., and an ArF excimer laser is particularly preferred from the viewpoint of light intensity. The wavelength of the light beam is 157 to 400 n to
In particular, a range of 170 to 250 mm is preferred.

157 n tn未テ1うの場合はそのような光線を容
易に発生させることができず、400 n mを越える
場合はエツチングされない。
If it is less than 157 nm, such a beam cannot be easily generated, and if it exceeds 400 nm, it will not be etched.

本発明においてシリコン酸化膜のエツチングは例えば1
0Pa程度の低圧から2X105Pa程度の高圧(約2
気圧)の範囲で光照射することにより行われるが、好ま
しくは先ず10〜104 P aの低圧で光照射(第1
光処理)を行った後に、104〜2X105Paの高圧
で光照射(第2光処理)を行うのが良い。
In the present invention, the silicon oxide film is etched by etching, for example, 1
From low pressure of about 0Pa to high pressure of about 2X105Pa (about 2
This is carried out by irradiating light at a low pressure of 10 to 104 Pa (atmospheric pressure).
After performing the light treatment), it is preferable to perform light irradiation (second light treatment) at a high pressure of 104 to 2×105 Pa.

本発明においては上記光照射下にフッ素源又はこれと水
素源との混合物を、シリコン酸化膜に接触させる。接触
は、フッ素源又はこれと水素源との混合物が気相で存在
する限り任意の温度で行なうことができる。しがし30
0’Cを越えるような高温は、本発明の目的がらみて不
適当である。従って具体的には、−io″C〜300”
C1好ましくはo ’c〜100℃の範囲である。
In the present invention, a fluorine source or a mixture of the fluorine source and a hydrogen source is brought into contact with the silicon oxide film under the above-mentioned light irradiation. Contacting can be carried out at any temperature as long as the fluorine source or its mixture with the hydrogen source is present in the gas phase. Shigashi 30
High temperatures above 0'C are inappropriate for the purpose of the present invention. Therefore, specifically, -io″C~300″
C1 is preferably in the range of o'c to 100°C.

(本発明の効果) 本発明により、レーザー光線等の光線を照射することに
よりシリコン酸化膜のエツチングをすることができる。
(Effects of the Present Invention) According to the present invention, a silicon oxide film can be etched by irradiating a light beam such as a laser beam.

本発明において光照射は、以上に述べたように、フッ索
源又はこれと水素源との混合物に行えば十分であるが、
後述の実施例に見られるように、シリコン酸化膜に対し
て光照射が垂直である場合と平行である場合とでは若干
エツチング速度が相違し、前者の場合が高い。これから
、フッ素源又はこれと水素源との混合物を通して光照射
をシリコン酸化膜に対して局部的に行う、特に垂直に行
う、二とによりマスクなしでシリコン酸化膜の局部的エ
ツチングが可能である。
In the present invention, as described above, it is sufficient to irradiate the fluoride source or a mixture of this and a hydrogen source, but
As seen in the examples described later, the etching rate is slightly different depending on whether the light is irradiated perpendicularly to the silicon oxide film or parallel to it, and is higher in the former case. From this, it is possible to locally etch the silicon oxide film without a mask by irradiating the silicon oxide film locally, in particular perpendicularly, through a fluorine source or a mixture thereof with a hydrogen source.

(実 施 例) 以下に実施例を挙げて説明する。(Example) Examples will be described below.

実施例1 シリコンの熱酸化によって形成したシリコン酸化膜を、
低圧(三フッ化窒素480Pa、水索20Pa)及IJ
′/又は大気圧(三フッ化窒素9.8×105Pa、水
素2.6X10コPa)での光処理(ArFエキシマー
レーf −照Nt 、パルスII波180Hz、パルス
エネルモ−40+n J /5hot)を行ってエツチ
ングを行つrこ。第1表に示すような5通りの方法を用
いた場合、表に示すようなエツチングレートが得られた
。エツチングは主に大気圧処理中に進み、低圧での光照
射処理はシリコン酸化膜表面を、引き続く大気圧処理で
エツチングされやすいよう、活性化させる働きをもって
いる。
Example 1 A silicon oxide film formed by thermal oxidation of silicon was
Low pressure (nitrogen trifluoride 480 Pa, water cable 20 Pa) and IJ
'/or optical treatment (ArF excimer ray f-irradiation Nt, pulsed II wave 180Hz, pulsed energy -40+nJ/5hot) at atmospheric pressure (nitrogen trifluoride 9.8 x 10 Pa, hydrogen 2.6 x 10 Pa) Let's do some etching. When the five methods shown in Table 1 were used, the etching rates shown in the table were obtained. Etching mainly proceeds during atmospheric pressure treatment, and low pressure light irradiation treatment has the effect of activating the silicon oxide film surface so that it is more easily etched in subsequent atmospheric pressure treatment.

第   1   表 実施例2 実施例1と同様の実験条件であるが、低圧光照射処理を
1分間とし、引続く大気圧処理におけるエツチング時間
を5分間とし、混合物中のトI2の圧力を0〜2.6×
105Paまで変化させた場合、エツチングされるシリ
コン酸化膜の厚さは、第1図に示すように水素量の増加
と共に10OAから37OAまで増加した。この場合の
光入射は基板に垂直である。
Table 1 Example 2 The experimental conditions were the same as in Example 1, but the low-pressure light irradiation treatment was 1 minute, the etching time in the subsequent atmospheric pressure treatment was 5 minutes, and the pressure of I2 in the mixture was 0 to 0. 2.6×
When the pressure was changed to 105 Pa, the thickness of the etched silicon oxide film increased from 10 OA to 37 OA as the amount of hydrogen increased, as shown in FIG. The light incidence in this case is perpendicular to the substrate.

実施例3 三フッ化窒素480Paと水素20Paの混合物中で2
分間、ArFエキシマ−レーザー光を石英基板に垂直に
照射し、引続いて三フッ化窒素9.8×105Paと水
素2.6X 103P a中で40分間同様に光照射し
てエツチングした。この場合の走査型電子g微鏡写真か
ら約2.5μmの石英すなわちシリコン酸化膜が等方的
にエツチングされたことが判る。尚、マスクとしてアル
ミニウムのストライプパターンを用いた。
Example 3 2 in a mixture of 480 Pa of nitrogen trifluoride and 20 Pa of hydrogen
The quartz substrate was perpendicularly irradiated with ArF excimer laser light for 40 minutes, and then etched by irradiation in the same manner for 40 minutes in 9.8 x 10 5 Pa of nitrogen trifluoride and 2.6 x 10 3 Pa of hydrogen. From the scanning electron g-micrograph in this case, it can be seen that about 2.5 μm of quartz or silicon oxide film was etched isotropically. Note that an aluminum stripe pattern was used as a mask.

実施例4 実施例1と同様の光線を用いて、三フッ化窒素104P
aでの光処理をシリコン酸化膜に対して垂直に7.5分
間行ったところ、エツチングの深さは100Aであった
Example 4 Using the same light beam as in Example 1, nitrogen trifluoride 104P
When the photoprocessing at step a was carried out perpendicularly to the silicon oxide film for 7.5 minutes, the etching depth was 100 Å.

実施例5 実施例1と同様の光線を用いて、低圧(三フッ化窒素4
80Pa、水素20Pa)での光処理を1分間、続いて
三フッ化窒素105Paでの光処理を5分間、それぞれ
シリコン酸化膜に対して垂直に行ったところ、エツチン
グの深さは100Aであった。
Example 5 Using the same light beam as in Example 1, low pressure (nitrogen trifluoride 4
When light treatment was carried out perpendicularly to the silicon oxide film for 1 minute with 80 Pa and 20 Pa of hydrogen, followed by 5 minutes of light treatment with nitrogen trifluoride at 105 Pa, the etching depth was 100 A. .

実施例6 光照射をシリコン酸化膜に対して水平方向に9分間行っ
た以外は実施例4と同様にしてエツチングを行ったとこ
ろ、エツチング深さは60Aであった。
Example 6 Etching was carried out in the same manner as in Example 4 except that the silicon oxide film was irradiated with light in the horizontal direction for 9 minutes, and the etching depth was 60 Å.

実施例7 光照射をシリコン酸化膜に対して水平方向に行った以外
は実施例5と同様にしてエツチングを行ったところ、エ
ツチング深さは60Aであった。
Example 7 Etching was carried out in the same manner as in Example 5 except that the silicon oxide film was irradiated with light in the horizontal direction, and the etching depth was 60 Å.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2におけるエツチング深さの水素量依存
性を示すグラフである。 (以 上) 特許出願人  ダイキン工業株式会社 代  理  人   弁理士  1) 村   第1(
第1図 市
FIG. 1 is a graph showing the dependence of etching depth on hydrogen amount in Example 2. (The above) Patent applicant Daikin Industries, Ltd. Agent Patent attorney 1) Mura No. 1 (
Figure 1 City

Claims (7)

【特許請求の範囲】[Claims] (1)波長157〜400nmの光線をフッ素源又はこ
れと水素源との混合物に照射して、これをシリコン酸化
膜に接触させることを特徴とするシリコン酸化膜のエッ
チング方法。
(1) A method for etching a silicon oxide film, which comprises irradiating a fluorine source or a mixture of the fluorine source and a hydrogen source with light having a wavelength of 157 to 400 nm and bringing the light into contact with the silicon oxide film.
(2)フッ素源がフッ素、フッ化水素、C_2Cl_2
F_4、SF_6、XeF_2、C_2F_6、C_3
F_6、CHF_3、CClF_3、三フッ化窒素、四
フッ化炭素、CBrF_3、CCl_2F_2、CF_
3Cl、C_2ClF_5、CHClF_2又は四フッ
化ケイ素である特許請求の範囲第1項に記載のエッチン
グ方法。
(2) Fluorine source is fluorine, hydrogen fluoride, C_2Cl_2
F_4, SF_6, XeF_2, C_2F_6, C_3
F_6, CHF_3, CClF_3, nitrogen trifluoride, carbon tetrafluoride, CBrF_3, CCl_2F_2, CF_
The etching method according to claim 1, wherein the etching method is 3Cl, C_2ClF_5, CHClF_2 or silicon tetrafluoride.
(3)光線を発生させる光源が、エキシマーレーザー、
Xe−Hgランプ又は低圧Hgランプである特許請求の
範囲第1項に記載のエッチング方法。
(3) The light source that generates the light beam is an excimer laser,
The etching method according to claim 1, which is a Xe-Hg lamp or a low-pressure Hg lamp.
(4)混合物中のフッ素源の含有量が少なくとも1容積
%である特許請求の範囲第1項に記載のエッチング方法
(4) The etching method according to claim 1, wherein the content of the fluorine source in the mixture is at least 1% by volume.
(5)照射する光線の波長が170〜250nmである
特許請求の範囲第1項に記載のエッチング方法。
(5) The etching method according to claim 1, wherein the wavelength of the irradiated light beam is 170 to 250 nm.
(6)フッ素源又はこれと水素源との混合物の圧力が1
0〜2×10^5Paである特許請求の範囲第1項に記
載のエッチング方法。
(6) The pressure of the fluorine source or the mixture of this and the hydrogen source is 1
The etching method according to claim 1, wherein the pressure is 0 to 2×10^5 Pa.
(7)フッ素源又はこれと水素源との混合物の圧力が1
0〜10^4Paの範囲で第1光処理を行い、次いで該
圧力が10^4〜2×10^5Paの範囲で第2光処理
を行う特許請求の範囲第1項に記載のエッチング方法。
(7) The pressure of the fluorine source or the mixture of this and the hydrogen source is 1
The etching method according to claim 1, wherein the first light treatment is performed at a pressure in the range of 0 to 10^4 Pa, and then the second light treatment is performed at a pressure in the range of 10^4 to 2 x 10^5 Pa.
JP17589784A 1984-08-23 1984-08-23 Etching method of silicon oxide film by irradiation of light Pending JPS6153732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17589784A JPS6153732A (en) 1984-08-23 1984-08-23 Etching method of silicon oxide film by irradiation of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17589784A JPS6153732A (en) 1984-08-23 1984-08-23 Etching method of silicon oxide film by irradiation of light

Publications (1)

Publication Number Publication Date
JPS6153732A true JPS6153732A (en) 1986-03-17

Family

ID=16004138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17589784A Pending JPS6153732A (en) 1984-08-23 1984-08-23 Etching method of silicon oxide film by irradiation of light

Country Status (1)

Country Link
JP (1) JPS6153732A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246802A2 (en) * 1986-05-20 1987-11-25 Fujitsu Limited Process for cleaning surface of semiconductor substrate
EP0259572A2 (en) * 1986-09-12 1988-03-16 International Business Machines Corporation High rate laser etching technique
JPH01102554A (en) * 1987-10-16 1989-04-20 Masataka Murahara Method for developing resist material
JPH0277124A (en) * 1988-06-29 1990-03-16 Tokyo Electron Ltd Dry etching
US5157091A (en) * 1987-10-07 1992-10-20 Murahara Masataka Ultraviolet-absorbing polymer material and photoetching process
US5221423A (en) * 1986-05-20 1993-06-22 Fujitsu Limited Process for cleaning surface of semiconductor substrate
US6171974B1 (en) * 1991-06-27 2001-01-09 Applied Materials, Inc. High selectivity oxide etch process for integrated circuit structures
EP1004401A3 (en) * 1998-11-26 2002-01-23 Speedfam Co.,Ltd. Wafer flattening system
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6965468B2 (en) 2003-07-03 2005-11-15 Reflectivity, Inc Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
JP2007183509A (en) * 2006-01-10 2007-07-19 Kyodo Printing Co Ltd Polarization unit and liquid crystal display device
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130370A (en) * 1974-04-01 1975-10-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130370A (en) * 1974-04-01 1975-10-15

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246802A2 (en) * 1986-05-20 1987-11-25 Fujitsu Limited Process for cleaning surface of semiconductor substrate
US5221423A (en) * 1986-05-20 1993-06-22 Fujitsu Limited Process for cleaning surface of semiconductor substrate
EP0259572A2 (en) * 1986-09-12 1988-03-16 International Business Machines Corporation High rate laser etching technique
JPS6370528A (en) * 1986-09-12 1988-03-30 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Etching by using dissociation of fluorine-containing molecule
JPH0529134B2 (en) * 1986-09-12 1993-04-28 Intaanashonaru Bijinesu Mashiinzu Corp
US5157091A (en) * 1987-10-07 1992-10-20 Murahara Masataka Ultraviolet-absorbing polymer material and photoetching process
JPH01102554A (en) * 1987-10-16 1989-04-20 Masataka Murahara Method for developing resist material
JPH0277124A (en) * 1988-06-29 1990-03-16 Tokyo Electron Ltd Dry etching
US6171974B1 (en) * 1991-06-27 2001-01-09 Applied Materials, Inc. High selectivity oxide etch process for integrated circuit structures
EP1004401A3 (en) * 1998-11-26 2002-01-23 Speedfam Co.,Ltd. Wafer flattening system
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US7153443B2 (en) 2003-03-28 2006-12-26 Texas Instruments Incorporated Microelectromechanical structure and a method for making the same
US6965468B2 (en) 2003-07-03 2005-11-15 Reflectivity, Inc Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
US6970281B2 (en) 2003-07-03 2005-11-29 Reflectivity, Inc. Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US6972891B2 (en) 2003-07-24 2005-12-06 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7002726B2 (en) 2003-07-24 2006-02-21 Reflectivity, Inc. Micromirror having reduced space between hinge and mirror plate of the micromirror
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures
JP2007183509A (en) * 2006-01-10 2007-07-19 Kyodo Printing Co Ltd Polarization unit and liquid crystal display device

Similar Documents

Publication Publication Date Title
JPS6153732A (en) Etching method of silicon oxide film by irradiation of light
US4731158A (en) High rate laser etching technique
CA1151106A (en) Plasma passivation technique for the prevention of post etch corrosion of plasma-etched aluminum films
US4255230A (en) Plasma etching process
US4666555A (en) Plasma etching of silicon using fluorinated gas mixtures
KR100344275B1 (en) Cleaning method
US5174856A (en) Method for removal of photoresist over metal which also removes or inactivates corrosion-forming materials remaining from previous metal etch
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US10453986B2 (en) Process for the manufacture of solar cells
US4734152A (en) Dry etching patterning of electrical and optical materials
US4226666A (en) Etching method employing radiation and noble gas halide
CA1153674A (en) Etching process with vibrationally excited sf.sub.6
US5741431A (en) Laser assisted cryoetching
JPS6041229A (en) Manufacture of semiconductor device and manufacturing equipment thereof
JPH01200628A (en) Dry etching
US4617086A (en) Rapid etching method for silicon by SF6 gas
JP2001068448A (en) Etching method
GB2171360A (en) Etching aluminum/copper alloy films
JPH02288332A (en) Method and apparatus for removing photoresist from semiconductor wafer and/or hybrid substrate
JP2001077059A (en) Processing of metallic oxide film
JP2976304B2 (en) Dry etching method
JPS6037127A (en) Manufacture of semiconductor device
JPS61177729A (en) Optically excited dry etching method
JPS5961123A (en) Manufacture of semiconductor device
JPS60211841A (en) Etching method