JPS6037127A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6037127A
JPS6037127A JP14551183A JP14551183A JPS6037127A JP S6037127 A JPS6037127 A JP S6037127A JP 14551183 A JP14551183 A JP 14551183A JP 14551183 A JP14551183 A JP 14551183A JP S6037127 A JPS6037127 A JP S6037127A
Authority
JP
Japan
Prior art keywords
gas
silicon
hydrogen
etching
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14551183A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ozawa
清 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14551183A priority Critical patent/JPS6037127A/en
Publication of JPS6037127A publication Critical patent/JPS6037127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Abstract

PURPOSE:To etch a silicon surface uniformly at high speed, and to improve electrical characteristics by projecting beams to silicon in an atmospheric gas containing a mixed gas of hydrogen halide or hydrogen gas and a halogen gas. CONSTITUTION:A silicon substrate 2 is arranged in an atmospheric vessel 1, and hydrogen chloride or a gas in which hydrogen chloride is diluted by argon or nitrogen flows in and out through a gas introducing port 3 and a gas discharge port 4. Ultraviolet beams are projected to the surface of the silicon substrate 2 through a projecting window 5 consisting of a synthetic quartz board or a calcium fluoride crystalline board or the like. A dilution rate (the percentage of hydrogen chloride, etc.) for anisotropic etching extends over 10 or 100, and a proper value is selected by an etching rate, the uniformity of the surface to be etched and the like. A heater 8 can also be mounted properly to the lower surface of the silicon substrate 2 in order to control the etching rate.

Description

【発明の詳細な説明】 (a1発明の技術分野 本発明は半導体装置の製造における乾式エツチング方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a1) Technical Field of the Invention The present invention relates to a dry etching method in the manufacture of semiconductor devices.

(b)技術の背景 半導体装置はその集積度が高くなるにしたがって微細パ
ターン加工を必要とし、このために各種の乾式エツチン
グ方法が開発されつつある。これらの代表的なものを挙
げると、(i)エツチング材(エッチャント)となるガ
スのプラズマを用いる方法と、(ii )エッチャント
となるガスの紫外線照射等によるラジカルを用いる方法
とがある。
(b) Background of the Technology As the degree of integration of semiconductor devices increases, fine pattern processing becomes necessary, and various dry etching methods are being developed for this purpose. Typical examples of these methods include (i) a method using plasma of a gas serving as an etching agent (etchant), and (ii) a method using radicals such as ultraviolet irradiation of a gas serving as an etchant.

前者はさらに、該プラズマを構成する荷電粒子の運動エ
ネルギーにより被加工物体を飛散させるものと、該プラ
ズマと被加工物体との化学的反応によって揮発性物質を
生成させて除去するものとがある。
The former further includes those in which the object to be processed is scattered by the kinetic energy of charged particles constituting the plasma, and those in which volatile substances are generated and removed by a chemical reaction between the plasma and the object to be processed.

(C1従来技術と問題点 上記(i)の方法は比較的新しい技術であるが、プラズ
マ衝撃によりシリコン表面にf、t] i&が生じやす
い、プラズマの空間的分布の不均一性に起因するエツチ
ング速度の不均一により表面状態の不均一性を生じやす
い、器壁もしくは電極表面あるいはこれらに付着した不
純物のプラズマによるスバンタによりシリコン表面が汚
染されやすい、プラズマを安定に発生させるためにガス
圧を高くできないためにエツチング速度が低く、かつ異
方性のエツチングができない場合があり、被加工シリコ
ンの温度制御が困難なためにエツチング速度の再現性が
充分でなく、かつマスクとしてレジストを用いた場合に
これが変゛質じやすい等の欠点があった。一方、(ii
 )の方法としては、古く弗素酸化物あるいは5弗化沃
素等のガスをエッチャントとして用いる方法が提案され
ている(特公昭4l−1085)が、エツチングの結果
シリコン表面に生じた不飽和結合(Dangling 
Bond )に電気的陰性度の大きい酸素あるいは弗素
が結合し、半導体装置の電気的特性に好ましくない#響
を及ぼす欠点があっノこ。
(C1 Prior art and problems) Although the method (i) above is a relatively new technology, it is easy to cause f, t on the silicon surface due to plasma bombardment, and etching due to non-uniformity in the spatial distribution of plasma. Non-uniform velocity tends to cause non-uniform surface conditions. The silicon surface is prone to contamination due to plasma from the vessel wall or electrode surface, or impurities attached to these. The gas pressure is high to generate stable plasma. In some cases, the etching rate is low and anisotropic etching is not possible due to the low etching process, and the reproducibility of the etching rate is not sufficient because it is difficult to control the temperature of the silicon being processed, and when a resist is used as a mask. This had disadvantages such as being easily changed.On the other hand, (ii
), a method using a gas such as fluorine oxide or iodine pentafluoride as an etchant has long been proposed (Japanese Patent Publication No. 41-1085).
There is a drawback that oxygen or fluorine, which has a high electronegativity, bonds to the bond (bond), which has an unfavorable effect on the electrical characteristics of the semiconductor device.

(d)発明の目的 本発明は、上記従来の方法における欠点を解消し、シリ
コン表面を均一かつ高速でエツチング可11ヒとし、こ
れにより電気的特性のすくれた半導体装置を提供可能と
することを目的とする。
(d) Purpose of the Invention The present invention eliminates the drawbacks of the above-mentioned conventional methods, makes it possible to etch the silicon surface uniformly and at high speed, and thereby makes it possible to provide a semiconductor device with excellent electrical characteristics. With the goal.

te1発明の構成 本発明は、水素成分およびシリコンと揮発性の化合物を
生じる水素以外の成分を有する雰囲気ガス中でシリコン
に紫外光を照射し、該照射部分におけるシリコンを除去
することを特徴とし、具体的には、雰囲気ガス中に/X
ロゲン化水素または水素ガスとハロゲンガスの混合ガス
を含ませ、最も好適なハロゲン化水素およびハロゲンガ
スとしてそれぞれ塩化水素および塩素ガスを用いること
を特徴とする。
te1 Structure of the Invention The present invention is characterized in that silicon is irradiated with ultraviolet light in an atmospheric gas containing a hydrogen component and components other than hydrogen that form volatile compounds with silicon, and the silicon in the irradiated portion is removed. Specifically, /X in the atmospheric gas
It is characterized by containing hydrogen halide or a mixed gas of hydrogen gas and halogen gas, and using hydrogen chloride and chlorine gas as the most preferable hydrogen halide and halogen gases, respectively.

(f)発明の実施例 以下に本発明の実施例を図面を参照して説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

本発明は、紫外光の照射により、例えば塩素(C1)等
のハロゲンのM Flu基(ラジカル)を生じさせてシ
リコン表面のエツチングを行うのであるが、この際に同
様に水素(H)のラジカルを存在させることが最大の特
徴である。
In the present invention, the silicon surface is etched by generating, for example, M Flu groups (radicals) of halogens such as chlorine (C1) by irradiation with ultraviolet light. The biggest feature is that it exists.

すなわち、本発明者は塩化水素をアルゴン(^r)また
は水素ガスで希釈した比較的高圧の雰囲気す〕で紫外光
を照射してシリコンをエツチングした場合、上記のよう
なプラズマエツチングあるいは弗素酸化物雰囲気中での
紫外光照射による同様のエツチングにおけると比べて平
滑、すなわち均一かつ異方性の高いエツチング面が得ら
れ、また炸裂された半導体素子の電気的特性が安定かつ
再現性において優れていること、とくにP−N接合にお
りる接合リーク電流が低減されていることを見出した。
In other words, the present inventor found that when silicon is etched by irradiating ultraviolet light in a relatively high-pressure atmosphere in which hydrogen chloride is diluted with argon (^r) or hydrogen gas, plasma etching as described above or fluorine oxide etching occurs. Compared to similar etching using ultraviolet light irradiation in an atmosphere, a smoother, more uniform and highly anisotropic etched surface is obtained, and the electrical properties of the exploded semiconductor elements are stable and excellent in reproducibility. In particular, it has been found that the junction leakage current flowing through the PN junction is reduced.

種々の実験結果から、この機構は雰囲気中に存在する水
素成分が、塩素成分によるシリコンの急速なエツチング
を適度に緩衝するとともに、紫外光によって生成した水
素ラジカルがエツチングされたシリコン表面の不飽和結
合(Dangling Bond)と結合し、該表面を
電気的および化学的に安定化させるごとによるものと推
察される。
Various experimental results have shown that this mechanism is due to hydrogen components present in the atmosphere moderately buffering the rapid etching of silicon caused by chlorine components, and hydrogen radicals generated by ultraviolet light reducing unsaturated bonds on the etched silicon surface. It is presumed that this is due to bonding with (Dangling Bond) and electrically and chemically stabilizing the surface.

ずなわぢ、塩素等のハロゲン成分は紫外光の照射によっ
てラジカルを生じ、該ハロゲン原子のラジカルはシリコ
ンの表面において、例えば四塩化シリコン(SiCI4
 )を生ずる。該5iCI4は揮発性であるために該シ
リコン表面から離脱する。このようにして、新しく現れ
たシリコン表面が漸次エツチングされる。
Zunawaji, halogen components such as chlorine generate radicals when irradiated with ultraviolet light, and the radicals of the halogen atoms form, for example, silicon tetrachloride (SiCI4) on the surface of silicon.
). The 5iCI4 is volatile and therefore detaches from the silicon surface. In this way, the newly appearing silicon surface is gradually etched.

ところで、塩素等のハロゲンは一般にエツチング速度が
高いために、シリコン表面に何等かの物理的形状の不均
一さく例えば、傷あるいは塵埃粒子等)が存在している
と、該不拘−さが強調される傾向がある。これに対して
水素等の比較的不活性あるいは不活性ガスが存在すると
、1ノチングが異方性を失わない程度に緩fJiされ、
上記のようにして生ずる不均一さが無くなり、平清なエ
ツチング面が得られる。
By the way, since halogens such as chlorine generally have a high etching rate, if there are any physical irregularities (such as scratches or dust particles) on the silicon surface, this inconsistency will be emphasized. There is a tendency to On the other hand, if a relatively inert or inert gas such as hydrogen is present, one notching will have a gentle fJi to the extent that the anisotropy is not lost.
The non-uniformity caused in the above manner is eliminated, and a clear etched surface is obtained.

また、雰囲気中に水素成分が含まれている場合(例えば
水素ガスあるいは塩化水素からの水素)、紫外光の照射
により該水素原子のラジカルが生じ、上記のようにして
エンチングされた直後のシリコン表面に新しく形成され
ノ、−不飽和結合手と結合してこれを飽和する。その結
果法シリコン表面ば電気的および化学的に安定化し、こ
こ7に形成される半導体素子の電気的特性が安定化され
、かつその再現性が向上されるのである。
In addition, if the atmosphere contains hydrogen components (for example, hydrogen from hydrogen gas or hydrogen chloride), radicals of the hydrogen atoms are generated by irradiation with ultraviolet light, and the silicon surface immediately after being etched as described above. It combines with the newly formed -unsaturated bond and saturates it. As a result, the silicon surface is electrically and chemically stabilized, and the electrical characteristics of the semiconductor element formed thereon are stabilized and their reproducibility is improved.

前記のような従来の同種のエンチング方法においては、
例えば雰囲気ガスとして前記弗素酸化物を用いた場合に
は、該ガス中の酸素成分がシリコン表面の不飽和結合手
と結合して該表面に電子ドナー準位を形成する。また、
たとえエツチング雰囲気中に酸素成分が存在しない場合
であっても、シリコンを大気中に取り出した時にその表
面における前記不飽和結合手は大気中の酸素と結合して
同様の準位を形成する。その結果、このような状態でエ
ツチングされたシリコン表面においては、表面で所望の
電気的特性が得られない結果となる。
In the conventional enching method of the same type as mentioned above,
For example, when the above-mentioned fluorine oxide is used as the atmospheric gas, the oxygen component in the gas combines with unsaturated bonds on the silicon surface to form an electron donor level on the surface. Also,
Even if no oxygen component is present in the etching atmosphere, when silicon is taken out into the atmosphere, the unsaturated bonds on its surface combine with oxygen in the atmosphere to form a similar level. As a result, a silicon surface etched in such a state will not have the desired electrical characteristics on the surface.

具体的な例としてはリーク電流が比較的太き(なる場合
である。すなわち、第1図に示すようなP−N接合にお
いて接合リーク電流が大きくなり、これが電気的雑音を
発生ずる原因となったり、あるいは動作を不安定とする
等、半導体素子の電気的特性を損ない、かつ製造におけ
る再現性を低下させるごとになる。
A specific example is when the leakage current is relatively large (in other words, in a P-N junction as shown in Figure 1, the junction leakage current becomes large, which causes electrical noise). Otherwise, the electrical characteristics of the semiconductor element may be impaired, such as making the operation unstable, and the reproducibility in manufacturing may be reduced.

塩素等のハロゲン原子ラジカルも上記酸素と同様の挙動
を示すことが予想されるのであるが、該塩素原子等のラ
ジカルは主としてエツチングに寄与して新しいシリコン
表面を露出させ、一方、水素原子ラジカルはエンチング
に寄与しないために、結局のところ前記不飽和結合手は
水素原子ラジカルと結合して飽和される確率が高くなる
ものと推測されるのである。
Halogen atom radicals such as chlorine are expected to exhibit the same behavior as oxygen, but chlorine atom radicals mainly contribute to etching and expose new silicon surfaces, while hydrogen atom radicals Since it does not contribute to etching, it is presumed that the unsaturated bond has a high probability of being saturated by bonding with a hydrogen atom radical.

本発明の具体的実施例を以下に説明する。Specific embodiments of the present invention will be described below.

第2図は本発明において用いるエソナング装置の概要構
成図であって、雰囲気容器1の内部にはシリコン基板2
が配置されており、ガス導入口3およびガス1)L出口
4を通じて、例えば塩化水素(11(:I)もしくは塩
化水素をアルゴン(Ar)または窒素(N2)で希釈し
たガスが流入出される。該雰囲気容器1のシリコン基板
2の被エツチング面に対向する部分には、例えば合成石
英板あるいは弗化カルシウム(CaF2)結晶板等から
成る紫外光投射窓5が設けられており、これを通じて光
源(図示省略)からの、例えば300nmより短い波長
の紫外光が前記シリコン基板2の表面に投射される。
FIG. 2 is a schematic configuration diagram of the esonant apparatus used in the present invention, in which a silicon substrate 2 is placed inside the atmosphere container 1.
For example, hydrogen chloride (11(:I)) or a gas obtained by diluting hydrogen chloride with argon (Ar) or nitrogen (N2) flows in and out through the gas inlet 3 and the gas 1)L outlet 4. An ultraviolet light projection window 5 made of, for example, a synthetic quartz plate or a calcium fluoride (CaF2) crystal plate is provided in a portion of the atmosphere container 1 facing the surface to be etched of the silicon substrate 2, through which a light source ( For example, ultraviolet light having a wavelength shorter than 300 nm is projected onto the surface of the silicon substrate 2 (not shown).

一般に、シリコン基板2の表面を所定パターンにエンチ
ングするために、選択的エツチングが行われるのである
が、該選択的エツチングを生じさせるためには、シリコ
ン基板2の表面に該パターンに応じて紫外光を投射する
必要がある。このようなパターン光を形成する方法とし
ては、同図に示すようにフォトマスク6 (紫外光透過
性の基板を用いたネガフィルム等)を該雰囲気容器1の
外部あるいは内部の前記紫外光の光路じように設けても
よく、また通密のフォトエツチングにおけると同様にし
てシリコン基板2の被エツチング表面に適当な層厚のフ
ォトレジストマスク層を設けてもよい。
Generally, selective etching is performed to etch the surface of the silicon substrate 2 into a predetermined pattern. need to be projected. As shown in the figure, a method for forming such patterned light is to use a photomask 6 (such as a negative film using a substrate that transmits ultraviolet light) to cover the optical path of the ultraviolet light outside or inside the atmosphere container 1. Alternatively, a photoresist mask layer of an appropriate thickness may be provided on the surface of the silicon substrate 2 to be etched in the same manner as in the case of continuous photoetching.

上記で述べたフォトレジスト層の適当な層厚とは、紫外
光がシリコン基板2の表面のエツチングされない部分に
到達しない程度の吸収を示すに充分な厚さを意味する。
The above-mentioned suitable thickness of the photoresist layer means a thickness sufficient to absorb ultraviolet light to the extent that it does not reach the unetched portions of the surface of the silicon substrate 2.

すなわち、第3図に示すような異方性エツチングが行わ
れるための希釈率(全雰囲気ガス中における塩化水素等
の百分率)は10ないし100の間で、エツチング速度
、エツチング表面の均−性等により適当な値を選択すれ
ばよい。また、エンチング速度を制御するために、第2
図に示すようにシリコン基h2の土面にヒータ8を適宜
設けることも可能である。
That is, the dilution ratio (percentage of hydrogen chloride, etc. in the total atmospheric gas) for performing anisotropic etching as shown in FIG. 3 is between 10 and 100, and the etching rate, uniformity of the etched surface, etc. An appropriate value may be selected. Also, in order to control the enching speed, a second
As shown in the figure, it is also possible to appropriately provide a heater 8 on the soil surface of the silicon base h2.

また、上記実施例において塩化水素を、例えば塩素ガス
(C12,’)と水素ガス(+12)の混合ガスに置換
しても同様の効果が得られる。ただし、この場合には塩
素ガスおよび水素ガスから塩素原子ラジカルおよび水素
原子ラジカルをそれぞれを発生させる必要があり、それ
ぞれのガスを解離させせるに要する紫外光エネルギーが
異なるために、光源として330nmと250nmの紫
外光を投射できるものを用いることになる。これらの照
射エネルギーばiW/cm2を標準とするが、CI2お
よび+12の混合比により上記波長の紫外光のエネルギ
ー比を変えてもよい。CI2と112との混合比は、I
:100以上または100:1以下が望ましい。あるい
は、これらCI2と112のそれぞれをアルゴン(Ar
) 、窒素(N2)等で1/100程度に希釈したのち
に混合してもよい。いずれの混合成分の雰囲気ガスにお
いても、エツチング時の全圧は1気圧程度を標準とする
Furthermore, similar effects can be obtained by replacing hydrogen chloride in the above embodiments with a mixed gas of chlorine gas (C12,') and hydrogen gas (+12), for example. However, in this case, it is necessary to generate chlorine atom radicals and hydrogen atom radicals from chlorine gas and hydrogen gas, respectively, and since the ultraviolet light energy required to dissociate each gas is different, 330 nm and 250 nm light sources are used as light sources. A device that can project ultraviolet light will be used. These irradiation energies iW/cm2 are standard, but the energy ratio of ultraviolet light of the above wavelengths may be changed by changing the mixing ratio of CI2 and +12. The mixing ratio of CI2 and 112 is I
:100 or more or 100:1 or less is desirable. Alternatively, each of these CI2 and 112 can be replaced with argon (Ar).
), may be mixed after being diluted to about 1/100 with nitrogen (N2) or the like. Regardless of the atmospheric gas of any of the mixed components, the standard total pressure during etching is about 1 atmosphere.

上記実施例における塩化水素あるいは塩素ガスと水素ガ
スとの混合ガスの塩素成分に替えて、他のハロゲン成分
を有するガスを用いても同様の効果を得ることができる
Similar effects can be obtained by using a gas having another halogen component in place of the chlorine component of hydrogen chloride or the mixed gas of chlorine gas and hydrogen gas in the above embodiments.

上記実施例の方法に□よって、第1図に示したまうなP
−N接合を有する半導体素子表面に軽いエツチングを施
した結果、該接合部分における接合リーク電流を従来の
172程度以下に低減することが可能であり、かつ良好
な再現性を得ることができた。
By using the method of the above embodiment, the P as shown in FIG.
As a result of lightly etching the surface of a semiconductor element having a -N junction, it was possible to reduce the junction leakage current at the junction to about 172 or less than the conventional value, and to obtain good reproducibility.

tg)発明の効果 本発明によれば、シリコン基板に対する損傷および汚染
を生じることなく、均一かつ高速で異方性の高いエツチ
ングが可能となり、電気的特性のすぐれた半導体素子を
提供できるリノ果がある。
tg) Effects of the Invention According to the present invention, uniform, high-speed, and highly anisotropic etching is possible without causing damage or contamination to the silicon substrate, and it is possible to provide semiconductor devices with excellent electrical characteristics. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する半導体素子におけるP−N接
合部分を示す模式図、第2図は本発明におけるエツチン
グに用いる装置の概要構成を示す図、第3図はサイドエ
ツチングの発生機構を説明するための図である。 図において、1は雰囲気容器、2はシリコン基板、3は
ガス導入口、4はガス排出口、5は紫外光投射窓、6は
フォトマスク、7はフォトレジスト層、8はヒータであ
る。
FIG. 1 is a schematic diagram showing a P-N junction part in a semiconductor device to which the present invention is applied, FIG. 2 is a diagram showing a general configuration of an apparatus used for etching in the present invention, and FIG. 3 is a diagram showing the mechanism of side etching. It is a figure for explaining. In the figure, 1 is an atmosphere container, 2 is a silicon substrate, 3 is a gas inlet, 4 is a gas outlet, 5 is an ultraviolet light projection window, 6 is a photomask, 7 is a photoresist layer, and 8 is a heater.

Claims (1)

【特許請求の範囲】 (11ハロゲン化水素を含む雰囲気ガス中でシリコンに
紫外光を照射し、該照射部分におけるシリコンを除去す
ることを特徴とする半導体装置の製造方法。 (2)ハロゲン化水素として塩化水素を用いることを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。 (3)ハロゲン化水素を水素とハロゲンガスとの混合ガ
スで置換したことを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。 (4)ハロゲンが塩素であることを特徴とする特許請求
の範囲第3項記載の半導体装置の製造方法。
[Claims] (11) A method for manufacturing a semiconductor device, characterized by irradiating silicon with ultraviolet light in an atmospheric gas containing hydrogen halide and removing silicon in the irradiated portion. (2) Hydrogen halide (3) A method for manufacturing a semiconductor device according to claim 1, characterized in that hydrogen chloride is used as the hydrogen chloride. (3) A patent claim characterized in that hydrogen halide is replaced with a mixed gas of hydrogen and halogen gas. A method for manufacturing a semiconductor device according to claim 1. (4) A method for manufacturing a semiconductor device according to claim 3, wherein the halogen is chlorine.
JP14551183A 1983-08-09 1983-08-09 Manufacture of semiconductor device Pending JPS6037127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551183A JPS6037127A (en) 1983-08-09 1983-08-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551183A JPS6037127A (en) 1983-08-09 1983-08-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6037127A true JPS6037127A (en) 1985-02-26

Family

ID=15386931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551183A Pending JPS6037127A (en) 1983-08-09 1983-08-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6037127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627866A (en) * 1985-07-02 1987-01-14 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63241930A (en) * 1987-03-30 1988-10-07 Agency Of Ind Science & Technol Etching of gallium arsenide by optical pumping
JP2008047334A (en) * 2006-08-11 2008-02-28 Canon Inc Switch operation member and switching device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627866A (en) * 1985-07-02 1987-01-14 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS63241930A (en) * 1987-03-30 1988-10-07 Agency Of Ind Science & Technol Etching of gallium arsenide by optical pumping
JPH0533817B2 (en) * 1987-03-30 1993-05-20 Kogyo Gijutsuin
JP2008047334A (en) * 2006-08-11 2008-02-28 Canon Inc Switch operation member and switching device

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
KR930002679B1 (en) Ashing method of semiconductor device manufacturing process
US4668337A (en) Dry-etching method and apparatus therefor
JP3317582B2 (en) Method of forming fine pattern
US4473435A (en) Plasma etchant mixture
US4601778A (en) Maskless etching of polysilicon
US5342481A (en) Dry etching method
JP4818524B2 (en) Method for forming photosensitive film pattern of semiconductor element
JPS6037127A (en) Manufacture of semiconductor device
KR910008983B1 (en) Rest particle remove method using anisotrophic ethching
JP3358808B2 (en) How to insulate organic substances from substrates
JP2001027799A (en) Production of phase shift mask
JPH06342744A (en) Prevention of reflection by a-c
JPH0478005B2 (en)
JP2966036B2 (en) Method of forming etching pattern
JPH03109728A (en) Manufacture of semiconductor device
JPH03155621A (en) Dry etching method
JP3125004B2 (en) Substrate surface processing method
JPH0360032A (en) Dryetching
JPS5928156A (en) Manufacture of exposure mask
JPH10270424A (en) Method of forming semiconductor element pattern
JPH0936099A (en) Dry etching
JPH06120174A (en) Manufacture of semiconductor device
JP3357951B2 (en) Dry etching method
JP2001237229A (en) Substrate treatment method, substrate treatment equipment and device manufacturing method