JPS6152305A - Production of pulverous metallic powder - Google Patents

Production of pulverous metallic powder

Info

Publication number
JPS6152305A
JPS6152305A JP17534684A JP17534684A JPS6152305A JP S6152305 A JPS6152305 A JP S6152305A JP 17534684 A JP17534684 A JP 17534684A JP 17534684 A JP17534684 A JP 17534684A JP S6152305 A JPS6152305 A JP S6152305A
Authority
JP
Japan
Prior art keywords
heating
metal
plasma
chloride
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17534684A
Other languages
Japanese (ja)
Inventor
Susumu Hiratake
平竹 進
Yasunobu Shimomoto
下元 康延
Mamoru Takeda
守 竹田
Kazuo Yanagihara
柳原 和夫
Ryozo Inoue
良三 井上
Tadayoshi Shimizu
清水 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Daido Steel Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Daido Steel Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17534684A priority Critical patent/JPS6152305A/en
Publication of JPS6152305A publication Critical patent/JPS6152305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain pulverous metallic powder having high purity with good productivity by heating and drying a metallic chloride to a low temp. in an inert gas and gaseous hydrogen atmosphere in a specially made vessel then subjecting the metallic chloride to plasma heating in a gaseous hydrogen atmosphere. CONSTITUTION:A hopper 14 is connected through a valve 15 to a heating and drying pelletizer 16 and is further communicated with a heating furnace 18 via a connecting pipe 17. The inside of these devices is maintained in the inert gas and gaseous hydrogen atmosphere. The chloride B of the metal in the hopper 14 is heated and dried at the temp. lower than the sintering temp. of said metal and is at the same time pelletized. The dry pellets C fall into the furnace 18 where the pellets are heated to a high temp. by the plasma arc injected from a plasma torch 19 and are at the same time reduced. The metallic smoke generated in this stage flows through a discharge port 20 and a valve 21 to a capturing device 22 by which the smoke is captured as the pulverous metallic powder D.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はプラズマ加熱による金属微粉末の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing fine metal powder by plasma heating.

近年、金属微粉末は、その金属塊には全く見られないよ
うな磁気特性、光学特性、電気特性、化学反応性及び焼
結性等により、大容量の磁気メモリー、センサ、太陽熱
吸収塗料、超電導材料、高効率触媒、新焼結体等、その
新規利用分野が急展開している。
In recent years, fine metal powders have been used in large-capacity magnetic memories, sensors, solar heat-absorbing paints, and superconductors due to their magnetic, optical, electrical, chemical reactivity, and sintering properties, which are completely absent from metal lumps. New fields of use are rapidly developing, such as materials, high-efficiency catalysts, and new sintered bodies.

ある。be.

〈従来の技術とその問題点〉 従来、金属微粉末の製造方法として、化学的方法と物理
的方法が採用されている。前者の化学的方法は、溶液中
での化学反応によ)沈殿物として金属微粉末を得る方法
や、金属よシも蒸気圧が大きく且つ融点の低い金属化合
物、例えば金属の塩化物を、加熱蒸発させて水素で還元
し、金属微粉末を捕集する方法であるが、この従来法に
よると、金属微粉末が水分や副生成物等で汚染されるこ
とを避けられず、したがって純度の低いものとなる問題
点がある。また後者の物理的方法は、真空蒸発法と通称
され、金属を低圧の不活性ガス中で加熱蒸発させて金属
微粉末を捕集する方法で、現在一般的に採用されている
が、この従来法によると、純度の高いものが得られる反
面、蒸発速度が遅いために生産性が低く、シたがって高
価なものとなる問題点がある。
<Prior art and its problems> Conventionally, chemical methods and physical methods have been adopted as methods for producing fine metal powder. The former chemical method involves obtaining a fine metal powder as a precipitate (through a chemical reaction in a solution), or heating a metal compound with a higher vapor pressure and lower melting point than a metal, such as a metal chloride. This method collects fine metal powder by evaporating it and reducing it with hydrogen, but this conventional method inevitably causes the fine metal powder to be contaminated with moisture and by-products, resulting in low purity. There are some serious problems. The latter physical method, commonly known as the vacuum evaporation method, is a method in which metal is heated and evaporated in a low-pressure inert gas to collect fine metal powder, and is currently commonly used. According to this method, although a product of high purity can be obtained, the problem is that the evaporation rate is slow, resulting in low productivity and therefore high cost.

最近、プラズマ水素ガスの金属に対する反応性を利用し
、金属をプラズマ加熱する金属微粉末の製造方法(通称
、ガス中蒸発法)が提案されている(例えば、雑誌「化
学と工業」、第36巻第8号、72〜74頁、1983
年)。これは、水素ガス雰囲気下に金属をプラズマ加熱
し、この際、溶融金属の周辺部から激しく発生する所謂
金属煙を捕集する方法であるが、この方法でも依然とし
て、得られる金属微粉末の生産性(例えば収率)で問題
点がある。
Recently, a method for producing fine metal powder (commonly known as evaporation in gas method) has been proposed, which utilizes the reactivity of plasma hydrogen gas to metal and heats the metal with plasma. Volume No. 8, pp. 72-74, 1983
Year). This is a method in which metal is plasma-heated in a hydrogen gas atmosphere, and the so-called metal smoke generated violently from the periphery of the molten metal is collected, but even with this method, the production of fine metal powder is still difficult. There are problems with performance (e.g. yield).

〈発明が解決しようとする問題点〉 本発明は、斜上の如き従来法の問題点を解決するもので
、所定条件下に、前処理した金属の塩化物をプラズマ加
熱することにより、高純度の金属微粉末を生産性良く製
造する方法を提供するものである。
<Problems to be Solved by the Invention> The present invention solves the problems of the conventional method such as slanting. The present invention provides a method for manufacturing fine metal powder with high productivity.

〈問題点を解決するだめの手段〉 しかして本発明は、金属の塩化物を不純物が混入しない
ように該金属と同一材質の容器又はセラミンクの容器等
に入れ、不活性ガス及び/又は水素ガスの雰囲気下にお
いて該金属の焼結温度よりも低い温度で加熱乾燥し、次
いでその乾燥物を大気にさらさないで水素ガス存在下に
プラズマ加熱することを特徴とする金属微粉末の製造方
法に係る0 本発明において処理対象となるのは、例えば鉄やニッケ
ルの金属微粉末を製造する場合にそれぞれ塩化第一鉄(
FeCJh )や塩化ニッケル(Ni Cl+ )等、
金属の塩化物であり、これらは結晶水を含むものでも(
例えばNiC#2・6H20) 、又は所謂無水物でも
よい。そして、このような金属の塩化物を加熱乾燥する
。金属の塩化物は、一般に粉状で、前述の如く結晶水を
含んでいるものもあり、また所謂無水物であっても、相
当量の水分を含有しているのが実情であって、更に当初
はほぼ完全な無水物であっても、もともと吸湿し易い性
質のため、取扱中に大気中の水分を吸収してしまう。第
1図は市販の無水塩化ニッケルの加熱(乾燥)又は加熱
(乾燥)後の放置による重量変化を例示するグラフであ
る。図中、乾燥曲線1は開封直後の試料を300℃で乾
燥した場合、乾燥曲線2は開封50日後(室温、大気中
)の試料を同様に乾燥した場合、吸湿曲線3は上記のよ
うに乾燥して恒量状態となった試料をデシケータ内に室
温で放置した場合、吸湿曲線4は吸湿曲線3と同じ試料
を大気にさらして同様に放置した場合である。名目上は
無水塩化ニッケルであっても相当量の水分を含有してい
ること、及び乾燥してほぼ完全に無水状態とした塩化ニ
ッケルが吸湿し易いものであること等が明らかである。
<Means for Solving the Problems> However, in the present invention, the metal chloride is placed in a container made of the same material as the metal or a ceramic container, etc. to prevent contamination with impurities, and the metal chloride is placed in a container made of the same material as the metal or in a ceramic container, etc., and then injected with an inert gas and/or hydrogen gas. A method for producing fine metal powder, which comprises heating and drying the metal at a temperature lower than the sintering temperature of the metal in an atmosphere of 0 In the present invention, the processing target is, for example, ferrous chloride (ferrous chloride) when manufacturing fine metal powders of iron and nickel, respectively.
FeCJh ), nickel chloride (Ni Cl+ ), etc.
Chlorides of metals, even those containing water of crystallization (
For example, NiC#2.6H20) or a so-called anhydride may be used. Then, such a metal chloride is heated and dried. Metal chlorides are generally in powder form, and as mentioned above, some contain water of crystallization, and even if they are so-called anhydrous, they actually contain a considerable amount of water. Even though it is initially almost completely anhydrous, it absorbs moisture from the atmosphere during handling due to its inherently hygroscopic nature. FIG. 1 is a graph illustrating the weight change of commercially available anhydrous nickel chloride due to heating (drying) or leaving after heating (drying). In the figure, drying curve 1 is when the sample is dried at 300°C immediately after opening, drying curve 2 is when the sample is similarly dried 50 days after opening (at room temperature, in the atmosphere), and moisture absorption curve 3 is when drying as described above. Moisture absorption curve 4 is the same sample as moisture absorption curve 3 when it is exposed to the atmosphere and left in the same way when the sample is left in a desiccator at room temperature. It is clear that even nominally anhydrous nickel chloride contains a considerable amount of water, and that nickel chloride that has been dried to an almost completely anhydrous state easily absorbs moisture.

本発明において肝要な点の一つは、金属の塩化物をその
まま、したがって相当量の水分(以下、水分は結晶水を
も含む意味)を含有した状態でプラズマ加熱するのでは
カ<、プラズマ加熱する前の段階で金属の塩化物を加熱
乾燥する点にある。
One of the important points in the present invention is that it is difficult to plasma-heat the metal chloride as it is, and therefore in a state containing a considerable amount of water (hereinafter, water includes crystal water). The point is that the metal chloride is heated and dried before it is processed.

加熱乾燥することなく、水分を含有した状態で金属の塩
化物をプラズマ加熱すると、種々の弊害を生じる。それ
は例えば、プラズマ加熱によって得られる金属微粉末中
の酸素含有量が高くなり(2゜6〜5重量%以上にもな
る)、それだけ純度が低下して、この結果、そのような
金属微粉末を使用して焼結する場合は焼結状態が劣化し
、そのような金属微粉末を導電材として使用する場合は
抵抗値が増加する等の問題を引き起こす。また、プラズ
マ加熱の際に発生する水蒸気が加熱炉内壁面へ金属微粉
末を付着させ、それだけ収率も悪くなる。
Plasma heating of a metal chloride in a water-containing state without heating and drying causes various problems. For example, the oxygen content in fine metal powder obtained by plasma heating becomes high (as much as 2.6 to 5% by weight or more), and the purity decreases accordingly. When used for sintering, the sintered state deteriorates, and when such fine metal powder is used as a conductive material, problems such as an increase in resistance value arise. Moreover, the water vapor generated during plasma heating causes fine metal powder to adhere to the inner wall surface of the heating furnace, which deteriorates the yield accordingly.

更に、結果的には金属微粉末の純度や収率にも悪影響を
及ぼすこととなるのであるが、プラズマ加熱の際に発生
する水蒸気がプラズマを不安定にし、同様に発生する塩
酸液が加熱炉構成材料を損なう等、操業上のトラブルを
誘引して、その上、もともと水分の蒸発にはプラズマ加
熱のような高温は必要でないにもかかわらず、そのよう
なプラズマ加熱によって水分の蒸発除去をすることとな
るため、熱効率も悪いのである。
Furthermore, the water vapor generated during plasma heating destabilizes the plasma, and the hydrochloric acid solution generated in the same way is used in the heating furnace. In addition to causing operational troubles such as damaging constituent materials, plasma heating does not require high temperatures like plasma heating to evaporate water. As a result, thermal efficiency is also poor.

一般に、粉体の加熱乾燥は高温である方が速く、水分も
それだけよく除去される。しかし、温度が高くなると粉
体は固化して大きくなり、更には溶融して塊となってし
まう。本発明における金属の塩化物の加熱乾燥は、次段
での金属微粉末製造プロセスに適した最も効果的な乾燥
を行うものであシ、金属の塩化物の水素によるプラズマ
還元に最も効果的な条件を定めるものである。この際、
加熱乾燥中に不純物が混入しないようにする必要がある
ことはいうまでもない。例えば、加熱乾燥中に金属の塩
化物が接触することとなる容器類は、該塩化物を構成す
る金属と同−材質製のものや、該塩化物による腐食のな
いセラミック製のもの等を使用すれば、不純物の混入が
ない。具体的に加熱乾燥温度は、金属の塩化物の粉末が
二次粒子を形成しはじめる温度と同等以上が好ましく、
該塩化物を構成する金属の粉末(該塩化物の粉末と同じ
粒度)の焼結温度以下で、該塩化物の物性によシ適宜選
択する。例えば、塩化ニッケルを加熱乾燥する場合には
200〜300℃が好ましい。このような温度条件のも
とで、加熱乾燥は比較的速く達成され、前記塩化物の粉
末の固化が一部みられるものの、本発明の如きプラズマ
による金属微粉末の製造においては、蒸発→水素還元→
金属微粉末の工程が非常にスムーズに行われる。尚、塩
化ニッケルの場合にはあまり高温に加熱すると、塩化ニ
ッケルの蒸気圧が高くなシ、乾燥容器等にその蒸気が付
着する等、作業性を悪化させることがあるので、前述の
範囲以上に高温で加熱乾燥することは好ましくなく、経
済性も悪い。
Generally, powders can be dried by heating faster at higher temperatures, and water can be removed more efficiently. However, when the temperature rises, the powder solidifies and becomes larger, and even melts and becomes a lump. The heating drying of the metal chloride in the present invention is the most effective drying method suitable for the next stage metal fine powder production process, and the most effective drying method for the plasma reduction of the metal chloride by hydrogen. It determines the conditions. On this occasion,
Needless to say, it is necessary to prevent impurities from being mixed in during heat drying. For example, containers that come into contact with metal chlorides during heat drying should be made of the same material as the metal that makes up the chloride, or made of ceramic that will not be corroded by the chloride. That way, there will be no contamination of impurities. Specifically, the heating drying temperature is preferably equal to or higher than the temperature at which the metal chloride powder begins to form secondary particles.
The sintering temperature is below the sintering temperature of the metal powder constituting the chloride (having the same particle size as the chloride powder), and is appropriately selected depending on the physical properties of the chloride. For example, when drying nickel chloride by heating, the temperature is preferably 200 to 300°C. Under such temperature conditions, heat drying is achieved relatively quickly, and although some solidification of the chloride powder is observed, in the production of fine metal powder using plasma as in the present invention, evaporation → hydrogen Reduction →
The metal fine powder process is carried out very smoothly. In the case of nickel chloride, if it is heated to too high a temperature, the vapor pressure of nickel chloride will not be high, and the vapor will adhere to the drying container, etc., which may worsen workability, so do not exceed the above range. Drying by heating at high temperatures is not preferable and is not economical.

第2図は、かかる加熱乾燥に使用する試験装置を例示す
る略視図であシ、この試験装置は前述した第1図の試験
に使用したものである。電熱線5が埋設されている電気
炉6で外周面を囲繞された石英管7があり、この石英管
7の内部には金属の塩化物Aが充填されているセラミッ
ク製ボート8が挿入載置されていて、その入口側と出口
側はそれぞれシリコンキャップ9.10で密栓されてい
る。そして、入口側のシリコンキャップ9には温度計1
1と水素又は不活性ガス(以下、アルゴンガスで例示す
る)の供給管12が、また出口側のシリコンキャップ1
0には水素又はアルゴンガスの排出管13が、いずれも
石英管7の内部へ通じて取付けられておシ、排出管13
の先端は水封されている。連続的に供給される水素又は
アルゴンガスの雰囲気下、所定温度で金属の塩化物Aを
加熱し、この際に発生する水蒸気を水素又はアルゴンガ
スで搬出して金属の塩化物Aを乾燥するようになってい
る。
FIG. 2 is a schematic diagram illustrating a test device used for such heat drying, and this test device was used in the test shown in FIG. 1 described above. There is a quartz tube 7 whose outer circumferential surface is surrounded by an electric furnace 6 in which a heating wire 5 is buried, and a ceramic boat 8 filled with metal chloride A is inserted and placed inside the quartz tube 7. The inlet and outlet sides are respectively sealed with silicone caps 9 and 10. Then, a thermometer 1 is attached to the silicone cap 9 on the inlet side.
1 and a supply pipe 12 for hydrogen or inert gas (hereinafter exemplified as argon gas), and a silicon cap 1 on the outlet side.
A hydrogen or argon gas exhaust pipe 13 is connected to the quartz tube 7 and the exhaust pipe 13 is connected to the quartz tube 7.
The tip is sealed with water. Metal chloride A is heated at a predetermined temperature in an atmosphere of continuously supplied hydrogen or argon gas, and the water vapor generated at this time is carried out with hydrogen or argon gas to dry metal chloride A. It has become.

かくして金属の塩化物を加熱乾燥し、次いでその乾燥物
をプラズマ加熱する。この場合の乾燥物の形態は、粉末
状であっても又はベレット状に造粒されたもの等であっ
てもよく、具体的にプラズマ加熱は、例えばプラズマト
ーチを装備する一般的な加熱炉を使用すればよい。前記
乾燥物を加熱炉に搬入し、プラズマトーチからのプラズ
マアーク(プラズマジェット)で加熱するのである。こ
の際、乾燥物の加熱炉への搬入は大気にさらさないよう
にして行ない、プラズマ加熱は水素ガス存在下に行なう
。乾燥物を大気にさらすと、該乾燥物が大気中の水分を
吸湿したり、或いは大気中の酸素を同伴してプラズマ加
熱されることとなるため、水分を含有した状態で金属の
塩化物をプラズマ加熱する場合と同様の前述したような
種々の弊害を生じる。また、プラズマ水素ガスの金属に
対する反応性を利用し、金属の塩化物の乾燥物をプラズ
マ加熱して還元することにより所謂金属煙を発生させる
のであるから、プラズマ加熱の際には水素ガスの存在が
不可欠なのである。したがって、以上と同様の意味で、
金属の塩化物の前述した加熱乾燥は、低圧条件で行った
り、及び/又は水素ガスやアルゴンガスの雰囲気下で行
うのが好ましく、そのよう力水素ガスとともに乾燥物を
加熱炉へ搬入する場合には、該水素ガスも含めて反応炉
内の水素ガスの濃度バランスを考慮し、反応炉に装備さ
れるプラズマトーチの作動ガスを水素ガス及び/又はア
ルゴンガスとするのである0以上のように、金属の塩化
物の加熱乾燥物をプラズマ加熱すると、該塩化物は、1
0000℃台のプラズマの高熱で急速に気化し、直ちに
プラズマで活性となった水素ガス乃至水素イオンと反応
して還元され、多量の金属微粉末からなる所謂金属煙を
発生させる。この金属煙を以下常法手段で捕集するので
あるが、前記塩化物の蒸発気化と水素プラズマの還元が
もたらす金属微粉末の生成は高温で反応が充分進行する
とともに不純物の混入がなく、シかもその生成速度は従
来法よりも桁違いに速い。したがって本発明では、高純
度の金属微粉末を生産性よく製造できるのである。
The metal chloride is thus dried by heating, and then the dried product is heated by plasma. In this case, the form of the dried product may be in the form of powder or granulated into pellets, etc. Specifically, plasma heating can be performed using, for example, a general heating furnace equipped with a plasma torch. Just use it. The dried material is carried into a heating furnace and heated with a plasma arc (plasma jet) from a plasma torch. At this time, the dried material is carried into the heating furnace without being exposed to the atmosphere, and plasma heating is performed in the presence of hydrogen gas. When a dried material is exposed to the atmosphere, it absorbs moisture from the atmosphere or is heated by plasma accompanied by oxygen in the atmosphere. This causes various disadvantages as described above, similar to those caused by plasma heating. In addition, the reactivity of plasma hydrogen gas with metals is utilized to generate so-called metal smoke by plasma heating and reducing dried metal chlorides, so the presence of hydrogen gas during plasma heating is is essential. Therefore, in the same sense as above,
The aforementioned heating drying of metal chlorides is preferably carried out under low pressure conditions and/or in an atmosphere of hydrogen gas or argon gas. Considering the concentration balance of hydrogen gas in the reactor, including the hydrogen gas, the working gas of the plasma torch installed in the reactor is hydrogen gas and/or argon gas. When a heated and dried metal chloride is heated with plasma, the chloride becomes 1
It is rapidly vaporized by the high heat of plasma on the order of 0,000° C., and immediately reacts with hydrogen gas or hydrogen ions activated by the plasma and is reduced, generating so-called metal smoke consisting of a large amount of fine metal powder. This metal fume is collected by conventional means below, but the formation of fine metal powder resulting from the evaporation of the chloride and the reduction of the hydrogen plasma is achieved by the reaction proceeding sufficiently at high temperatures and without contamination with impurities. The production speed is orders of magnitude faster than conventional methods. Therefore, in the present invention, high purity metal fine powder can be manufactured with high productivity.

く作用〉 次に本発明の作用を図面に基づいて説明する。Effect〉 Next, the operation of the present invention will be explained based on the drawings.

第3図は本発明の一実施手順を示す略視図である。FIG. 3 is a schematic diagram showing one implementation procedure of the present invention.

金属の塩化物Bが充填されているホツノト」4がバルブ
15を介して加熱乾燥造粒機16へ連結され、この加熱
乾燥造粒機16は連結管17を介し加熱炉18へと連通
されている。加熱炉18には、プラズマトーチ19が装
備されていて、その排出口20はバルブ21を介し捕集
器22へ連結されている。そして、ホッパー14及び加
熱乾燥造粒機16の内部は、これらに接続されている真
空ポンプ23によって減圧条件下におかれ、同時に連結
管17の途中から送入される水素ガス及びアルゴンガス
の雰囲気下ともなっていて、また加熱炉18の内部は連
結管17の途中から送入され、加えてプラズマトーチ1
9から噴射される、水素ガス及びアルゴンガスの大気圧
の雰囲気下になっている。ホッパー14から供給された
金属の塩化物Bは、バルプエ5を通シ、加熱乾燥造粒機
16において、加熱乾燥と造粒を同時に受け、この際に
発生する水蒸気は真空ポンプ23で吸引排気される一方
、乾燥造粒物Cは自重で加熱炉18へ落下する。加熱炉
18へ落下した乾燥造粒物Cは直ちに、プラズマトーチ
19から噴射されるプラズマアーク(プラズマジェット
)により高温加熱され、同時に還元されて、この際に激
しく発生する所謂金属煙は、プラズマアークの噴射流に
のる如く、排出口20及びバルブ21を通って捕集器2
2へ至り、この捕集器22で金属微粉末りとして捕集さ
れる。
A hot-drying granulator 4 filled with metal chloride B is connected to a heating drying granulator 16 through a valve 15, and this heating drying granulator 16 is connected to a heating furnace 18 through a connecting pipe 17. There is. The heating furnace 18 is equipped with a plasma torch 19 , and its discharge port 20 is connected to a collector 22 via a valve 21 . The inside of the hopper 14 and the heating drying granulator 16 are placed under a reduced pressure condition by the vacuum pump 23 connected thereto, and at the same time, an atmosphere of hydrogen gas and argon gas is introduced from the middle of the connecting pipe 17. In addition, the inside of the heating furnace 18 is fed from the middle of the connecting pipe 17, and in addition, the plasma torch 1
It is under an atmospheric pressure atmosphere of hydrogen gas and argon gas injected from 9. The metal chloride B supplied from the hopper 14 passes through the valve 5 and undergoes heating drying and granulation at the same time in the heating drying granulator 16, and the water vapor generated at this time is sucked and exhausted by the vacuum pump 23. Meanwhile, the dried granules C fall into the heating furnace 18 due to their own weight. The dry granules C that have fallen into the heating furnace 18 are immediately heated to a high temperature by a plasma arc (plasma jet) ejected from a plasma torch 19, and at the same time are reduced. The collector 2 passes through the outlet 20 and the valve 21 as if riding on the jet stream.
2, and is collected by this collector 22 as fine metal powder.

〈発明の効果〉 以上説明した通りであるから、本発明には、高純度の金
属微粉末を生産性よく製造することができ、併せて結果
的には得られる金属微粉末の純度や収率にも影響するの
であるが、操業上のトラプルを解消し、また熱効率もよ
いという効果がある。
<Effects of the Invention> As explained above, the present invention enables high-purity fine metal powder to be produced with good productivity, and also improves the purity and yield of the resulting fine metal powder. However, it has the effect of eliminating operational troubles and improving thermal efficiency.

〈実施例〉 市販の無水塩化ニッケルを処理対象として、これをニッ
ケル製容器内にて減圧条件下(絶対圧250 wag 
)及びアルゴンガス雰囲気下、250℃×5時間加熱乾
燥し、塩化ニッケルの乾燥粉末を得た。次いでこの乾燥
粉末を、アルゴンガス雰囲気下のまま、加熱炉へ連続的
に搬入し、プラズマトーチを装備する該加熱炉において
その乾燥粉末ニ、水素ガスを作動ガスとするプラズマア
ーク(プラズマジェット)を噴射したく水素ガス使用量
21N扉/時、プラズマトーチ出力84 KW )。
<Example> Commercially available anhydrous nickel chloride was treated under reduced pressure conditions (absolute pressure 250 wag) in a nickel container.
) and heat-dried at 250° C. for 5 hours in an argon gas atmosphere to obtain a dry powder of nickel chloride. Next, this dry powder is continuously carried into a heating furnace under an argon gas atmosphere, and in the heating furnace equipped with a plasma torch, the dry powder is subjected to a plasma arc (plasma jet) using hydrogen gas as a working gas. The amount of hydrogen gas used is 21 N doors/hour, and the plasma torch output is 84 KW).

そして、加熱炉から排出される所謂金属煙を捕集し、金
属微粉末を得た。この金属微粉末について、その内容を
第1表に示した。表中の結果は各20回の繰シ返し試験
の総合であるが、実施例は以上の方法で金属微粉末を製
造した場合、比較例は、他の条件は実施例と同じにして
、実施例のような加熱乾燥をすることなく市販の無水塩
化ニッケルをそのまま加熱炉へ搬入した場合である。
Then, so-called metal smoke discharged from the heating furnace was collected to obtain fine metal powder. The contents of this metal fine powder are shown in Table 1. The results in the table are the sum total of 20 repeated tests. In the example, fine metal powder was manufactured using the above method, and in the comparative example, the test was conducted under the same conditions as the example. This is a case where commercially available anhydrous nickel chloride was directly carried into the heating furnace without being heated and dried as in the example.

第1表 第1表の結果からも、本発明の効果が明らかに判る。Table 1 The effects of the present invention are clearly seen from the results in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は市販の無水塩化ニッケルの加熱又は加熱後の放
置による重量変化を例示するグラフ、第2図は本発明に
おいて加熱乾燥に使用する試験装置を例示する略祝図、
第3図は本発明の一実施手順を示す略視図である。 1.2・・乾燥曲線、  3,4・・・吸湿曲線、5・
・・電熱線、     6・・・電気炉、7・・石英管
、     8・・・セラミック製ボート、9 、10
・・・シリコンキャンプ、 11・・・温度計、12・・・供給管、13・・排出管
、14・・・ホッパー、15 、21・・・パルプ、1
6・・・加熱乾燥造粒機、17・・・連結管、18・・
・加熱炉、19・・・プラズマトーチ、20・・・排出
口、22・・・捕集器、23・・・真空ポンプ、A、B
・・・金属の塩化物、 C・・・乾燥造粒物、  D・・・金属微粉末、代理人
 弁理士 入 山 宏 正 第1図 第2図
FIG. 1 is a graph illustrating the weight change due to heating of commercially available anhydrous nickel chloride or leaving it after heating, and FIG. 2 is a schematic diagram illustrating the test apparatus used for heat drying in the present invention.
FIG. 3 is a schematic diagram showing one implementation procedure of the present invention. 1.2...Drying curve, 3,4...Moisture absorption curve, 5.
... Heating wire, 6... Electric furnace, 7... Quartz tube, 8... Ceramic boat, 9, 10
... silicon camp, 11 ... thermometer, 12 ... supply pipe, 13 ... discharge pipe, 14 ... hopper, 15, 21 ... pulp, 1
6... Heat drying granulator, 17... Connecting pipe, 18...
・Heating furnace, 19... Plasma torch, 20... Discharge port, 22... Collector, 23... Vacuum pump, A, B
...Metal chloride, C...Dry granules, D...Metal fine powder, Agent: Hiroshi Iriyama, Patent Attorney Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 金属の塩化物を不純物が混入しないように該金属と
同一材質の容器又はセラミックの容器等に入れ、不活性
ガス及び/又は水素ガスの雰囲気下において該金属の焼
結温度よりも低い温度で加熱乾燥し、次いでその乾燥物
を大気にさらさないで水素ガス存在下にプラズマ加熱す
ることを特徴とする金属微粉末の製造方法。
1 Place the metal chloride in a container made of the same material as the metal or a ceramic container to prevent contamination with impurities, and heat it at a temperature lower than the sintering temperature of the metal in an atmosphere of inert gas and/or hydrogen gas. A method for producing fine metal powder, which comprises heating and drying the powder, and then subjecting the dried product to plasma heating in the presence of hydrogen gas without exposing it to the atmosphere.
JP17534684A 1984-08-22 1984-08-22 Production of pulverous metallic powder Pending JPS6152305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17534684A JPS6152305A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17534684A JPS6152305A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Publications (1)

Publication Number Publication Date
JPS6152305A true JPS6152305A (en) 1986-03-15

Family

ID=15994458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17534684A Pending JPS6152305A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Country Status (1)

Country Link
JP (1) JPS6152305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307155B1 (en) * 2011-11-17 2013-09-10 주식회사 포스코 Injection device for mold flux

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110626A (en) * 1981-12-23 1983-07-01 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction of metal from chloride salt
JPS58171506A (en) * 1982-04-01 1983-10-08 Sumitomo Metal Mining Co Ltd Manufacture of fine metallic nickel powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110626A (en) * 1981-12-23 1983-07-01 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction of metal from chloride salt
JPS58171506A (en) * 1982-04-01 1983-10-08 Sumitomo Metal Mining Co Ltd Manufacture of fine metallic nickel powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307155B1 (en) * 2011-11-17 2013-09-10 주식회사 포스코 Injection device for mold flux

Similar Documents

Publication Publication Date Title
US6036741A (en) Process for producing high-purity ruthenium
US7964172B2 (en) Method of manufacturing high-surface-area silicon
JPH02225634A (en) Deoxidizing method for titanium metal or the like in carrier for molten metal, using deoxidizer
AU2020103465A4 (en) Method for preparing high-purity spherical ruthenium powder by microwave one-step method
US20050028642A1 (en) Method and apparatus for manufacturing fine powders
JPS6152305A (en) Production of pulverous metallic powder
RU2616920C2 (en) Method for obtaining the nanopowder of titanide hydride
JPS6152306A (en) Production of pulverous metallic powder
JPH0465122B2 (en)
Coombs et al. The decomposition of iron (III) sulfate in air
FI87895B (en) FOERFARANDE FOER FRAMSTAELLNING AV METALLPULVER
JPS5942736B2 (en) Method for reducing copper-containing substances
JP2002234719A (en) Apparatus for producing silicon material and method therefor
JPH01226709A (en) Production of high-purity aluminum nitride powder
JPH0470362B2 (en)
JPS63266001A (en) Production of composite spherical powder
RU2737103C1 (en) Method of producing zirconium powder
CN116902922B (en) Device and method for preparing industrial grade chlorine pentafluoride
JPS62256936A (en) Method for recovering au
US2536616A (en) Preparation of uranium hydride
Macek et al. Preparation of reactive metal powders by thermal decomposition of hydrazidocarbonates
JPS60155531A (en) Production of high-purity tin dioxide fine powder
JPH06122906A (en) Method for supplying chloride and production of magnetic metal powder
JPS62136538A (en) Method and apparatus for producing high purity zirconium
CN105565291B (en) Method for oxidation in the purge process of three-dimensional grapheme cladding single-particle Nano diamond material