JPH01226709A - Production of high-purity aluminum nitride powder - Google Patents

Production of high-purity aluminum nitride powder

Info

Publication number
JPH01226709A
JPH01226709A JP5412788A JP5412788A JPH01226709A JP H01226709 A JPH01226709 A JP H01226709A JP 5412788 A JP5412788 A JP 5412788A JP 5412788 A JP5412788 A JP 5412788A JP H01226709 A JPH01226709 A JP H01226709A
Authority
JP
Japan
Prior art keywords
powder
oxygen
reaction
moisture
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5412788A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tada
清志 多田
Eiji Yoshimoto
吉本 栄治
Teruo Kitamura
照夫 北村
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP5412788A priority Critical patent/JPH01226709A/en
Publication of JPH01226709A publication Critical patent/JPH01226709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title high-purity aluminum nitride powder having a low content of oxygen by removing the moisture and oxygen in gaseous nitrogen to be supplied before the gaseous nitrogen is introduced into a reaction tube in the production of aluminum nitride powder by the flotation direct nitriding method. CONSTITUTION:Aluminum nitride powder is produced by the flotation direct nitriding method wherein aluminum powder is floated in the reaction tube by a nitriding gas current and directly nitrided. The following constitution is used in this production process. Namely, a moisture and oxygen removing device is provided in the gaseous nitrogen supply system extending from a high-purity gaseous nitrogen source to a reaction part, and the moisture and oxygen in the gaseous nitrogen are removed before the reaction part. The gas supply pipe in the gaseous nitrogen supply system is made of a metal having low permeability to moisture and oxygen to prevent the infiltration of moisture and oxygen into the gaseous nitrogen supply system.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、熱伝導性、耐熱性、絶縁性に優れた電子材
料用基板、金属溶融器等の材料に使用される窒化アルミ
ニウム粉末(以下AQN粉末という)の製造方法、特に
浮上式直接窒化法によるAβN粉末の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to aluminum nitride powder (hereinafter referred to as AQN powder), which is used for materials such as electronic material substrates and metal melters, which have excellent thermal conductivity, heat resistance, and insulation properties. The present invention relates to a method for producing AβN powder, particularly a method for producing AβN powder by a floating direct nitriding method.

従来の技術 AflN粉末の製造方法としては、AΩ粉末からの直接
窒化法やアルミナ粉末からの炭素還元法などがあるが、
工業的には直接窒化法が一般に用いられている。
Conventional methods for producing AflN powder include a direct nitriding method from AΩ powder and a carbon reduction method from alumina powder.
Direct nitriding is generally used industrially.

直接窒化法は、Aρ粉末と窒素(N2)ガスとを直接接
触反応せしめるものであるが、八で粉末の表面が窒化さ
れると初期段階でその表面に硬い安定な窒化アルミニウ
ム被膜ができ、−種のシェル構造を形成して内部への窒
化反応が抑制されてしまうため、形成されたAflN被
膜を破ってから更に窒化反応せしめる必要を生じる。こ
のため、AρN粉末の製造のためには、窒化反応と粉砕
を繰返す必要を生じ、粉砕工程での汚染による純度低下
の問題があった。
The direct nitriding method involves a direct contact reaction between Aρ powder and nitrogen (N2) gas, but when the surface of the powder is nitrided in step 8, a hard and stable aluminum nitride film is formed on the surface in the initial stage. Since a seed shell structure is formed and the nitriding reaction inside is suppressed, it becomes necessary to break the formed AflN film and then carry out the nitriding reaction further. For this reason, in order to produce AρN powder, it is necessary to repeat the nitriding reaction and pulverization, and there is a problem of a decrease in purity due to contamination during the pulverization process.

そこで、最近、上記欠点を排除しうる直接窒化法として
、浮上式によるAQN粉末の製造方法が注目されている
。該浮上式直接窒化法は、耐熱材料たとえばアルミナ焼
結体からなる反応管中で、アルミニウム粉末をN2ガス
流で浮上させつ\、高温に加熱して窒化反応を進行せし
めるものであり、粉砕工程を要することなく焼結用の細
かい粒度のAΩN粉末を得ることができる。
Therefore, recently, a floating method for producing AQN powder has been attracting attention as a direct nitriding method that can eliminate the above-mentioned drawbacks. In the floating direct nitriding method, aluminum powder is floated in a reaction tube made of a heat-resistant material such as alumina sintered body with a flow of N2 gas and heated to a high temperature to proceed with the nitriding reaction. Fine-grained AΩN powder for sintering can be obtained without the need for sintering.

発明が解決しようとする課題 ところが、上記浮上式直接窒化法による場合、得られる
AΩN粉末が酸化により純度の若干の低下を来たしてい
ることが認められる。この原因について調査したところ
、高純度のN2ガスを用いるにも拘らず、不可避的にそ
れに含まれる微量の水分や酸素によりAΩN粉末が反応
過程で敏感に酸化を受けていることが判った。特にAρ
N粉末の酸化反応は、水分の存在下では比較的速く進行
するために、AΩN粉末中の酸素量を低減するためには
、反応雰囲気中の酸素濃度のみならず、水分の除去にも
十分な注意を払う必要のあることを解明し得た。
However, when using the floating direct nitriding method, it is recognized that the purity of the obtained AΩN powder is slightly reduced due to oxidation. When the cause of this was investigated, it was found that despite the use of high-purity N2 gas, the AΩN powder was sensitively oxidized during the reaction process due to trace amounts of moisture and oxygen unavoidably contained therein. Especially Aρ
The oxidation reaction of N powder proceeds relatively quickly in the presence of moisture, so in order to reduce the amount of oxygen in AΩN powder, it is necessary to not only increase the oxygen concentration in the reaction atmosphere but also to remove moisture sufficiently. I was able to figure out what I needed to pay attention to.

而して、この発明は、上記解明に基づき、反応雰囲気中
にN2ガスと\もに導入される水分及び酸素を低減する
ことにより、−段と酸素含有量の少ない高純度のAΩN
粉末の製造を可能とすることを目的としてなされたもの
である。
Based on the above-mentioned findings, the present invention produces high-purity AΩN with significantly lower oxygen content by reducing the amount of moisture and oxygen introduced into the reaction atmosphere together with N2 gas.
This was done for the purpose of making it possible to manufacture powder.

課題を解決するための手段 この発明は、上記の目的達成手段として、反応管に導入
する前に、N2ガス中の水分及び酸素を低減せしめるこ
とにより、反応雰囲気の汚染を防止するようにしたもの
である。
Means for Solving the Problems The present invention, as a means for achieving the above object, prevents contamination of the reaction atmosphere by reducing moisture and oxygen in the N2 gas before introducing it into the reaction tube. It is.

即ち、この発明の1つは、前記の浮上式直接窒化法によ
るAΩN粉末の製造方法の実施において、高純度窒素ガ
ス供給源から反応部に至る窒素ガス供給系中に水分およ
び酸素除去装置を設けて、反応部に至るまでに窒素ガス
中の水分及び酸素を除去することを特徴とするものであ
る。
That is, one aspect of the present invention is to provide a moisture and oxygen removal device in the nitrogen gas supply system from the high-purity nitrogen gas supply source to the reaction section in carrying out the method for producing AΩN powder by the floating direct nitriding method. This method is characterized in that moisture and oxygen in the nitrogen gas are removed before it reaches the reaction section.

また、同様の目的において他の1つの発明は、窒素ガス
供給系中のガス供給管を、水分及び酸素の透過性の小さ
い金属製のものに構成して、上記供給系中での水分及び
酸素の侵入を防止することを特徴とするものである。
Another invention for the same purpose is to configure the gas supply pipe in the nitrogen gas supply system to be made of metal with low permeability to moisture and oxygen, so that moisture and oxygen in the supply system are It is characterized by preventing the intrusion of

上記第1の発明の実施のための水分及び酸素除去装置と
しては、液化窒素によるトラップ装置、即ち液化窒素に
よって露点を下げてN2ガス中の水分を除去するトラッ
プ装置、または例えば過塩素酸マグネシウム等による脱
水カラムと金属銅粉末による脱酸素カラムの組合わせに
よる水分・酸素除去装置を好適に用いることができる。
The moisture and oxygen removal device for carrying out the first invention may be a trap device using liquefied nitrogen, that is, a trap device that removes moisture in N2 gas by lowering the dew point with liquefied nitrogen, or, for example, magnesium perchlorate, etc. It is possible to suitably use a water/oxygen removal device that combines a dehydration column made by the above method and a deoxidation column made by metallic copper powder.

また、第2の発明の実施のためには、窒素ガス供給管及
び好ましくは更にAu粉末容器を、酸素及び水分の透過
性のないステンレスあるいは金属表面のガス放出の少な
い特殊表面処理を施したアルミニウム材で構成すること
ができる。
In order to carry out the second invention, the nitrogen gas supply pipe and preferably the Au powder container may be made of stainless steel that is not permeable to oxygen or moisture, or aluminum that has been subjected to a special surface treatment that reduces gas release on the metal surface. It can be constructed from materials.

作用 高純度N2ガス供給源から反応部に向けて送り込む反応
用のN2ガスを、反応部に至る前に水分及び酸素の含有
量の極めて少ないものとなしうる。例えば好ましくは0
2<lppm、N20<5pp−のものとなしうる。し
たがって反応部でのAΩ粉末の酸化反応を抑制し、酸素
含有量の低い高純度のAΩN粉末を回収することが可能
となる。
Effect: The reaction N2 gas sent from the high purity N2 gas supply source to the reaction section can be made to have extremely low moisture and oxygen contents before reaching the reaction section. For example, preferably 0
2<lppm, N20<5pp-. Therefore, it is possible to suppress the oxidation reaction of the AΩ powder in the reaction section and recover high-purity AΩN powder with a low oxygen content.

実施例 この発明の対象とする浮上式直接窒化法の実施のための
AfiN粉末製造装置は、第1図に示すように大きく分
けて供給部(A)と、反応部(B)と、捕集部(C)と
を具備し、これらが単一のガス流路としての移送配管系
を構成するように順次連結されたものである。
Embodiment The AfiN powder manufacturing apparatus for carrying out the floating direct nitriding method, which is the subject of this invention, is roughly divided into a supply section (A), a reaction section (B), and a collection section, as shown in FIG. (C), which are sequentially connected to constitute a transfer piping system as a single gas flow path.

供給部(A)は原料1粉末(AQ)を収容する粉末容器
(1)と、これにガス供給系(2)を介して高純度N2
ガスを給送するN2ガス供給源としてのガスボンベ(3
)と、粉末容器内底部に設けられたアジテータ−(4)
とを具備し、容器(1)内に収容されたAΩ粉末を、N
2ガス供給系(2)から導入されるN2ガス気流によっ
て浮上させ、反応部(B)へ向けて送り出すものとなさ
れている。アジテータ−(4)は容器(1)内でのAΩ
粉末の凝集を防止し、An)末をN2ガスの上昇気流に
乗せるための補助的役割を果すが、必ずしもこれを必要
とするものではなく、N2ガス流のみに依存して上記A
Q粉末の撹乱、浮上を行わせるものとなすことも可能で
ある。
The supply section (A) includes a powder container (1) containing raw material 1 powder (AQ), and high-purity N2 is supplied to this via a gas supply system (2).
Gas cylinder (3
) and an agitator (4) installed at the bottom of the powder container.
The AΩ powder contained in the container (1) is
It is made to float by the N2 gas airflow introduced from the two-gas supply system (2) and sent toward the reaction section (B). Agitator (4) is AΩ in container (1)
It plays an auxiliary role to prevent powder agglomeration and carry the An) powder onto the rising airflow of N2 gas, but this is not necessarily necessary, and the above A) depends only on the N2 gas flow.
It is also possible to disturb and float the Q powder.

反応部(B)は、耐熱性材料としてのアルミナ焼結体か
らなる反応管(5)と、その周りに配置された加熱装置
(6)とからなる。反応管(5)はその一端が直接また
は連結管を介して間接に供給部(A)の粉末容器(1)
に連通接続されており、その内部を供給部がらN2ガス
流に乗せ送られてくるAΩ粉末が流通する。そして、そ
の流通過程で、加熱装置(6)からの加熱を受けてAf
l粉末とN2ガスとの反応を生じ、AΩ粉末の窒化が達
成される。ここに、窒化反応の初期段階では、へΩ粉末
はその表面部のみが窒化されて硬いAΩN被膜を形成し
、内部への窒化が阻害される現象をもたらすが、続いて
そのま\反応管(5)中を移送される過程で更に昇温さ
れることにより、連鎖的窒化反応を生じて、完全なる窒
化がもたらされると共に、AflN粉末の微細化が達成
される。即ち、加熱温度及び反応時間の増大とともに、
反応初期段階でAΩ粉末表面に形成されたAΩN被膜と
内部の未反応の八Ωとの熱膨張差と、更には恐らく蒸気
圧差にも基因して、AΩN被膜に亀裂が発生し、その部
分でまた新しい反応が生じ、その反応熱が蓄積された場
合は反応部付近の急激な温度上昇でAQN被膜の崩壊と
ともに溶融AQの飛び出しを伴いつ\、反応が加速度的
連鎖進行を生じ、高純度なAΩN粉末に生成される。
The reaction section (B) consists of a reaction tube (5) made of alumina sintered body as a heat-resistant material, and a heating device (6) arranged around the reaction tube (5). The reaction tube (5) has one end directly or indirectly connected to the powder container (1) of the supply section (A) through a connecting tube.
The AΩ powder, which is carried by the N2 gas flow from the supply section, flows through the inside. During the distribution process, Af is heated by the heating device (6).
A reaction occurs between the AΩ powder and the N2 gas, and nitridation of the AΩ powder is achieved. At the initial stage of the nitriding reaction, only the surface of the AΩ powder is nitrided to form a hard AΩN film, which inhibits nitriding to the inside. 5) The temperature is further increased during the process of being transferred, thereby causing a chain nitriding reaction, resulting in complete nitriding and refinement of the AflN powder. That is, as the heating temperature and reaction time increase,
Due to the difference in thermal expansion between the AΩN film formed on the surface of the AΩ powder at the initial stage of the reaction and the unreacted 8Ω inside, and also probably due to the difference in vapor pressure, cracks occur in the AΩN film, and cracks occur in those areas. In addition, when a new reaction occurs and the reaction heat is accumulated, the rapid temperature rise near the reaction area causes the AQN film to collapse and molten AQ to fly out, causing an accelerated chain reaction and resulting in high purity. AΩN powder is produced.

かつ表面のAΩN被膜の亀裂による粉末内部からの未反
応溶融AΩの飛び出し、あるいは流出は、それによって
粉末の空洞化をもたらし、粉砕の容易なAρ中空粒子を
形成する一方、AΩN被膜の崩壊及び流出AΩの二次的
窒化は実質的に粉砕に相当する効果をもたらす。
In addition, the splashing out or outflow of unreacted molten AΩ from the inside of the powder due to cracks in the AΩN coating on the surface causes the powder to become hollow, forming easily pulverized Aρ hollow particles, while causing the collapse and outflow of the AΩN coating. Secondary nitriding of AΩ produces an effect substantially equivalent to comminution.

捕集部(C)は、捕集容器(7)と、その上部に開口さ
れたフィルター(8a)付きのN2ガス排出口(8)と
を備え、捕集容器(7)の天板部が連結管(9)を介し
て反応部(B)の反応管(5)の上端に連通接続されて
いる。而して、反応部(B)を経てN2ガス流に乗って
連結管(9)から移送されてくる反応部のAflN粉末
は、捕集容器(7)内でN2ガスと分離され、その底部
に堆積する一方、N2ガスは排出口(8)から系外へ排
出される。
The collection unit (C) includes a collection container (7) and an N2 gas exhaust port (8) with a filter (8a) opened at the top of the collection container (7). It is connected to the upper end of the reaction tube (5) of the reaction section (B) via the connecting tube (9). The AflN powder in the reaction section, which has passed through the reaction section (B) and is transferred from the connecting pipe (9) on the N2 gas flow, is separated from the N2 gas in the collection container (7), and the bottom of the collection container (7) is separated from the N2 gas. On the other hand, the N2 gas is discharged out of the system from the discharge port (8).

(従来例) ところで、上記のような浮上式直接窒化法によるAΩN
粉末製造装置において、N2ガス供給系(2)を構成す
るガス供給管(2a)を塩化ビニルパイプで構成し、N
2ガス供給源としてのガスボンベ(3)と粉末容器(1
)とを第1図に鎖線で示すように直接接続したものを従
来装置とした。
(Conventional example) By the way, AΩN by floating direct nitriding method as described above
In the powder manufacturing equipment, the gas supply pipe (2a) constituting the N2 gas supply system (2) is composed of a vinyl chloride pipe,
2 Gas cylinders (3) and powder containers (1) as gas supply sources
) are directly connected as shown by the chain line in FIG. 1 as a conventional device.

(実施例1〜3) また、この発明の実施装置として、上記に改善を加えた
次の3種類の装置を作製した。
(Examples 1 to 3) Furthermore, as apparatuses for implementing the present invention, the following three types of apparatuses with improvements added to the above were produced.

1つは、第1図に示すように、N2ガス供給系(2)を
構成するガス供給管(2a)をステンレスパイプで構成
すると共に、該供給系中に、水分・酸素除去装置として
、上記ガス供給管の一部に形成したコイル状熱交換部を
液体窒素(11)を満した槽(12)中に導いて構成し
た液化窒素トラップ装置(10)を介在せしめたものと
した(実施例1)。
First, as shown in Fig. 1, the gas supply pipe (2a) constituting the N2 gas supply system (2) is made of stainless steel pipe, and the above-mentioned water/oxygen removal device is installed in the supply system. A liquefied nitrogen trap device (10) was interposed, which was constructed by guiding a coiled heat exchange part formed in a part of a gas supply pipe into a tank (12) filled with liquid nitrogen (11) (Example 1).

また他の1つは、N2ガス供給管(2a)を同じくステ
ンレスパイプで構成すると共に、上記トラップ装置(l
O)を省いてガスボンベ(3)と粉末容器(1)とを上
記供給管(2a)を介して直接的に接続したものとした
(実施例2)。
Another method is to configure the N2 gas supply pipe (2a) with a stainless steel pipe as well as the trap device (l).
O) was omitted and the gas cylinder (3) and powder container (1) were directly connected via the supply pipe (2a) (Example 2).

更に他の1つは、ガス供給管(2a)をステンレスパイ
ブで構成する一方、トラップ装置(10)に代えて、第
2図に示すように、過塩素酸マグネシウムによる脱水分
カラム(20a )と金属銅粉末による脱酸素カラム(
20b )との組合わせによる脱水・脱酸素カラム(2
0)を介在せしめたものとした(実施例3)。
In yet another method, the gas supply pipe (2a) is constructed of a stainless steel pipe, while the trap device (10) is replaced with a dehydration column (20a) using magnesium perchlorate, as shown in FIG. Oxygen removal column using metallic copper powder (
Dehydration/deoxygenation column (20b) in combination with
0) was used (Example 3).

そして、上記従来例及び実施例1〜3の各装置により、
次の窒化条件でAρN粉末の製造を行った。
And, with each device of the above-mentioned conventional example and Examples 1 to 3,
AρN powder was produced under the following nitriding conditions.

(窒化条件) Aρ粉末:99.99%アトマイズ粉 平均粒径15μm N2ガス:99.999% ガス流速: 1.  CM2/+*in  (反応管内
径35履、線速度1゜6o/s) 反応温度:1550℃ 実施例1〜3及び比較例の対比のため、上記の各AΩN
粉末の製造装置において、AΩ粉末容器(1)に導入さ
れる直前位置でのN2ガス供給系(2)中のN2ガス中
の水分及び酸素の含有量を分析すると共に、更に捕集部
(C)から回収したAρN粉末中の酸素の含有量を測定
したところ、下記第1表に示すとおりであった。
(Nitriding conditions) Aρ powder: 99.99% atomized powder average particle size 15 μm N2 gas: 99.999% Gas flow rate: 1. CM2/+*in (reaction tube inner diameter 35 mm, linear velocity 1°6o/s) Reaction temperature: 1550°C For comparison of Examples 1 to 3 and comparative example, each of the above AΩN
In the powder manufacturing apparatus, the content of moisture and oxygen in the N2 gas in the N2 gas supply system (2) at a position immediately before it is introduced into the AΩ powder container (1) is analyzed, and the content of moisture and oxygen in the N2 gas in the N2 gas supply system (2) is analyzed. ) The oxygen content in the AρN powder recovered from the sample was measured and was as shown in Table 1 below.

第1表 上記第1表に示されるように、この発明の実施による場
合、従来法に較べて酸素含有量の少ない高純度のAuN
粉末を得ることができる。
Table 1 As shown in Table 1 above, when implementing the present invention, high purity AuN with lower oxygen content than the conventional method can be obtained.
A powder can be obtained.

発明の効果 上述の次第で、この発明によれば、酸素含有量が低く、
従って高純度で、しかも焼結性の良い微粉末のAQ粉末
を得ることができる。
Effects of the Invention As described above, according to the present invention, the oxygen content is low,
Therefore, it is possible to obtain fine AQ powder with high purity and good sinterability.

【図面の簡単な説明】 第1図はこの発明の実施に用いるAΩN粉末製造装置の
一例を示す概略構成図、第2図は水分・酸素除去装置の
変形例を示す概略側面図である。 (A)・・・供給部、(B)・・・反応部、(C)・・
・捕集部、(1)・・・粉末容器、(2)・・・N2ガ
ス供給系、(2a)・・−N2ガス供給管、(3)・・
・N2ガスボンベ、(5)・・・反応管、(6)・・・
加熱装置、(7)・・・捕集容器、(9)・・・連結管
、(10)  (20)・・・水分及び酸素除去装置、
(11)・・・液体窒素。 以上 第2図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing an example of an AΩN powder manufacturing apparatus used for carrying out the present invention, and FIG. 2 is a schematic side view showing a modified example of the moisture/oxygen removal apparatus. (A)... Supply section, (B)... Reaction section, (C)...
・Collection unit, (1)...Powder container, (2)...N2 gas supply system, (2a)...-N2 gas supply pipe, (3)...
・N2 gas cylinder, (5)...reaction tube, (6)...
Heating device, (7) Collection container, (9) Connecting pipe, (10) (20) Moisture and oxygen removal device,
(11)...Liquid nitrogen. Figure 2 above

Claims (2)

【特許請求の範囲】[Claims] (1)反応管中でアルミニウム粉末を窒素ガス流によっ
て浮上させつゝ直接窒化反応せしめる浮上式直接窒化法
による窒化アルミニウム粉末の製造方法において、 高純度窒素ガス供給源から反応部に至る窒 素ガス供給系中に水分および酸素除去装置を設けて、反
応部に至るまでに窒素ガス中の水分及び酸素を除去する
ことを特徴とする高純度窒化アルミニウム粉末の製造方
法。
(1) In a method for manufacturing aluminum nitride powder by a floating direct nitriding method in which aluminum powder is floated in a reaction tube by a nitrogen gas flow and subjected to a direct nitriding reaction, nitrogen gas is supplied from a high-purity nitrogen gas supply source to the reaction section. A method for producing high-purity aluminum nitride powder, which comprises providing a moisture and oxygen removal device in the system to remove moisture and oxygen from nitrogen gas before reaching the reaction section.
(2)反応管中でアルミニウム粉末を窒素ガス流によっ
て浮上させつゝ直接窒化反応せしめる浮上式直接窒化法
による窒化アルミニウム粉末の製造方法において、 高純度窒素ガス供給源から反応部に至る窒 素ガス供給系中のガス供給管を、水分及び酸上記供給系
中での水分及び酸素の侵入を防止することを特徴とする
高純度窒化アルミニウム粉末の製造方法。
(2) In a method for manufacturing aluminum nitride powder using a floating direct nitriding method in which aluminum powder is floated in a reaction tube by a flow of nitrogen gas and subjected to a direct nitriding reaction, nitrogen gas is supplied from a high-purity nitrogen gas supply source to the reaction section. A method for producing high-purity aluminum nitride powder, which comprises preventing moisture and oxygen from entering the gas supply system through a gas supply pipe in the system.
JP5412788A 1988-03-08 1988-03-08 Production of high-purity aluminum nitride powder Pending JPH01226709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5412788A JPH01226709A (en) 1988-03-08 1988-03-08 Production of high-purity aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5412788A JPH01226709A (en) 1988-03-08 1988-03-08 Production of high-purity aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPH01226709A true JPH01226709A (en) 1989-09-11

Family

ID=12961927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5412788A Pending JPH01226709A (en) 1988-03-08 1988-03-08 Production of high-purity aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH01226709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
JP2003104777A (en) * 2001-09-28 2003-04-09 Toyo Aluminium Kk Aluminum nitride powder and its production method
JP2006083055A (en) * 2004-08-20 2006-03-30 Mitsubishi Chemicals Corp Metal nitride and method for producing metal nitride
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition
JP2015189651A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Method of manufacturing aluminum nitride crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
JP2003104777A (en) * 2001-09-28 2003-04-09 Toyo Aluminium Kk Aluminum nitride powder and its production method
JP2006083055A (en) * 2004-08-20 2006-03-30 Mitsubishi Chemicals Corp Metal nitride and method for producing metal nitride
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition
JP4664229B2 (en) * 2006-04-19 2011-04-06 電気化学工業株式会社 Aluminum nitride powder and resin composition
JP2015189651A (en) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 Method of manufacturing aluminum nitride crystal

Similar Documents

Publication Publication Date Title
US7572315B2 (en) Process for the synthesis, separation and purification of powder materials
TWI778941B (en) Silica to high purity silicon production apparatus and rocess
JP2001020065A (en) Target for sputtering, its production and high melting point metal powder material
JP2005336617A (en) Target for sputtering, its production method and high melting point metal powder material
US2901325A (en) Method of preparing silicon
JPH01226709A (en) Production of high-purity aluminum nitride powder
US4309214A (en) Manufacture of metal powder
US2876094A (en) Production of refractory metals
US3050798A (en) Process for continuous casting and vacuum degasification
FI60239C (en) SAETT ATT RAFFINERA METALLISKT KOPPAR PAO EN PYROMETALLURGISK VAEG
JP2001335854A (en) Apparatus and method for refining high purity metal
JPS59208029A (en) Molten metal or alloy selective refinement
JP4132649B2 (en) Purification method for molten silicon
JPS60224706A (en) Production of ultrafine metallic particles
JPS63195102A (en) Continuous production of aluminum nitride powder and device therefor
JP4880236B2 (en) Manufacturing method of high purity silicon
JPH075288B2 (en) Method for purifying divided silicon under plasma
JPS6152306A (en) Production of pulverous metallic powder
SU1131530A1 (en) Method of obtaining porous materials
JPH01141808A (en) Production of high purity aluminum nitride powder
JPS6152304A (en) Apparatus for producing pulverous metallic powder
JPH0847747A (en) Method for continuously casting copper and its apparatus
RU2645138C1 (en) Method for purification of metallurgical silicon
JPH01141809A (en) Production of high purity aluminum nitride powder
JPH0459916A (en) Method for degassing from molten metal