JPS62256936A - Method for recovering au - Google Patents

Method for recovering au

Info

Publication number
JPS62256936A
JPS62256936A JP61098642A JP9864286A JPS62256936A JP S62256936 A JPS62256936 A JP S62256936A JP 61098642 A JP61098642 A JP 61098642A JP 9864286 A JP9864286 A JP 9864286A JP S62256936 A JPS62256936 A JP S62256936A
Authority
JP
Japan
Prior art keywords
chloride
base metal
temp
oxide
recovered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098642A
Other languages
Japanese (ja)
Inventor
Toru Shoji
亨 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61098642A priority Critical patent/JPS62256936A/en
Publication of JPS62256936A publication Critical patent/JPS62256936A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To conveniently and efficiently recover Au from a recovered material by introducing gaseous Cl2 while heating the recovered material contg. Au and the oxide of the base metal in the presence of CO or carbon, converting the oxide of the base metal into its chloride, and evaporating and separating the chloride. CONSTITUTION:The recovered material contg. Au and the oxide of the base metal carrying the Au is mixed with carbon powder, and the mixture 1 is changed in a chloride forming vessel 3 and heated at 400-1,063 deg.C by an electric furnace 4. Gaseous Cl2 or gaseous mixture of Cl2 and CO is simultaneously introduced from an inlet pipe 5 through a glass-fiber bottom plate 2. Consequently, the Au and oxide of the base metal are converted into the chlorides. When the heating temp. is controlled to a temp. higher than the b.p. or sublimation temp. of the chloride of the base metal and the dissociation temp. of Au chloride, the chloride of the base metal is evaporated, separated, and transferred into a chloride trap 7, and the Au chloride is dissociated to obtain metallic Au. When the heating temp. is controlled to a temp. lower than the dissociation temp. of Au chloride, the evaporated Au chloride is heated to a temp. higher than the dissociation temp. by a heater 8 provided at the midway of an evaporation duct 6, and metallic Au is collected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Au及び基体金属酸化物の塩化物化 。[Detailed description of the invention] (Industrial application field) The present invention relates to chloride conversion of Au and base metal oxides.

反応と、Au塩化物の解離反応及び基体金属塩化物の揮
発分離とを行うことによるAu回収方法に係る。
The present invention relates to a method for recovering Au by performing a reaction, a dissociation reaction of Au chloride, and volatilization separation of base metal chloride.

(従来の技術とその問題点) 従来よりアルミナ、シリカ、ジルコニア等の金属酸化物
基体上にAuを保持せしめた状態のものが電子工業関係
にも大量に使用されている。
(Prior art and its problems) Conventionally, materials in which Au is supported on metal oxide substrates such as alumina, silica, and zirconia have been used in large quantities in the electronic industry.

このような電子材料は装置ならびに部品が寿命となると
取り替えられる。
Such electronic materials are replaced when devices and components reach the end of their service life.

こうした使用済の材料中には、なお相当量の高価なAu
が残存し、これを回収し、有効利用することは工業上重
要である。
There is still a considerable amount of expensive Au in these used materials.
remains, and it is industrially important to recover and utilize it effectively.

従来、Auの回収方法としては、硫酸、王水などによる
溶解法があるが、これらの方法は溶解工程において長時
間の多段湿式処理を要する。また基体金属酸化物をも液
中に入れるため大型の装置が必要になる。さらにAuと
基体金属を分離する際、基体金属酸化物が析出すること
や洗浄に大量の水を必要とする。従って、甚だ回収効率
が悪く、工業的には不適な回収方法であった。
Conventionally, methods for recovering Au include dissolving it using sulfuric acid, aqua regia, etc., but these methods require a long multi-stage wet process in the dissolving process. Furthermore, since the base metal oxide is also placed in the liquid, a large-sized device is required. Furthermore, when Au and the base metal are separated, the base metal oxide is precipitated and a large amount of water is required for cleaning. Therefore, the recovery efficiency was extremely poor and the recovery method was unsuitable for industrial use.

(発明の目的) 本発明は、上記の問題点を解決すべくなされたものであ
り、その目的は基体金属化合物にAuを保持せしめた材
料よりAuを簡便且つ効率良く回収する方法を堤供せん
とするものである。
(Object of the Invention) The present invention was made to solve the above problems, and its purpose is to provide a method for easily and efficiently recovering Au from a material in which Au is retained in a base metal compound. That is.

(問題点を解決するための手段) 上記問題点を解決するための本発明のAu回収方法は、
Au、、!:基体金属化合物を含む回収物をCO又はカ
ーボンの存在下で加熱し乍ら塩素ガスを流すことにより
、少なくとも基体金属酸化物を塩化物にして蒸発分離す
ることを特徴とするものである。
(Means for solving the problems) The Au recovery method of the present invention for solving the above problems is as follows:
Au...! : The method is characterized in that at least the base metal oxide is converted into chloride and evaporated and separated by heating the recovered material containing the base metal compound in the presence of CO or carbon while flowing chlorine gas.

そして塩素分圧と温度を利用してAu塩化物のみを金属
状態まで解離させた後、分離回収する。
Then, only the Au chloride is dissociated into a metallic state using chlorine partial pressure and temperature, and then separated and recovered.

塩化物化においては、Auと基体金属酸化物を含む回収
物をCO又はカーボンの存在下で、塩素を流し乍ら加熱
すると、Auと基体金属酸化物は塩化物に変わるが、そ
の回収物が塩素量に対して過剰にあると、塩素は略完全
に反応し、塩素分圧が微小となり、Au塩化物は容易に
解離反応を起こし、金属Auとなる。
In chloridation, when the recovered material containing Au and the base metal oxide is heated in the presence of CO or carbon while flowing chlorine, the Au and the base metal oxide are converted to chloride, but the recovered material is converted into chloride. When the amount is in excess, chlorine reacts almost completely, the chlorine partial pressure becomes extremely small, and the Au chloride easily undergoes a dissociation reaction to become metallic Au.

一般的に使用される基体金属塩化物は、容易に解離反応
を起こさず、又Au塩化物の解離温度(以下単に解離温
度という)が回収物加熱温度以下になるような塩素分圧
にすることは容易で、基体金属塩化物を気体相として反
応系外へ運び出すことができる。
Generally used base metal chlorides do not easily undergo a dissociation reaction, and the chlorine partial pressure must be set so that the dissociation temperature of Au chloride (hereinafter simply referred to as dissociation temperature) is below the temperature at which the recovered material is heated. is easy, and the base metal chloride can be carried out of the reaction system as a gas phase.

反応部分の温度は700℃以上が好ましいが、塩化物化
反応が発熱反応である場合、加熱温度が700℃未満で
あっても反応熱により700℃以上に保持することは可
能である。しかし加熱温度が400°C未満になると塩
化物化反応が起こりにくく、それによる発熱が期待でき
なくなる。又、1063℃よりも高い温度ではAuが溶
融してしまいAuとしての蒸気が高くなるため、回収率
を下げてしまうことや取出しの際、未反応材料に付着し
てしまい他の処理を必要とすることが考えられる。従っ
て、回収物の加熱温度は400℃〜1063℃が良い。
The temperature of the reaction part is preferably 700°C or higher, but if the chloridation reaction is an exothermic reaction, it is possible to maintain the temperature at 700°C or higher due to the heat of reaction even if the heating temperature is lower than 700°C. However, when the heating temperature is less than 400°C, the chloride reaction is difficult to occur, and the resulting heat generation cannot be expected. In addition, at temperatures higher than 1063°C, Au melts and the vapor as Au becomes high, which lowers the recovery rate and adheres to unreacted materials when taken out, requiring other treatment. It is possible to do so. Therefore, the heating temperature of the recovered material is preferably 400°C to 1063°C.

CO又はカーボンの存在下で加熱する理由は、CO、カ
ーボンの酸化により酸素分圧を低くして反応平衡をずら
し、反応を促進させる為である。
The reason for heating in the presence of CO or carbon is to lower the oxygen partial pressure by oxidizing CO and carbon, shift the reaction equilibrium, and accelerate the reaction.

尚、Au及び基体金属の代表的な塩化物の諸性質は次の
通りである。
The properties of typical chlorides of Au and base metals are as follows.

A u Cl z  解離塩素圧 164*nHg/ 
170℃〃”    199.3mHg/ 240℃A
 u Cl 3   ”     46.7+nHg/
 170℃〃〃397 、2 w Ilg /’240
℃AlCl2  昇華点   182.7℃T i C
l 4沸点 136.4℃ SiCβa   ”     57 、57℃S n 
C1a   〃114.1℃ (実施例) 本発明のAu回収方法の一実施例と従来例を説明する。
A u Cl z Dissociated chlorine pressure 164*nHg/
170℃〃” 199.3mHg/240℃A
u Cl 3 ” 46.7+nHg/
170℃〃〃397、2 w Ilg /'240
℃AlCl2 Sublimation point 182.7℃T i C
l 4 Boiling point 136.4℃ SiCβa ” 57, 57℃S n
C1a 〃114.1°C (Example) An example of the Au recovery method of the present invention and a conventional example will be described.

先ず本発明のAu回収方法の一実施例について説明する
と、セラミックス基板(AA203)にA u (0,
05wt%)を担持した材料15kgを粒径0.1〜0
.5 mmまで粉砕し、これに粒径0.2〜0 、8 
m粛のカーボン粉末を6.4kgを混合し、図に示す如
くこの混合物1を底部にガス繊維の底板2を敷いた塩化
物化容器3中に入れ、電気炉4により混合物1を100
0℃に加熱し、底の塩素ガス導入管5から塩素ガスを1
01/min流すことにより基体金属酸化物であるAl
□o3を塩化物にして蒸発させ、それを蒸発ダクト6を
通して塩化物トラップ7により捕捉した。
First, an example of the Au recovery method of the present invention will be described. A ceramic substrate (AA203) is coated with A u (0,
0.05wt%) was added to a particle size of 0.1 to 0.
.. Grind to 5 mm and add particle size of 0.2 to 0.8 mm.
Mix 6.4 kg of carbon powder of 100 ml, put this mixture 1 into a chloride container 3 with a gas fiber bottom plate 2 on the bottom as shown in the figure, and heat the mixture 1 in an electric furnace 4 to 100 ml of carbon powder.
Heat to 0°C and supply 1 chlorine gas from the chlorine gas introduction pipe 5 at the bottom.
By flowing 01/min, the base metal oxide Al
□O3 was converted into chloride and evaporated, which was passed through the evaporation duct 6 and captured by the chloride trap 7.

これを12時間続けた後、残材料を塩化物化容器3より
取り出し、比重分離により未反応材料ならびにカーボン
粉末を分離して金属状Au粉末を回収したところ、回収
率は99%以上で、回収されたAuの純度も99%以上
であった。
After continuing this for 12 hours, the remaining material was taken out from the chloride container 3, and the unreacted material and carbon powder were separated by specific gravity separation to recover the metallic Au powder. The recovery rate was over 99%. The purity of the Au was also 99% or higher.

次に従来例について説明すると、実施例と同様にセラミ
ックス基板(AAzOi)にA u (0,05wt%
)を担持した材料15kgを王水液中に入れてAuを溶
解し、濾過によりAu王水液を取り出す方法でAuを回
収したところ、回収率は95%であった。
Next, a conventional example will be explained. Similar to the example, a ceramic substrate (AAzOi) is coated with A u (0.05wt%
) was put into an aqua regia solution to dissolve the Au, and the Au aqua regia solution was collected by filtration, and the recovery rate was 95%.

この回収において回収率を高くする為濾過の際の洗浄等
で液■が大幅に増えるという問題が生じた。
In this recovery, in order to increase the recovery rate, a problem arose in that the amount of liquid (2) increased significantly due to cleaning during filtration.

尚、本発明のAu回収方法においては、図において蒸発
ダクト6の途中に一点鎖線のタロく加熱器8を設けて、
Auと基体金属酸化物を含む回収物を塩化物化容器3中
で解離温度以下で且つ基体金属塩化物の沸点以上で加熱
し、Au及び基体金属酸化物を塩化物にして蒸発させ、
更に加熱器8で解離温度以上に加熱してAu塩化物のみ
を解離してAuを捕捉し、基体金属塩化物のみを蒸発分
離して塩化物トラップ7にて捕捉するようにしても良い
In addition, in the Au recovery method of the present invention, a heater 8 is provided in the middle of the evaporation duct 6 as indicated by a dashed dotted line in the figure.
Heating the recovered material containing Au and the base metal oxide in a chloride container 3 below the dissociation temperature and above the boiling point of the base metal chloride to convert Au and the base metal oxide into chloride and evaporate it,
Further, it is also possible to heat the material to a temperature higher than the dissociation temperature using the heater 8 to dissociate only the Au chloride and capture the Au, and only the base metal chloride may be evaporated and separated and captured in the chloride trap 7.

尚、基体金属酸化物は、上記実施例のAlzoz(アル
ミナ)ばかりでなく、Stow(シリカ)、SnO,(
酸化錫)、TtOz(チタニア)、BaT i 03 
(チタン酸バリウム) 、Fe2o3 (酸化鉄)、M
g0(マグネシア)、Zr0z(ジルコニア) 、Al
zCh+S i 0zC1’ルミナ+”’)力)、Hf
 O,(ハフニア)、In0z(酸化インジウム)、p
bo <酸化鉛)、GeO□(酸化ゲルマニウム)等の
基体金属酸化物がある。
The base metal oxide is not only Alzoz (alumina) in the above example, but also Stow (silica), SnO, (
tin oxide), TtOz (titania), BaT i 03
(barium titanate), Fe2o3 (iron oxide), M
g0 (magnesia), Zr0z (zirconia), Al
zCh+S i 0zC1'lumina+"') force), Hf
O, (hafnia), In0z (indium oxide), p
There are base metal oxides such as bo <lead oxide) and GeO□ (germanium oxide).

(発明の効果) 以上の説明で判るように本発明のAu回収方法によれば
、Auを基体金属酸化物から極めて効率良く分離回収す
ることができ、また従来のような多段の湿式処理工程は
必要としないので簡便に短時間に回収することができる
という優れた効果がある。
(Effects of the Invention) As can be seen from the above explanation, according to the Au recovery method of the present invention, Au can be separated and recovered from the base metal oxide very efficiently, and the conventional multi-stage wet treatment process is unnecessary. Since it is not necessary, it has the excellent effect of being able to be collected easily and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のAu回収方法の一実施例を示す図である。 The figure shows an example of the Au recovery method of the present invention.

Claims (1)

【特許請求の範囲】 1)Auと基体金属酸化物を含む回収物をCO又はカー
ボンの存在下で加熱し乍ら塩素ガスを流すことにより、
少なくとも基体金属酸化物を塩化物にして蒸発分離する
ことを特徴とするAu回収方法。 2)回収物の加熱温度が、Au塩化物の解離温度以上で
、且つ基体金属酸化物の沸点又は昇華温度以上の温度で
あることを特徴とする特許請求の範囲第1項記載のAu
回収方法。 3)回収物の加熱温度が、Au塩化物の解離温度以下で
、且つ基体金属酸化物の沸点又は昇華温度以上の温度で
あることを特徴とする特許請求の範囲第1項記載のAu
回収方法。 4)回収物の加熱温度が400℃〜1063℃であるこ
とを特徴とする特許請求の範囲第1項乃至第3項記載の
Au回収方法。
[Claims] 1) By heating the recovered material containing Au and the base metal oxide in the presence of CO or carbon while flowing chlorine gas,
A method for recovering Au, characterized in that at least a base metal oxide is converted into chloride and separated by evaporation. 2) Au according to claim 1, characterized in that the heating temperature of the recovered material is higher than the dissociation temperature of the Au chloride and higher than the boiling point or sublimation temperature of the base metal oxide.
Collection method. 3) Au according to claim 1, wherein the heating temperature of the recovered material is below the dissociation temperature of the Au chloride and above the boiling point or sublimation temperature of the base metal oxide.
Collection method. 4) The Au recovery method according to claims 1 to 3, wherein the heating temperature of the recovered material is 400°C to 1063°C.
JP61098642A 1986-04-28 1986-04-28 Method for recovering au Pending JPS62256936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098642A JPS62256936A (en) 1986-04-28 1986-04-28 Method for recovering au

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098642A JPS62256936A (en) 1986-04-28 1986-04-28 Method for recovering au

Publications (1)

Publication Number Publication Date
JPS62256936A true JPS62256936A (en) 1987-11-09

Family

ID=14225157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098642A Pending JPS62256936A (en) 1986-04-28 1986-04-28 Method for recovering au

Country Status (1)

Country Link
JP (1) JPS62256936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249520A1 (en) * 2002-10-23 2004-05-19 W. C. Heraeus Gmbh & Co. Kg Dissolving iron out of an iron-based collector alloy, especially in mobilization of noble metals from spent catalysts, involves addition of ferric chloride and chlorine
JP2015017279A (en) * 2013-07-08 2015-01-29 国立大学法人秋田大学 Method and system for recovery of gold by chloride volatilization method
JP2017013066A (en) * 2016-09-30 2017-01-19 株式会社アステック入江 Method of processing integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249520A1 (en) * 2002-10-23 2004-05-19 W. C. Heraeus Gmbh & Co. Kg Dissolving iron out of an iron-based collector alloy, especially in mobilization of noble metals from spent catalysts, involves addition of ferric chloride and chlorine
DE10249520B4 (en) * 2002-10-23 2009-08-27 W.C. Heraeus Gmbh Dissolving of iron-based collector alloys by means of the Fe 3+ / Cl 2 system
JP2015017279A (en) * 2013-07-08 2015-01-29 国立大学法人秋田大学 Method and system for recovery of gold by chloride volatilization method
JP2017013066A (en) * 2016-09-30 2017-01-19 株式会社アステック入江 Method of processing integrated circuit

Similar Documents

Publication Publication Date Title
JP2001516321A (en) Process for producing halogenated organisms from metal halide materials
JP6347001B2 (en) Manufacturing system and manufacturing method of divanadium tetroxide powder
Ling et al. Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid
JPS6191335A (en) Method for recovering platinum group metal
CN108793246A (en) The preparation method and zirconium chloride of improved zirconium chloride
JPS62256936A (en) Method for recovering au
JPS6221706A (en) Recycling production of silicon or silicon compound via trichlorosilane
Niemyski et al. The preparation of pure boron for semiconductor investigations
JPH01108101A (en) Separation and recovery of iodine
JPS62280331A (en) Method for recovering au
JPS62256933A (en) Method for recovering pd
JPS62256934A (en) Method for recovering pt
JPS62256930A (en) Method for recovering ruthenium
JPH0531487B2 (en)
JPS62256935A (en) Method for recovering rh
JPS62256929A (en) Method for recovering platinum group element from spent catalyst
JPH0438801B2 (en)
JPH03501603A (en) Ultra-high purity halide and its manufacturing method
JPS62256931A (en) Method for recovering ruthenium
JPS62280332A (en) Method for recovering pd
US1102715A (en) Purification of mixtures containing nitrids.
JPH01142040A (en) Method for recovering ru
JPS62280330A (en) Method for recovering platinum
US3168395A (en) Method of producing highly pure antimony
JPS62280338A (en) Recovering method for rh