JPS6151620B2 - - Google Patents

Info

Publication number
JPS6151620B2
JPS6151620B2 JP56001341A JP134181A JPS6151620B2 JP S6151620 B2 JPS6151620 B2 JP S6151620B2 JP 56001341 A JP56001341 A JP 56001341A JP 134181 A JP134181 A JP 134181A JP S6151620 B2 JPS6151620 B2 JP S6151620B2
Authority
JP
Japan
Prior art keywords
wear resistance
content
alloys
alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56001341A
Other languages
Japanese (ja)
Other versions
JPS57114632A (en
Inventor
Motohisa Myato
Takashi Matsui
Hidekazu Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56001341A priority Critical patent/JPS57114632A/en
Publication of JPS57114632A publication Critical patent/JPS57114632A/en
Publication of JPS6151620B2 publication Critical patent/JPS6151620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/025Synchro rings

Landscapes

  • Mechanical Operated Clutches (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性に優れた高力銅合金に関し、
さらに詳しくは、高速度、高荷重の摺動条件で使
用される、例えば、自動車等に用いられているシ
ンクロナイザーリング(別名ポークリング)に用
いられる耐摩耗性に優れた高力銅合金に関するも
のである。 従来よりシンクロナイザー用合金としては、黄
銅中にMn−Siの金属間化合物を分散させ耐摩耗
性を良好にした合金やアルミニウム青銅が用いら
れている。 しかしながら、最近、より高速、高荷重という
苛酷な条件下にも耐えられる耐摩耗性銅合金が要
求されてきている。 本発明は上記したような高速、高荷重の摺動条
件下において、従来合金より優れた耐摩耗性を有
する高力銅合金を提供しようとするものである。 本発明に係る耐摩耗性に優れた高力銅合金の特
徴とするところは、Zn20〜40%、Al 2〜5%、
Mn0.75〜7.5%、Si0.25〜2.5%、Ni0.5〜5%、
Cr0.01〜0.2%、Sn0.1〜2%、残部銅及び不純物
からなるものである。 本発明に係る耐摩耗性に優れた高力銅合金につ
いて詳細に説明する。 先づ、本発明に係る耐摩耗性に優れた高力銅合
金の含有成分、成分割合について説明する。 ZnはCu−Zn系合金の耐摩耗性に重大な影響を
与えるものであり、母相がβ相の場合この特性が
良くなるが、β相単一の場合は脆くなり、耐摩耗
性の他に靭性をも要求される場合には母相はα+
βが望まれ、この観点からZnの含有量は他の含
有元素のZn当量も鑑み、20〜40%の範囲とす
る。 Alは母相を強化すると共に耐食性を向上させ
る元素であるが、AlのZn当量が6と非常に高い
ためAl含有量が多くなるとγ相が現われ熱間加
工性を悪くする。含有量が2%未満ではAlの効
果が得られず、また、5%を越えると上記した悪
い影響がある。よつてAl含有量は2〜5%とす
る。 Mn、SiはMn5Si3の金属間化合物を形成し、耐
摩耗性を向上させるが、このMn5Si3の含有量が
1%未満ではこの効果は得られず、また、10%を
越えると靭性が劣つてくる。そして、MnとSiが
Mn5Si3の金属間化合物を形成するとき、MnとSi
の重量比は1:0.3であり、よつて、Mnは0.75〜
7.5%、Siは0.25〜2.5%とする。 NiはNi−Al、Ni−Siの金属間化合物を形成
し、母相を強化する効果があり、また、母相に晶
出(析出)するMn5Si3金属間化合物の成長を抑
制し、これを微細にする効果もある。含有量が
0.5%未満ではこの効果は得られ難く、5%を越
えて含有されると鋳造温度を上昇させなければな
らず鋳塊の健全性を損なうことによる。よつて、
Ni含有量は0.5〜5%とする。 Crは結晶粒を微細化する効果があり、含有量
が0.01%未満ではこの効果は望めず、0.2%を越
えて含有されると鋳造時の鋳流れ性を悪くする。
よつて、Cr含有量は0.01〜0.2%とする。 Snは含有元素のうちでも特徴的な元素であ
り、従来のMn−Si黄銅より優れた耐摩耗性を発
揮させる効果があり、また、耐食性を向上させ
る。含有量が0.1%未満ではこれらの効果は得ら
れず、2%を越えて含有させると鋳塊の逆偏析を
招き好ましくない。よつて、Sn含有量は0.1〜2
%とする。 本発明に係る耐摩耗性に優れた高力銅合金の実
施例を比較合金と共に説明 実施例
The present invention relates to a high-strength copper alloy with excellent wear resistance,
More specifically, it relates to high-strength copper alloys with excellent wear resistance used in synchronizer rings (also known as poke rings) used in automobiles, etc., which are used under high-speed, high-load sliding conditions. It is. Conventionally, alloys for synchronizers include alloys in which Mn-Si intermetallic compounds are dispersed in brass to improve wear resistance, and aluminum bronze. However, recently there has been a demand for wear-resistant copper alloys that can withstand even harsher conditions such as higher speeds and higher loads. The present invention aims to provide a high-strength copper alloy that has better wear resistance than conventional alloys under the above-mentioned high-speed, high-load sliding conditions. The features of the high-strength copper alloy with excellent wear resistance according to the present invention include 20 to 40% Zn, 2 to 5% Al,
Mn0.75~7.5%, Si0.25~2.5%, Ni0.5~5%,
It consists of 0.01-0.2% Cr, 0.1-2% Sn, and the balance copper and impurities. The high-strength copper alloy with excellent wear resistance according to the present invention will be explained in detail. First, the components and proportions of the high-strength copper alloy with excellent wear resistance according to the present invention will be explained. Zn has a significant effect on the wear resistance of Cu-Zn alloys, and when the parent phase is a β phase, this property improves, but when it is a single β phase, it becomes brittle and deteriorates wear resistance and other properties. If toughness is also required, the matrix should be α+
β is desired, and from this point of view, the Zn content is set in the range of 20 to 40%, taking into account the Zn equivalents of other contained elements. Al is an element that strengthens the matrix and improves corrosion resistance, but since the Zn equivalent of Al is very high at 6, when the Al content increases, a γ phase appears and impairs hot workability. If the content is less than 2%, the effects of Al cannot be obtained, and if the content exceeds 5%, there will be the above-mentioned negative effects. Therefore, the Al content is set to 2 to 5%. Mn and Si form an intermetallic compound of Mn 5 Si 3 and improve wear resistance, but this effect cannot be obtained if the Mn 5 Si 3 content is less than 1%, and if it exceeds 10%. and the toughness deteriorates. And Mn and Si
When forming an intermetallic compound of Mn 5 Si 3 , Mn and Si
The weight ratio of is 1:0.3, so Mn is 0.75~
7.5%, and Si is 0.25 to 2.5%. Ni forms intermetallic compounds of Ni-Al and Ni-Si and has the effect of strengthening the matrix, and also suppresses the growth of Mn 5 Si 3 intermetallic compounds that crystallize (precipitate) in the matrix, It also has the effect of making this finer. The content is
If the content is less than 0.5%, it is difficult to obtain this effect, and if the content exceeds 5%, the casting temperature must be increased, which impairs the integrity of the ingot. Then,
The Ni content is 0.5 to 5%. Cr has the effect of refining crystal grains, and if the content is less than 0.01%, this effect cannot be expected, and if the content exceeds 0.2%, it will deteriorate the flowability during casting.
Therefore, the Cr content is set to 0.01 to 0.2%. Sn is a characteristic element among the contained elements, and has the effect of exhibiting better wear resistance than conventional Mn-Si brass, and also improves corrosion resistance. If the content is less than 0.1%, these effects cannot be obtained, and if the content exceeds 2%, this is undesirable because it causes reverse segregation of the ingot. Therefore, the Sn content is between 0.1 and 2.
%. Examples of high-strength copper alloys with excellent wear resistance according to the present invention, along with comparative alloys

【表】 第1表の含有成分、及び、成分割合となるよう
に、クリプトル電気炉を用いて電解銅を黒鉛坩堝
で、木炭被覆下にて溶解して、更に、Ni、Cu−
15Cr中間合金、Mn、Si、Al、Sn、Znを添加し溶
け落ち後金型に鋳込んで、60mmt×60mmw×140
mmlの鋳塊を得た。比較合金の鋳塊も上記と同様
にして得た。 この鋳塊を厚さ55mmまで面削し、圧延開始温度
750℃で厚さ8mmまで圧延した。さらに、650℃で
2時間保持後水中急冷することにより試料を調整
した。 次に、この板材から圧延方向に平行に引張試験
片(JIS13号B)、及び、圧延方向に直角な方向か
らシヤルピー衝撃試験片(JIS4号)をそれぞれ作
製した。 試験結果を第2表に示す。
[Table] Electrolytic copper was melted under charcoal coating in a graphite crucible using a Kryptor electric furnace, and Ni, Cu-
Add 15Cr intermediate alloy, Mn, Si, Al, Sn, and Zn, and after melting down, cast into a mold, 60mmt x 60mmw x 140
An ingot of mml was obtained. Ingots of comparative alloys were also obtained in the same manner as above. This ingot was faceted to a thickness of 55 mm, and the rolling start temperature was
It was rolled to a thickness of 8 mm at 750°C. Furthermore, the sample was prepared by holding it at 650°C for 2 hours and then rapidly cooling it in water. Next, a tensile test specimen (JIS No. 13 B) was prepared from this plate material in parallel to the rolling direction, and a Charpy impact test specimen (JIS No. 4) was prepared in a direction perpendicular to the rolling direction. The test results are shown in Table 2.

【表】 この第2表からも明らかであるが、本発明に係
る合金(No.1)は比較合金(No.2)比べ耐力が
高く、高力であり、また、衝撃値は略同等である
ことがわかる。 さらに、同じ板材から8mmt×25mmw×50mml
(#1000エメリーペーパで研摩仕上げ)の摩耗試
験片を作成し、下記条件で試験を行ない比摩耗量
を算出した。 摩耗試験条件 摩耗試験機・大越式迅速摩耗試験機 相手材・JIS SUS−2 摩擦距離・100m 最終荷重・2.1Kg 摩擦速度・0.1〜3.5m/sec 添付図面に試験結果を示す。図中・は本発明に
係る合金(No.1)、〇は比較合金(No.2)を示し
ている。 この添付図面より、No.1はNo.2より優れて安
定した耐摩耗量を示していることがわかる。 以上説明したように、本発明に係る耐摩耗性に
優れた高力銅合金は上記の構成を有しているもの
であるから、常温での耐力が高く、耐摩耗性も優
れているので、高速、高荷重の条件下で摺動する
部分の材料として有効であり、自動車等に用いら
れるシンクロナイザーリング(別名ボーリン
グ)、及びブツシング等に使用することができ
る。
[Table] As is clear from Table 2, the alloy according to the present invention (No. 1) has higher yield strength and strength than the comparative alloy (No. 2), and its impact value is almost the same. I understand that there is something. Furthermore, from the same board material, 8mmt x 25mmw x 50mml
A wear test piece (polished with #1000 emery paper) was prepared and tested under the following conditions to calculate the specific wear amount. Wear test conditions Wear tester/Okoshi type rapid wear tester Compatible material: JIS SUS-2 Friction distance: 100m Final load: 2.1Kg Friction speed: 0.1 to 3.5m/sec The test results are shown in the attached drawing. In the figure, . indicates an alloy according to the present invention (No. 1), and ○ indicates a comparative alloy (No. 2). From this attached drawing, it can be seen that No. 1 exhibits a more stable wear resistance than No. 2. As explained above, since the high-strength copper alloy with excellent wear resistance according to the present invention has the above-mentioned structure, it has high yield strength at room temperature and excellent wear resistance. It is effective as a material for parts that slide under high speed and high load conditions, and can be used for synchronizer rings (also known as boring) used in automobiles, bushings, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は摩耗速度と比摩耗量とを示すグラフ
である。
The attached drawing is a graph showing wear rate and specific wear amount.

Claims (1)

【特許請求の範囲】[Claims] 1 Zn20〜40%、Al 2〜5%、Mn0.75〜7.5
%、Si0.25〜2.5%、Ni0.5〜5%、Cr0.01〜0.2
%、Sn0.1〜2%、残部Cu及び不純物からなる耐
摩耗性に優れた高力銅合金。
1 Zn20~40%, Al 2~5%, Mn0.75~7.5
%, Si0.25~2.5%, Ni0.5~5%, Cr0.01~0.2
%, Sn0.1~2%, balance Cu and impurities. High strength copper alloy with excellent wear resistance.
JP56001341A 1981-01-08 1981-01-08 High-strength copper alloy with superior wear resistance Granted JPS57114632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001341A JPS57114632A (en) 1981-01-08 1981-01-08 High-strength copper alloy with superior wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001341A JPS57114632A (en) 1981-01-08 1981-01-08 High-strength copper alloy with superior wear resistance

Publications (2)

Publication Number Publication Date
JPS57114632A JPS57114632A (en) 1982-07-16
JPS6151620B2 true JPS6151620B2 (en) 1986-11-10

Family

ID=11498786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001341A Granted JPS57114632A (en) 1981-01-08 1981-01-08 High-strength copper alloy with superior wear resistance

Country Status (1)

Country Link
JP (1) JPS57114632A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427740A1 (en) * 1984-07-27 1986-02-06 Diehl GmbH & Co, 8500 Nürnberg BRASS ALLOY, MANUFACTURING METHOD AND USE
JPH0757899B2 (en) * 1985-07-10 1995-06-21 株式会社日立製作所 Wear resistant copper alloy
DE3735783C1 (en) * 1987-10-22 1989-06-15 Diehl Gmbh & Co Use of a copper-zinc alloy
JP2605791B2 (en) * 1988-03-31 1997-04-30 三菱マテリアル株式会社 Transmission synchronous ring made of Cu-based sintered alloy
JPH01252744A (en) * 1988-03-31 1989-10-09 Mitsubishi Metal Corp Synchronous ring for gearbox made of sintered cu alloy
CN107267789A (en) * 2017-07-25 2017-10-20 苏州三冷暖工程有限公司 A kind of preparation method of the effective brass alloys of air conditioner condensation
CN112695216B (en) * 2020-12-08 2021-12-28 宁波正元铜合金有限公司 Preparation method of manganese brass alloy with three strengthening phases

Also Published As

Publication number Publication date
JPS57114632A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US10351933B2 (en) Brass with excellent corrosion resistance
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
US20150152525A1 (en) Lead-free free-machining brass having improved castability
CN102899525B (en) High strength and toughness wear-resisting complex brass and production method thereof
JPS5853057B2 (en) Highly conductive copper-based alloy
CN103205608B (en) Preparation method of rare earth aluminum-manganese alloy foil used for aluminum honeycomb panel core
WO2015192279A1 (en) High-strength creep-resistant low-copper alloy material and application thereof
CN103789574A (en) Low-copper alloy, and production method and use thereof
US4851191A (en) High strength and wear resistance copper alloys
US4153756A (en) Aluminum-base bearing alloy and composite
JPS60114545A (en) Wear resistant copper alloy
JPS6151620B2 (en)
JPH01237A (en) High strength and wear resistant copper alloy
JPS6257700B2 (en)
JP3865430B2 (en) Heat and wear resistant magnesium alloy
KR102546211B1 (en) Aluminum alloy
JPS626737B2 (en)
JPS626736B2 (en)
CN109295404B (en) Wear-resistant brass alloy based on phase change control of silicon-manganese compound
CN112695216A (en) Preparation method of manganese brass alloy with three strengthening phases
US3031298A (en) Bearing alloys
JPH07116537B2 (en) Wear resistant Cu alloy with high strength and toughness
JPS6053098B2 (en) Wear-resistant Cu alloy with high strength and toughness
JPS626734B2 (en)
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy