JPH04210438A - Continuous casting mold material made of high strength cu alloy - Google Patents

Continuous casting mold material made of high strength cu alloy

Info

Publication number
JPH04210438A
JPH04210438A JP41894890A JP41894890A JPH04210438A JP H04210438 A JPH04210438 A JP H04210438A JP 41894890 A JP41894890 A JP 41894890A JP 41894890 A JP41894890 A JP 41894890A JP H04210438 A JPH04210438 A JP H04210438A
Authority
JP
Japan
Prior art keywords
alloy
continuous casting
strength
weight
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41894890A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakayama
中山 宏明
Hidetoshi Akutsu
阿久津 英俊
Masao Kobayashi
正男 小林
Takuro Iwamura
岩村 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP41894890A priority Critical patent/JPH04210438A/en
Publication of JPH04210438A publication Critical patent/JPH04210438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the increase in size and reduction in thickness and resulting reduction in weight of a mold by means of improvement in the strength, thermal conductivity, and heat resistance of the mold by using a Cu-Cr-Zr alloy with a specific composition as a material for mold for continuous casting. CONSTITUTION:As a material a mold used at the time of continuously casting a molten metal, such as molten steel, a Cu alloy having a composition containing, by weight, 0.1-1.5% Cr, 0.01-0.5% Zr, 1.3-5% Co, and 0.2-2% Ti is used, or further, additive metals consisting of 0.01-0.5% of Fe and/or Ni, 0.05-1.2% of one or more elements among Sn, Mn, and Zn, and 0.001-0.2% of Mg and/or P are added in combination. Because these Cu alloys have high strength and superior characteristics, such as thermal conductivity and heat resistance, the lightening in weight of the continuous casting mold resulting from thinning can be attained and also the increase in the size of this mold can be done, and continuous casting working can be made high speed and productivity can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]この発明は、高強度を有し、これ
によって大断面積化および熱伝導性の向上をもたらす薄
肉化、さらに軽量化を可能とし、この結果鋳片の大型化
や連続鋳造速度の高速化が可能となって生産性の向上が
はかれるようになるCu合金製連続鋳造鋳型材に関する
ものである。 [0002] 【従来の技術】従来、一般に、連続鋳造鋳型として、ス
ラブやビレット製造用の無底式のものや、急冷薄帯製造
用の冷却ロール式のものなどが知られている。 [0003]また、これら連続鋳造鋳型には、強度、高
温伸び、熱伝導性、および耐熱性が要求されるので、こ
れの製造には、これらの特性を具備した、例えば特開昭
48−89122号公報に記載される通りの、Cr二0
.1〜1%、Zr:0− 02〜0.2%、を含有し、
残りがCuと不可避不純物からなる組成(以上重量%、
以下%は重量%を示す)を有するCu合金が用いられて
いることも良く知られている。 [0004]
[Industrial Application Field] This invention has high strength, which makes it possible to increase the cross-sectional area, improve thermal conductivity, and reduce the weight. The present invention relates to a continuous casting mold material made of a Cu alloy that enables high-speed casting and improves productivity. [0002] Conventionally, as continuous casting molds, bottomless molds for producing slabs and billets, cooling roll molds for producing quenched ribbons, and the like are generally known. [0003] In addition, these continuous casting molds are required to have strength, high temperature elongation, thermal conductivity, and heat resistance. Cr20 as described in the publication No.
.. 1-1%, Zr: 0-02-0.2%,
The remainder consists of Cu and unavoidable impurities (more than % by weight,
It is also well known that a Cu alloy having a weight percentage (hereinafter % indicates weight %) is used. [0004]

【発明が解決しようとする課題】一方、近年の連続鋳造
設備の大型化および高性能化はめざましく、これに伴な
い、これの構造部材である鋳型にも大型化(大断面積化
)、高速鋳造時に発生する高い熱負荷に耐えるための高
強度化、薄肉化、および軽微化が強く要求されているが
、上記の従来連続鋳造鋳型においては、これを構成する
Cu合金の強度が十分でないために、これらの要求に満
足に対応することができないのが現状である。 [0005]
[Problems to be Solved by the Invention] On the other hand, in recent years, continuous casting equipment has become larger and more sophisticated, and along with this, the molds that are the structural members of these equipment have also become larger (larger cross-sectional area) and faster. There is a strong demand for higher strength, thinner wall thickness, and lighter weight in order to withstand the high heat load that occurs during casting, but in the conventional continuous casting molds mentioned above, the strength of the Cu alloy that makes up the molds is not sufficient. However, the current situation is that it is not possible to satisfactorily meet these demands. [0005]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来Cu合金製連続鋳造
鋳型材に着目し、これに高強度を付与すべく、組成面か
ら研究を行なった結果、上記の連続鋳造鋳型材を構成す
るCu合金に、合金成分として、 Co:1.3〜5%、Ti:0.2〜2%、を含有させ
ると、これらの2成分は、素地中に微細均一に析出分散
する硬質の金属間化合物を形成するようになり、これに
よって強度が著しく向上し、この場合、上記の従来連続
鋳造鋳型を構成するCu合金の本来具備する高温伸び、
熱伝導性、および耐熱性が損なわれることがなく、また
、こねに加えて合金成分としてFe、Niを含有させれ
ば、−層の強度向上がはかられ、同じ<Sn、Mn。 Znを含有させると耐熱性が向上し、さらに同じくMg
、Pを含有させると被削性が向上するようになるという
研究結果を得たのである。 [0006]この発明は、上記の研究結果にもとづいて
なされたものであって、Cr:0.1〜1.5%、Zr
:0゜01〜0.5%、Co:1.3〜5%、Ti:O
72〜2%、を含有し、さらに必要に応じて、(a)F
eおよびNiのうちの1種以上:O,O]〜0.5%、 (b) Sn、 Mn、およびZnのうちの1種以上:
0゜05〜1.2%、 (c)MgおよびPのうちの1種以上:0.001〜0
.2%、以上(a)〜(C)のうちの1種以上を含有し
、残りがCuと不可避不純物からなる組成を有するCu
合金で構成してなる高強度Cu合金製連続鋳造鋳型材に
特徴を有するものである。 [0007]つぎに、この発明の連続鋳造鋳型材を構成
するCu合金の成分組成を上記の通りに限定した理由を
説明する。 [0008] (a)Cr Cr成分には、Co−Ti金属間化合物と共存した状態
で、素地中に微細均一に析出して、強度を向上させる作
用があるが、その含有量が001%未満では所望の高強
度を確保することができず、一方その含有量が1.5%
を越えると、溶体化が困難になるばかりでなく、Cr析
出物も粗大化するようになって延性の著しい低下が見ら
れるようになることから、その含有量を0.1〜1.5
%と定めた。 [0009] (b)Zr Zr成分には、結晶粒界に化合物として析出して高温伸
びおよび耐熱性を向上させる作用があるが、その含有量
が0.01%未満では前記作用に所望の向上効果が得ら
れず、一方その含有量が0. 5%を越えると、結晶粒
界の融点が著しく低下するようになり、この結果熱処理
工程で焼き割れが生じるようになることから、その含有
量を0.01〜0.5%と定めた。 [00101 (c)CoおよびTi これら両成分には、上記の通り素地中に均一微細に分散
析出する硬質のCo−Ti金属間化合物を形成して強度
を著しく向上させる作用があるが、その含有量がCo:
1.3%未満およびTi:0.2%未満では、析出する
金属間化合物の割合が少なすぎて所望の強度向上効果が
得られず、一方Coにあっては5%、Tiにあっては2
%を越えると、それぞれ金属間化合物を形成しない余剰
の成分が素地中に固溶することになり、この場合Coが
固溶すると延性が低下するようになり、Tiが固溶する
と、その分だけ熱伝導性が低下するようになることがら
、その含有量をそれぞれCo:1.3〜5%、Ti;0
、 2〜2%と定めた。 [00111 (d)FeおよびN1 これらの成分には、素地に固溶して、これを強化し、そ
の結果として強度を向上させる作用があるので、必要に
応じて含有されるが、その含有量が0.01%未満では
所望の強度向上効果が得られず、一方その含有量が0゜
5%を越えると熱伝導性が低下するようになることがら
、その含有量を0.01〜0.5%と定めた。 [0012] (e)Sn、Mn、およびZn これらの成分には、耐熱性を向上させる作用があるので
、必要に応じて含有されるが、その含有量が0.05%
未満では所望の耐熱性向上効果が得られず、一方その含
有量が1−62%を越えると、熱間加工性が低下するよ
うになることから、その含有量を0.05〜1.2%と
定めた。 [0013] (f)MgおよびP これらの成分には、脱酸作用のほか、被削性を改善する
作用があるので、必要に応じて含有されるが、その含有
量が0.001%未満では前記作用に所望の効果が得ら
れず、一方その含有量が0.2%を越えると熱間加工性
が低下するようになることから、その含有量を0.00
1〜0.2%と定めた。 [00141
[Means for solving the problem] Therefore, the present inventors
From the above-mentioned viewpoint, we focused on the conventional continuous casting mold material made of Cu alloy and conducted research from the viewpoint of composition in order to impart high strength to it. As a result, we found that the Cu alloy constituting the continuous casting mold material When Co: 1.3 to 5% and Ti: 0.2 to 2% are included as alloy components, these two components form a hard intermetallic compound that precipitates and disperses finely and uniformly in the matrix. This significantly improves the strength, and in this case, the high temperature elongation inherent in the Cu alloy that constitutes the conventional continuous casting mold mentioned above,
Thermal conductivity and heat resistance are not impaired, and if Fe and Ni are included as alloy components in addition to kneading, the strength of the layer can be improved, and the same <Sn, Mn. Heat resistance improves when Zn is included, and Mg
The research results showed that machinability improves when P is included. [0006] This invention was made based on the above research results, and includes Cr: 0.1 to 1.5%, Zr
:0°01~0.5%, Co:1.3~5%, Ti:O
72 to 2%, and further contains (a)F as necessary.
one or more of e and Ni: O, O] ~ 0.5%, (b) one or more of Sn, Mn, and Zn:
0°05-1.2%, (c) One or more of Mg and P: 0.001-0
.. 2% of Cu containing one or more of the above (a) to (C), with the remainder consisting of Cu and unavoidable impurities.
It is characterized by a continuous casting mold material made of a high-strength Cu alloy. [0007] Next, the reason why the composition of the Cu alloy constituting the continuous casting mold material of the present invention is limited as described above will be explained. [0008] (a) Cr The Cr component has the effect of precipitating finely and uniformly in the substrate in coexistence with the Co-Ti intermetallic compound and improving the strength, but the content is less than 0.01%. However, the desired high strength cannot be achieved with the content of 1.5%.
If the content exceeds 0.1 to 1.5, not only will solution treatment become difficult, but the Cr precipitates will also become coarse, resulting in a significant decrease in ductility.
%. [0009] (b) Zr The Zr component has the effect of precipitating as a compound at grain boundaries and improving high temperature elongation and heat resistance, but if its content is less than 0.01%, the desired improvement in the above effect is not achieved. No effect was obtained, and on the other hand, the content was 0. If it exceeds 5%, the melting point of grain boundaries will drop significantly, resulting in quench cracking during the heat treatment process, so the content is set at 0.01 to 0.5%. [00101 (c) Co and Ti These two components have the effect of significantly improving strength by forming a hard Co-Ti intermetallic compound that is uniformly and finely dispersed and precipitated in the base material as described above. The amount is Co:
If it is less than 1.3% and Ti: less than 0.2%, the proportion of precipitated intermetallic compounds is too small to achieve the desired strength improvement effect; 2
%, surplus components that do not form intermetallic compounds become solid solutions in the matrix, and in this case, when Co dissolves in solid solution, the ductility decreases, and when Ti dissolves in solid solution, the ductility decreases by that amount. Since the thermal conductivity may decrease, the content should be adjusted to 1.3 to 5% for Co and 0 for Ti.
, set at 2-2%. [00111 (d) Fe and N1 These components have the effect of forming a solid solution in the base material, strengthening it, and improving its strength as a result, so they are included as necessary, but their content is If the content is less than 0.01%, the desired strength improvement effect cannot be obtained, while if the content exceeds 0.5%, the thermal conductivity will decrease. It was set at .5%. [0012] (e) Sn, Mn, and Zn These components have the effect of improving heat resistance, so they are included as necessary, but the content is 0.05%.
If the content is less than 1%, the desired effect of improving heat resistance cannot be obtained, while if the content exceeds 1-62%, hot workability will decrease. %. [0013] (f) Mg and P These components have a deoxidizing effect and an effect of improving machinability, so they are included as necessary, but if the content is less than 0.001%. However, if the content exceeds 0.2%, hot workability will decrease, so the content should be reduced to 0.00%.
It was set at 1% to 0.2%. [00141

【実施例]つぎに、この発明のCu合合金製連鋳鋳造鋳
型材実施例により具体的に説明する。 [00151通常の真空溶解炉を用い、黒鉛るつぼ中で
、それぞれ表1に示される成分組成をもった各種のCu
合金溶湯を5kgづつ溶製し、金型に鋳造してインゴッ
トとし、面前した後、通常の条件で熱間鍛造と熱間圧延
を施して、幅:100mmX厚さ:5皿の寸法をもった
板材とし、所定長さに切断した後、950〜980℃の
範囲内の所定温度に30分保持後水冷の条件で溶体化処
理を施し、引続いて、470〜530℃の範囲内の所定
温度に2〜3時間の範囲内の所定時間保持の条件で時効
処理を施すことにより本発明Cu合金製連続鋳造鋳型材
(以下本発明鋳型材という)1〜34、比較Cu合金製
連続鋳造鋳型材(以下比較鋳型材という)1〜6、およ
び従来Cu合金製連続鋳造鋳型材(以下従来鋳型材とい
う)1〜5をそれぞれ製造した。 [001,6) 【表1】 [00171
[Example] Next, the present invention will be specifically explained with reference to an example of the Cu alloy continuous casting mold material. [00151 Using a normal vacuum melting furnace, various types of Cu having the component compositions shown in Table 1 were prepared in a graphite crucible.
The molten alloy was melted in 5 kg portions, cast into a mold to make an ingot, and then hot forged and hot rolled under normal conditions to have dimensions of 100 mm width x 5 plate thickness. After making a plate material and cutting it into a predetermined length, it is held at a predetermined temperature within the range of 950 to 980 °C for 30 minutes, and then subjected to solution treatment under water-cooling conditions, and subsequently at a predetermined temperature within the range of 470 to 530 °C. The continuous casting mold materials made of the Cu alloy of the present invention (hereinafter referred to as the mold materials of the present invention) 1 to 34 and the comparative continuous casting mold materials made of the Cu alloy are subjected to aging treatment under conditions of holding for a predetermined time within the range of 2 to 3 hours. (hereinafter referred to as comparative mold materials) 1 to 6, and conventional continuous casting mold materials made of Cu alloy (hereinafter referred to as conventional mold materials) 1 to 5 were manufactured, respectively. [001,6) [Table 1] [00171

【表2】 なお、比較鋳型材1〜6は、いずれもCu合金を構成す
る成分のうちのいずれかの成分含有風(表1に※印を付
す)がこの発明の範囲から外ねたものである。 [0018]ついで、この結果得られた各種の鋳型材に
ついて、強度を評価する目的で常温引張強さを測定し、
高温伸びを評価する目的で、400℃に10分間保持の
試片を用いての引張試験を行ない、熱伝導性を評価する
目的で導電率(IAC3%)を測定し、さらに耐熱性を
評価する目的で軟化温度を測定した。これらの結果を表
2に示した。 [00191なお、軟化温度は、熱処理を施す前の試片
の常温硬さを基本硬さとし、この試片に、400〜60
0℃の温度範囲において、加熱温度を50℃づつ上昇さ
せながら、それぞれの加熱温度に2時間保持後空冷の熱
処理を施し、熱処理温度毎に硬さを測定し、上記基本硬
さの85%に相当する硬さを示した時点の熱処理温度を
補間法により10℃単位で求め、その値をもって現わし
た。 [00201
[Table 2] Comparative mold materials 1 to 6 are all materials whose content of one of the components constituting the Cu alloy (marked with * in Table 1) is outside the scope of the present invention. It is. [0018] Next, the room temperature tensile strength of the various mold materials obtained as a result was measured for the purpose of evaluating the strength,
In order to evaluate high temperature elongation, a tensile test is performed using a specimen held at 400°C for 10 minutes, and in order to evaluate thermal conductivity, electrical conductivity (IAC 3%) is measured, and heat resistance is further evaluated. The softening temperature was measured for the purpose. These results are shown in Table 2. [00191 The softening temperature is based on the room temperature hardness of the sample before heat treatment, and the softening temperature is 400 to 60.
In the temperature range of 0°C, the heating temperature was increased by 50°C, and after holding each heating temperature for 2 hours, air cooling was performed, and the hardness was measured at each heat treatment temperature. The heat treatment temperature at the time when the corresponding hardness was exhibited was determined by interpolation in units of 10°C, and the value was expressed. [00201

【発明の効果】表2に示される結果から、本発明鋳型材
1〜34は、いずれも従来鋳型材1〜5のもつすぐれた
高温伸び、熱伝導性、および耐熱性と同等あるいはそれ
以上の特性を具備した一Lで、より一段と高い強度を示
すことが明らかであり、一方比較鋳型材1〜6に見られ
るように、これを構成するCL1合金のうちいずれかの
成分含有鳳でもこの発明の範囲から外れると上記特性の
うちの少なくともいずれかが劣ったものになるのである
。 [00211上述のように、この発明のCu合金製連続
鋳造鋳型材は、高強度を有し、かつ高温伸び、熱伝導性
、および耐熱性にもすぐねでいるので、連続鋳造鋳型の
大型化、薄肉化、および軽量化を可能とし、連続鋳造の
大型化設備および高性能化と相まって生産性の向上に寄
与するものである。
Effects of the Invention From the results shown in Table 2, mold materials 1 to 34 of the present invention all have the same or better high temperature elongation, thermal conductivity, and heat resistance of conventional mold materials 1 to 5. It is clear that 1L exhibits even higher strength, and on the other hand, as seen in Comparative Mold Materials 1 to 6, even the alloy containing any of the components of the CL1 alloy constituting this mold material can be used in accordance with the present invention. If it deviates from this range, at least one of the above characteristics will be inferior. [00211 As mentioned above, the Cu alloy continuous casting mold material of the present invention has high strength and is also excellent in high-temperature elongation, thermal conductivity, and heat resistance, so it is suitable for increasing the size of continuous casting molds. , thinner walls, and lighter weight, and together with larger continuous casting equipment and higher performance, it contributes to improved productivity.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、残りがCuと不可避不純物からなる組成(
以上重量%)を有するCu合金で構成したことを特徴と
する高強度Cu合金製連続鋳造鋳型材。
[Claim 1] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, with the remainder consisting of Cu and unavoidable impurities (
1. A continuous casting mold material made of a high-strength Cu alloy, characterized in that it is made of a Cu alloy having a weight percentage of at least 1% by weight.
【請求項2】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、FeおよびNiのうちの1種以上
:0.01〜0.5%、を含有し、残りがCuと不可避
不純物からなる組成(以上重量%)を有するCu合金で
構成したことを特徴とする高強度Cu合金製連続鋳造鋳
型材。
[Claim 2] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Fe and Ni: 0.01 to 0.5%, and the remainder is Cu and unavoidable impurities (weight %). A continuous casting mold material made of high-strength Cu alloy.
【請求項3】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、Sn、Mn、およびZnのうちの
1種以上:0.05〜1.2%、を含有し、残りがCu
と不可避不純物からなる組成(以上重量%)を有するC
u合金で構成したことを特徴とする高強度Cu合金製連
続鋳造鋳型材。
[Claim 3] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Sn, Mn, and Zn: 0.05 to 1.2%, and the remainder is Cu.
and unavoidable impurities (weight%)
A continuous casting mold material made of a high strength Cu alloy, characterized in that it is made of a u alloy.
【請求項4】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、MgおよびPのうちの1種以上:
0.001〜0.2%、を含有し、残りがCuと不可避
不純物からなる組成(以上重量%)を有するCu合金で
構成したことを特徴とする高強度Cu合金製連続鋳造鋳
型材。
Claim 4: Cr: 0.1-1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Mg and P:
1. A continuous casting mold material made of a high-strength Cu alloy, characterized in that it is made of a Cu alloy having a composition (weight %) containing 0.001 to 0.2%, and the remainder consisting of Cu and unavoidable impurities.
【請求項5】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、FeおよびNiのうちの1種以上
:0.01〜0.5%と、Sn、Mn、およびZnのう
ちの1種以上:0.05〜1.2%、を含有し、残りが
Cuと不可避不純物からなる組成(以上重量%)を有す
るCu合金で構成したことを特徴とする高強度Cu合金
製連続鋳造鋳型材。
[Claim 5] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Fe and Ni: 0.01 to 0.5%, and one or more of Sn, Mn, and Zn: 0.05 to 1.2%. 1. A continuous casting mold material made of a high-strength Cu alloy, characterized in that it is made of a Cu alloy having a composition (by weight %) of which the remainder consists of Cu and unavoidable impurities.
【請求項6】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、FeおよびNiのうちの1種以上
:0.01〜0.5%と、MgおよびPのうちの1種以
上:0.001〜0.2%、を含有し、残りがCuと不
可避不純物からなる組成(以上重量%)を有するCu合
金で構成したことを特徴とする高強度Cu合金製連続鋳
造鋳型材。
[Claim 6] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Fe and Ni: 0.01 to 0.5%, and one or more of Mg and P: 0.001 to 0.2%, A continuous casting mold material made of a high-strength Cu alloy, characterized in that it is made of a Cu alloy having a composition (the above weight %) consisting of Cu and unavoidable impurities.
【請求項7】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、Sn、Mn、およびZnのうちの
1種以上:0.05〜1.2%と、MgおよびPのうち
の1種以上:0.001〜0.2%、を含有し、残りが
Cuと不可避不純物からなる組成(以上重量%)を有す
るCu合金で構成したことを特徴とする高強度Cu合金
製連続鋳造鋳型材。
Claim 7: Cr: 0.1-1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Sn, Mn, and Zn: 0.05 to 1.2%, and one or more of Mg and P: 0.001 to 0.2%. 1. A continuous casting mold material made of a high-strength Cu alloy, characterized in that it is made of a Cu alloy having a composition (by weight %) of which the remainder consists of Cu and unavoidable impurities.
【請求項8】Cr:0.1〜1.5%、Zr:0.01
〜0.5%、Co:1.3〜5%、Ti:0.2〜2%
、を含有し、さらに、FeおよびNiのうちの1種以上
:0.01〜0.5%と、Sn、Mn、およびZnのう
ちの1種以上:0.05〜1.2%と、MgおよびPの
うちの1種以上:0.001〜0.2%、を含有し、残
りがCuと不可避不純物からなる組成(以上重量%)を
有するCu合金で構成したことを特徴とする高強度Cu
合金製連続鋳造鋳型材。
[Claim 8] Cr: 0.1 to 1.5%, Zr: 0.01
~0.5%, Co: 1.3~5%, Ti: 0.2~2%
, and further contains one or more of Fe and Ni: 0.01 to 0.5%, and one or more of Sn, Mn, and Zn: 0.05 to 1.2%, A high-density alloy characterized by being composed of a Cu alloy containing one or more of Mg and P: 0.001 to 0.2%, and the remainder consisting of Cu and unavoidable impurities (weight %). Strength Cu
Alloy continuous casting mold material.
JP41894890A 1990-12-13 1990-12-13 Continuous casting mold material made of high strength cu alloy Pending JPH04210438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41894890A JPH04210438A (en) 1990-12-13 1990-12-13 Continuous casting mold material made of high strength cu alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41894890A JPH04210438A (en) 1990-12-13 1990-12-13 Continuous casting mold material made of high strength cu alloy

Publications (1)

Publication Number Publication Date
JPH04210438A true JPH04210438A (en) 1992-07-31

Family

ID=18526695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41894890A Pending JPH04210438A (en) 1990-12-13 1990-12-13 Continuous casting mold material made of high strength cu alloy

Country Status (1)

Country Link
JP (1) JPH04210438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565681B1 (en) * 1994-08-06 2003-05-20 Km-Kabelmetal Aktiengesellschaft Age-hardenable copper alloy casting molds
JP2011518668A (en) * 2008-03-19 2011-06-30 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Mold member manufacturing method and mold member manufactured by the manufacturing method
CN103388090A (en) * 2013-07-10 2013-11-13 河南科技大学 High-strength, high-conductivity and high-extensibility rare earth copper alloy and preparation method thereof
KR20180078244A (en) 2015-11-09 2018-07-09 미쓰비시 마테리알 가부시키가이샤 Copper alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141973A (en) * 1984-08-03 1986-02-28 Sharp Corp Method of evaluating light response characteristic of image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141973A (en) * 1984-08-03 1986-02-28 Sharp Corp Method of evaluating light response characteristic of image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565681B1 (en) * 1994-08-06 2003-05-20 Km-Kabelmetal Aktiengesellschaft Age-hardenable copper alloy casting molds
JP2011518668A (en) * 2008-03-19 2011-06-30 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Mold member manufacturing method and mold member manufactured by the manufacturing method
CN103388090A (en) * 2013-07-10 2013-11-13 河南科技大学 High-strength, high-conductivity and high-extensibility rare earth copper alloy and preparation method thereof
KR20180078244A (en) 2015-11-09 2018-07-09 미쓰비시 마테리알 가부시키가이샤 Copper alloy material

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
KR20030041832A (en) Age-hardenable copper alloy as material for production of casting mold
JPH0569888B2 (en)
TW200837203A (en) Cu-Ni-Si-based copper alloy for electronic material
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JPS6132386B2 (en)
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
KR102044983B1 (en) High corrosion resistant magnesium alloy and method for manufacturing the same
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPS6146534B2 (en)
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it&#39;s manufacturing method
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JPH09176805A (en) Production of aluminum fin material
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
KR100366843B1 (en) copper alloy and method of manufacturing the same
CN115992328A (en) 6-series aluminum alloy plate and manufacturing method thereof
JPH0524217B2 (en)
JPH0124859B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980714