JPS5853057B2 - Highly conductive copper-based alloy - Google Patents

Highly conductive copper-based alloy

Info

Publication number
JPS5853057B2
JPS5853057B2 JP49056410A JP5641074A JPS5853057B2 JP S5853057 B2 JPS5853057 B2 JP S5853057B2 JP 49056410 A JP49056410 A JP 49056410A JP 5641074 A JP5641074 A JP 5641074A JP S5853057 B2 JPS5853057 B2 JP S5853057B2
Authority
JP
Japan
Prior art keywords
weight
alloy
highly conductive
present
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49056410A
Other languages
Japanese (ja)
Other versions
JPS50147420A (en
Inventor
元久 宮藤
光則 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP49056410A priority Critical patent/JPS5853057B2/en
Publication of JPS50147420A publication Critical patent/JPS50147420A/ja
Publication of JPS5853057B2 publication Critical patent/JPS5853057B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高導電性銅基合金に関し、さらに詳しくは、導
電性及び伝熱性の優れた高導電性銅基台金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly conductive copper-based alloy, and more particularly to a highly conductive copper-based metal having excellent electrical conductivity and thermal conductivity.

従来から銅はすぐれた電気及び熱の伝導体であり、かつ
加工性の良いことが知られてち・す、器物や装飾品、建
築材料、熱交換器など多くの用途に使用されている。
Copper has long been known to be an excellent conductor of electricity and heat, and has good workability, and has been used in many applications such as vessels, decorations, building materials, and heat exchangers.

これら様々の用途に使用する時、銅材料の強度や耐蝕性
などが問題となるため、これ捷で銅に種々の合金元素を
含有させて満足すべき性質を得るべく試みられ、燐脱酸
銅をはじめとするCAD 192合金わよびCAD 1
94合金などが提案されている。
When used for these various purposes, the strength and corrosion resistance of copper materials are issues, so attempts were made to obtain satisfactory properties by incorporating various alloying elements into copper, and phosphorus deoxidized copper CAD 192 alloy including CAD 1
94 alloy etc. have been proposed.

I股に鋼に合金元素を含有させると銅の優秀な加工性、
電気及び熱の高い伝導性が低下するが、銅及び銅合金材
料に対する最近の産業界の希求としては空調用配管、熱
交換器管材及び建築用配管などの主要な用途にち・いて
顕著などとく、銅材料価値の高騰に伴なう使用材料の節
減を中心とする、管材のより薄肉化、高強度化あるいは
より以上の電気、熱の伝導性及び耐蝕性の向上などの傾
向がみとめられるのに対し、これらの合金、即ち、燐脱
酸銅やCAD 192合金及びCAD194合金などは
、これらの希求に対し充分な満足を与えてち・らず、従
って、加工性が良好で高い電気及び熱の伝導性を有する
高力鋼合金、即ち、本発明に係る高導電性銅基台金が前
記説明した状況に鑑みなされたものである。
Incorporating alloying elements into steel improves the workability of copper,
Although their high electrical and thermal conductivity is reduced, recent industry demand for copper and copper alloy materials is particularly evident in key applications such as air conditioning piping, heat exchanger piping, and architectural piping. With the soaring value of copper materials, there is a trend toward thinner pipe materials, higher strength, and improved electrical and thermal conductivity and corrosion resistance, centered on reducing the amount of materials used. On the other hand, these alloys, such as phosphorus-deoxidized copper, CAD 192 alloy and CAD 194 alloy, do not fully satisfy these demands, and therefore have good processability and high electrical and thermal resistance. A high-strength steel alloy having a conductivity of 1, ie, a highly conductive copper-based metal according to the present invention was developed in view of the above-mentioned situation.

そして、加工性の良すことは、主として製造メーカーに
おける製造コストの低減に寄与することの効果も併せ持
っているが、→投に強度の向上と加工性の向上とは同一
組成合金にち−いては相反するものであることは論をま
たないが、両者とも望捷しい方向に改良される場合、そ
れは他の合金元素の含有により可能となるが、本発明に
係る高導電性鋼基合金の場合、これに更に電気及び熱の
伝導性の向上する点もについても目的として加味されて
いる。
Good workability also has the effect of contributing to a reduction in manufacturing costs mainly for manufacturers; It goes without saying that these are contradictory, but if both can be improved in a desirable direction, this can be achieved by adding other alloying elements, but the high conductivity steel-based alloy according to the present invention In some cases, the objective is to improve electrical and thermal conductivity.

即ち、本発明に係る高導電性銅基台金は、Cuに0.0
4〜0.155重量%Fe と0.025、.0.0
44重量%Pを含み、更にこの他に第3添加成分として
Ag、Al、B、Be、Co、Cr、Mg、Mn、Ni
That is, the highly conductive copper base metal according to the present invention has a Cu content of 0.0
4 to 0.155 wt% Fe and 0.025, . 0.0
Contains 44% by weight of P, and also contains Ag, Al, B, Be, Co, Cr, Mg, Mn, Ni as a third additional component.
.

Sb、 S i、 Ti、 Zn及びミソシュメタル(
ここでミソシュメタルとはLa及びCeを主とした希土
類元素の混合物をいい、以下のミソシュメタルという表
現はすべてこの意味である。
Sb, Si, Ti, Zn and miso metal (
Here, misosumetal refers to a mixture of rare earth elements mainly consisting of La and Ce, and all expressions below "misosumetal" have this meaning.

)のうちの1種渣たば2種以上の組合せがo、oi〜1
.0重量%、あるいはこれらの第3添加戒分に更にSn
を0.01〜0.6重量係列えた合計が0.01〜1.
0重量%のうちのいずれかを含み、残部本質的にCuか
らなり、燐化鉄の析出した合金を採用することにより前
記の望捷しい特性を具備する材料が得られるので、燐脱
酸銅における強度不足、あるいはCAD192合金及び
CAD194合金の加工性にあ−ける劣性をほぼ満足す
る程度1でカバーすることができる。
), the combination of two or more types of tobacco is o, oi ~ 1
.. 0% by weight, or additionally Sn in these third additions.
The total weight of 0.01 to 0.6 is 0.01 to 1.
By employing an alloy containing either 0% by weight, the remainder consisting essentially of Cu, and precipitated iron phosphide, a material having the aforementioned desirable properties can be obtained. It is possible to compensate for the insufficient strength of CAD192 alloy and CAD194 alloy with a nearly satisfactory degree of workability.

本発明に係る高導電性銅基台金において、Fe。In the highly conductive copper base metal according to the present invention, Fe.

P及び第3添加戒分、更にSnを含有させることについ
説明する。
The inclusion of P, the third additive, and Sn will be explained.

Fe及びP: Fe及びPは後述する実施例及び第1図から明らかにさ
れているように、燐化鉄を形成(析出)し、この析出に
より第3添加戒分と相俟って、強度と高導電性を具備さ
せる。
Fe and P: As is clear from the examples and FIG. and high conductivity.

従って、Fe及びPを各々単独に含有させる場合は強度
の向上に対する効果は少なく、FeとPの共存により強
度が顕著に同上する。
Therefore, when Fe and P are contained individually, the effect on improving the strength is small, and the coexistence of Fe and P significantly increases the strength.

そして、Fe含有量が0.04重量%未満では と共存
する場合でも効果はなく、また、0.155重量%越え
る含有量では、例えば、CAD 192合金及びCAD
194合金にみられるように単位加工率当りの加工硬化
が激しすき゛るので、脱酸鋼の製造工程には適用し難く
、どうしても適用しようとすれば中間焼鈍を採用しなげ
ればならず製造性の劣化を沼来し、筐た、組織が不均一
化し易くなるのでFe含有量は0904〜0.155重
量%する。
If the Fe content is less than 0.04% by weight, there is no effect even if it coexists with , and if the Fe content exceeds 0.155% by weight, for example, CAD 192 alloy and CAD
As seen in the 194 alloy, work hardening per unit working rate is severe, so it is difficult to apply to the manufacturing process of deoxidized steel, and if it is to be applied, intermediate annealing must be used, resulting in poor manufacturability. The Fe content is set at 0.904% to 0.155% by weight, since this will reduce the deterioration of the structure and cause the structure to become non-uniform.

一方、PばFeとの化合物である燐化鉄を形成させるた
めに含有され、含有量が0.02525重量%ではFe
と共存する場合でも強度向上の効果は少なく、芽た、0
.04重重量%越えて含有されるとFeと化合しないで
Cuマトリックス中に固溶するPが多くなり、導電性を
著しく害するようになるので、P含有量は0.025〜
0.044重量%する。
On the other hand, P is contained to form iron phosphide, which is a compound with Fe, and when the content is 0.02525% by weight, Fe
Even when coexisting with
.. If the content exceeds 0.04% by weight, a large amount of P will dissolve in the Cu matrix without combining with Fe, and the conductivity will be significantly impaired.
0.044% by weight.

第3添加成分: Ag、 AL B、 Be、 Co、 Cr、 Mgs
Mn+ Ni、 Sb。
Third additional component: Ag, AL B, Be, Co, Cr, Mgs
Mn+Ni, Sb.

S i、 Ti、 ZnJ7Aびミソシュメタルのうち
の1種筐たは2種以上の組合せの合計、あるいは、これ
ら更にSnを加えた合計が、いずれの場合も、含有量が
0.011重量%満の場合は強度の向Eの効果は乏しく
、捷た、1.0重量%を越える含有量では加工性の劣化
及び電気、熱の伝導性が低Fするので、第3添加成分、
あるいは第3添加成分とSnの含有量は0.01〜(,
0重量%とする。
In any case, the total content of one or more of Si, Ti, ZnJ7A, and a combination of two or more of these metals, including Sn, is less than 0.011% by weight. If the content exceeds 1.0% by weight, the third additive component,
Alternatively, the content of the third additional component and Sn is 0.01~(,
0% by weight.

Sn二 Snは母材に固溶し、燐化鉄と共に結晶粒を微細化して
強度向上に寄与するが、固溶するため添加し過ぎると導
電性が低下してCuの有する高導電性という特性が失な
われるので0.6重量%を越えて含有させず、一方、S
n含有量が0.011重量%満では強度向上が期待でき
ないので、Sn含有量は0.01〜0.6重量%とする
Sn2Sn forms a solid solution in the base material, and together with iron phosphide, it refines the crystal grains and contributes to improving strength. However, since it forms a solid solution, if it is added too much, the conductivity will decrease and the high conductivity characteristic of Cu will be reduced. Since S is lost, the content should not exceed 0.6% by weight, while S
If the n content is less than 0.011% by weight, no improvement in strength can be expected, so the Sn content is set to 0.01 to 0.6% by weight.

以下本発明に係る高導電性銅基台金の実施例を説明する
Examples of the highly conductive copper base metal according to the present invention will be described below.

実の1叶f2り 高純度銅をクリプトルミ気炉中で木炭被覆Fで約120
0℃の温度で溶解する。
High-purity copper of 1 leaf F2 is coated with charcoal in a Cryptorumi air furnace at approximately 120 F.
Melts at a temperature of 0°C.

鋼装入物の約2割を残しておき、目的値に応じたFeチ
ップを投入し、Feが溶解した後に前記残量の銅を投入
して、溶湯温度1180〜1190℃斗で低fさせ、C
u−15%pの中間合金で脱酸した後、第3添加成分を
単体又は中間合金の形で投入し、攪拌、沈静後金型に鋳
込んで試料とした。
Leave about 20% of the steel charge, add Fe chips according to the target value, and after the Fe has melted, add the remaining amount of copper and lower f at the molten metal temperature of 1180-1190℃. , C
After deoxidizing with an intermediate alloy of u-15%p, the third additive component was added alone or in the form of an intermediate alloy, stirred and allowed to settle, and then cast into a mold to prepare a sample.

鋳型は鋳鉄製のブックモールドで、その内容積は60m
ynX60mmX140mであり、試料の含有成分およ
び成分割合は第1表の通りである。
The mold is a cast iron book mold with an internal volume of 60m.
ynX60mmX140m, and the components and component ratios of the sample are as shown in Table 1.

これらの試料にスカルピンクを施した後900〜920
℃の温度に加熱し、20咽厚さ1で熱間圧延した後、水
中に投入して急冷した。
900-920 after applying skull pink to these samples
After heating to a temperature of 20° C. and hot rolling to a thickness of 1, the material was placed in water and rapidly cooled.

更に、これらの熱間上り材を0.5−草さまで冷間圧延
した後400〜550℃の温度において30分間最終焼
鈍し、フエドラノ4格試験片(平行部幅1/2ir1、
平行部長さ2in)に仕上げて機械的性質及び導電率を
測定した。
Furthermore, these hot-rolled materials were cold-rolled to 0.5 mm and then final annealed at a temperature of 400 to 550°C for 30 minutes to obtain a Fedrano 4 grade test piece (parallel part width 1/2ir1,
The parallel length was 2 inches) and the mechanical properties and electrical conductivity were measured.

この結果を第2表に示す。The results are shown in Table 2.

第1表、第2表にふ・いて、従来合金のA1と煮2の比
較から明らかなように、P含有量が0.02重重量%ら
0.03重重量比増加することによって、導電率が86
.8%lAC3から30,5係fAcsに低下するのに
対して、本発明合金の、例えば、A3にち・いてはP含
有量が増えてもFeの含有により燐化鉄が析出し、この
ため導電率は87.0%lAC3と優れた値を維持して
いる。
As shown in Tables 1 and 2, it is clear from the comparison of conventional alloys A1 and Ni-2 that the conductivity increases by increasing the P content from 0.02% to 0.03% by weight. rate is 86
.. In contrast, in the alloy of the present invention, for example, A3, even if the P content increases, iron phosphide precipitates due to the Fe content, and therefore The conductivity maintains an excellent value of 87.0%lAC3.

本発明合金の煮り0500℃×30分焼鈍材の透過電子
顕微鏡写真を第1図に示すが、この第1図から明らかな
ように、本発明合金にも・いては微細な燐化鉄が析出し
ている。
Figure 1 shows a transmission electron micrograph of the alloy of the present invention boiled and annealed at 0500°C for 30 minutes.As is clear from Figure 1, the alloy of the present invention also contains fine iron phosphide. It is precipitated.

なか、本発明合金A4,10゜11.13,17.19
の場合には導電率が80%lAC3を丁丑わる値となっ
ているが、これは強度上昇を期待して固溶強化元素であ
るAI、Co。
Among them, the present invention alloy A4, 10° 11.13, 17.19
In the case of , the conductivity is 80% which is slightly lower than that of lAC3, but this is due to the use of solid solution strengthening elements such as AI and Co in the hope of increasing the strength.

Mn、 Ni、 S i、 Snを比較的多量に含有さ
せた結果であり、この場合にも燐化鉄の析出により導電
率の過度の低下は防止されている。
This is the result of relatively large amounts of Mn, Ni, Si, and Sn being contained, and in this case too, the precipitation of iron phosphide prevents excessive reduction in electrical conductivity.

また、本発明合金はいずれも従来合金に比べて強度(抗
張力、耐力)に勢いて著しく向上している。
Furthermore, all of the alloys of the present invention have significantly improved strength (tensile strength, yield strength) compared to conventional alloys.

更に実施例の合金の特性を探究すべく、A1〜190合
全19いて機械的性質の試験と同じ状態に加工、熱処理
した後水道水中及び海水中で30日間浸漬試験に供し、
腐蝕状況、腐蝕減量及び局部腐蝕深さを測定して耐蝕性
の調査を行なった。
Furthermore, in order to explore the properties of the alloys of the examples, A1 to 190 alloys were processed and heat treated to the same state as the mechanical property test, and then subjected to a immersion test in tap water and seawater for 30 days.
Corrosion resistance was investigated by measuring the corrosion status, corrosion weight loss, and local corrosion depth.

この結果、本発明合金は燐脱酸銅と同等の良好な耐蝕性
を示した。
As a result, the alloy of the present invention exhibited good corrosion resistance equivalent to that of phosphorus-deoxidized copper.

ここでは、熱の伝導性について明示していないが、電気
伝導性の良好であることが実施例において証明されてい
ることにより本発明合金が必然的に良好な熱伝導性を具
備することは論を捷たない。
Although the thermal conductivity is not explicitly stated here, it is clear that the alloy of the present invention necessarily has good thermal conductivity since it has been proven in the examples that it has good electrical conductivity. Do not skip.

捷た、実施例にち・いては圧延加工法を採用して説明を
行なったが、本発明合金の特性は他のあらゆる加工法に
よっても顕著であることは明白であり、本発明合金の実
施例に示した合金のみならず、特許請求の範囲に示され
る範囲内でのあらゆる組成の組合せによっても本発明合
金の特性は同様に発揮される。
Although the rolling method was used for explanation in the examples, it is clear that the characteristics of the alloy of the present invention are remarkable even when processed by any other processing method. The characteristics of the alloy of the present invention are similarly exhibited not only by the alloys shown in the examples but also by any combination of compositions within the range shown in the claims.

以上説明したように、本発明に係る高導電性銅基台金は
上記の構成を有しているものであるから、従来合金に比
□で優れた加工性、強度及び電気、熱の伝導性を具備し
、かつ、同等の耐蝕性を有しており、本発明に係る高導
電性鋼基合金の採用により将来、熱交換器管材の薄肉化
、空調用配管や建築用配管におけるコストダウンに大い
に寄与することが考えられ、この種の技術分野における
主要材料となることが期待される。
As explained above, since the highly conductive copper base metal according to the present invention has the above structure, it has superior workability, strength, and electrical and thermal conductivity compared to conventional alloys. and has equivalent corrosion resistance, and the adoption of the highly conductive steel-based alloy according to the present invention will lead to thinner heat exchanger pipe materials and cost reductions in air conditioning piping and architectural piping in the future. It is expected that it will make a significant contribution and become a key material in this type of technical field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高導電性銅基台金の実施例に訃げ
る應3合金(500℃X30分間焼鈍材)の透過電子顕
微鏡写真(倍率16000倍)である。
FIG. 1 is a transmission electron micrograph (magnification: 16,000 times) of O3 alloy (material annealed at 500° C. for 30 minutes), which is an example of the highly conductive copper base metal according to the present invention.

Claims (1)

【特許請求の範囲】 i 0.04〜0.150.15重量%0.025〜
0.044重量%Pを含み、かつ第3添加元素とじてA
gt AL Bs、Bes Cot Cr、 Mg、
Mnt Ni、 Sb+Si、Ti、Znおよびミソシ
ュメタルのうちの1種又は2種以上を合計0,01〜i
、o重量%を含み、残部本質的にCuからなり、燐化鉄
の析出した高導電性銅基台金。 2 0.04〜0.150.15重量%0.025〜0
.044重量%Pを含み、かつ第3添加元素としてA
g+ A L Bp Be 、Co、Cr 9Mg、
Mnt Nl 、Sb。 Si、Ti、Zn及びミソシュメタルのうちの1種又は
2種以上を合計0.01〜1.0重量%を含み、更に0
.01〜0.6重量%のSnを含み、上記第3添加元素
とSnとの合計を0.01〜L、O重量%とし、残部本
質的にCuからなり、燐化鉄の析出した高導電性銅基台
金。
[Claims] i 0.04~0.150.15% by weight 0.025~
Contains 0.044% by weight of P and A as the third additional element
gt AL Bs, Bes Cot Cr, Mg,
One or more of Mnt Ni, Sb+Si, Ti, Zn, and miso metal in a total of 0.01 to i
, o% by weight, the remainder consisting essentially of Cu, with iron phosphide precipitated thereon. 2 0.04-0.150.15% by weight 0.025-0
.. 044% by weight of P, and A as the third additional element
g+ A L Bp Be , Co, Cr 9Mg,
MntNl, Sb. Contains a total of 0.01 to 1.0% by weight of one or more of Si, Ti, Zn, and Misosmetal, and further contains 0.01 to 1.0% by weight.
.. 0.01 to 0.6% by weight of Sn, the total of the third additional element and Sn is 0.01 to 0.01 to 0.0% by weight, and the balance essentially consists of Cu, with high conductivity in which iron phosphide is precipitated. Steel base metal.
JP49056410A 1974-05-20 1974-05-20 Highly conductive copper-based alloy Expired JPS5853057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49056410A JPS5853057B2 (en) 1974-05-20 1974-05-20 Highly conductive copper-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49056410A JPS5853057B2 (en) 1974-05-20 1974-05-20 Highly conductive copper-based alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8057579A Division JPS556498A (en) 1979-06-25 1979-06-25 Highly conductive copper alloy for electricity

Publications (2)

Publication Number Publication Date
JPS50147420A JPS50147420A (en) 1975-11-26
JPS5853057B2 true JPS5853057B2 (en) 1983-11-26

Family

ID=13026375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49056410A Expired JPS5853057B2 (en) 1974-05-20 1974-05-20 Highly conductive copper-based alloy

Country Status (1)

Country Link
JP (1) JPS5853057B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194644U (en) * 1985-05-28 1986-12-04
JPS62134803U (en) * 1986-02-19 1987-08-25
JPS62171447U (en) * 1986-04-22 1987-10-30
JPH0188847U (en) * 1987-12-04 1989-06-12
JPH047078Y2 (en) * 1989-02-03 1992-02-26
JPH0424828Y2 (en) * 1986-04-25 1992-06-12
JPH0430112Y2 (en) * 1987-10-01 1992-07-21
JPH0491860U (en) * 1990-12-26 1992-08-11
RU2677902C1 (en) * 2017-12-27 2019-01-22 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Highly strong copper alloy

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224916A (en) * 1975-08-20 1977-02-24 Sumitomo Electric Ind Ltd Copper alloy with high electric conductivity
JPS5823452B2 (en) * 1976-05-31 1983-05-16 古河電気工業株式会社 Softening resistant copper alloy
JPS52156719A (en) * 1976-06-23 1977-12-27 Furukawa Metals Co Copper alloy with anti softening property
JPS579162U (en) * 1980-06-17 1982-01-18
JPS58110647A (en) * 1981-12-23 1983-07-01 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor apparatus
JPS5939492B2 (en) * 1982-07-07 1984-09-25 同和鉱業株式会社 High strength copper alloy for conductive use with softening resistance
JPS609845A (en) * 1983-06-29 1985-01-18 Tetsuo Takano Highly conductive spring material
JPS6092439A (en) * 1983-10-25 1985-05-24 Nippon Mining Co Ltd Heat-resistant copper alloy with high strength and electric conductivity
US4605532A (en) * 1984-08-31 1986-08-12 Olin Corporation Copper alloys having an improved combination of strength and conductivity
JPS6164836A (en) * 1984-09-04 1986-04-03 Tatsuta Electric Wire & Cable Co Ltd Copper alloy having high strength, heat resistance and electric conductivity
JPS6176636A (en) * 1984-09-20 1986-04-19 Tatsuta Electric Wire & Cable Co Ltd Heat-resistant high-strength copper alloy having high electric conductivity
JPS62136539A (en) * 1985-12-09 1987-06-19 Kobe Steel Ltd Copper alloy having high electric conductivity and superior migration resistance
JPS62164843A (en) * 1986-01-16 1987-07-21 Mitsubishi Shindo Kk Cu-alloy lead material for semiconductor device
JPH01139736A (en) * 1987-11-25 1989-06-01 Yazaki Corp Copper alloy
JPH01212732A (en) * 1988-02-19 1989-08-25 Yazaki Corp High strength and high electric conductive copper alloy
JPS63317635A (en) * 1988-05-19 1988-12-26 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPH0219434A (en) * 1988-07-07 1990-01-23 Dowa Mining Co Ltd Copper-base alloy for wire harness terminal
JPH0225531A (en) * 1988-07-13 1990-01-29 Kobe Steel Ltd Copper alloy for commutator
JPH032341A (en) * 1989-05-26 1991-01-08 Dowa Mining Co Ltd High strength and high conductivity copper alloy
JPH0765131B2 (en) * 1991-02-25 1995-07-12 株式会社神戸製鋼所 Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
DE102006013384B4 (en) * 2006-03-23 2009-10-22 Wieland-Werke Ag Use of a heat exchanger tube
KR101310167B1 (en) * 2011-08-12 2013-09-24 주식회사 풍산 Copper alloy material for pipe of high strength and high conductivity and the method for production same
CN106328238A (en) * 2016-08-30 2017-01-11 芜湖楚江合金铜材有限公司 High-precision tensile copper alloy wire and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194644U (en) * 1985-05-28 1986-12-04
JPS62134803U (en) * 1986-02-19 1987-08-25
JPS62171447U (en) * 1986-04-22 1987-10-30
JPH0424828Y2 (en) * 1986-04-25 1992-06-12
JPH0430112Y2 (en) * 1987-10-01 1992-07-21
JPH0188847U (en) * 1987-12-04 1989-06-12
JPH047078Y2 (en) * 1989-02-03 1992-02-26
JPH0491860U (en) * 1990-12-26 1992-08-11
RU2677902C1 (en) * 2017-12-27 2019-01-22 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Highly strong copper alloy

Also Published As

Publication number Publication date
JPS50147420A (en) 1975-11-26

Similar Documents

Publication Publication Date Title
JPS5853057B2 (en) Highly conductive copper-based alloy
US3923558A (en) Copper base alloy
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JPS58199835A (en) Copper alloy for electric or electronic apparatus
JPH036341A (en) High strength and high conductivity copper-base alloy
US4810468A (en) Copper-chromium-titanium-silicon-alloy
JPH02145737A (en) High strength and high conductivity copper-base alloy
JPS60221541A (en) Copper alloy superior in hot workability
JPS61143566A (en) Manufacture of high strength and highly conductive copper base alloy
JPS58210140A (en) Heat resistant conductive copper alloy
JPH032341A (en) High strength and high conductivity copper alloy
JPH02111829A (en) Copper alloy for lead frame
JPS6231060B2 (en)
JPS6256937B2 (en)
JPH0380858B2 (en)
JPS6142772B2 (en)
JPS6338547A (en) High strength conductive copper alloy
CA1045010A (en) Copper base alloy
JPH0356294B2 (en)
JPS628491B2 (en)
US2108047A (en) Nontarnish alloy
JPS634885B2 (en)
JPH01189805A (en) Copper alloy for wire harness terminal
JPH02129326A (en) High strength copper alloy
JPS6242976B2 (en)