JPS6146698B2 - - Google Patents

Info

Publication number
JPS6146698B2
JPS6146698B2 JP57221053A JP22105382A JPS6146698B2 JP S6146698 B2 JPS6146698 B2 JP S6146698B2 JP 57221053 A JP57221053 A JP 57221053A JP 22105382 A JP22105382 A JP 22105382A JP S6146698 B2 JPS6146698 B2 JP S6146698B2
Authority
JP
Japan
Prior art keywords
belt
chloroprene rubber
weight
elastic layer
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57221053A
Other languages
Japanese (ja)
Other versions
JPS59110944A (en
Inventor
Sadao Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP22105382A priority Critical patent/JPS59110944A/en
Publication of JPS59110944A publication Critical patent/JPS59110944A/en
Publication of JPS6146698B2 publication Critical patent/JPS6146698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は伝動ベルトに関し、詳しくは、走行時
に粘着性を有さず、また、亀裂の発生し難いクロ
ロプレンゴムからなる伝動ベルトに関する。 伝動ベルトは広範な分野で使用されているが、
耐油性、耐熱性、耐屈曲性等が強く要求される自
動車用ベルト等の場合には、クロロプレンゴムか
らなる伝動ベルトが広く使用されている。これら
の伝動ベルトは、一般に強度を付与するための抗
張体層と、これを保持するための弾性体層とから
なり、多突条ベルトやVベルトのように大きい側
圧が加えられる場合には、弾性体層に剛性をもた
せて耐側圧抵抗性を増すために、通常、弾性体層
に短繊維が混入されており、このために使用中に
ベルトに亀裂が生じやすい。即ち、かかる短繊維
は弾性体ではなく、また、カーボンブラツクのよ
うにゴムと特有の結合もせず、勿論、ゴムと化学
的に結合しせず、しかも、一般に短繊維は炭酸カ
ルシウム等の充填剤を比較して相当に大きいの
で、ベルト使用中に疲労が起こり、例えば、繰返
し圧縮や繰返し屈曲等による疲労が起こり、ゴム
と短繊維との界面における弾性率の差や相互の結
合の弱さから応力集中が生じ、かくして、界面脱
離しやすく、このような界面脱離が遂にはベルト
における亀裂となるのである。このために、短繊
維を含む従来のベルトの製造においては、短繊維
の形状、ゴムにおける配向性、接着処理等に煩瑣
な管理や手間を要し、また、製造工程も複雑とな
る。 また、従来のクロロプレンゴムによる伝動ベル
トは、その使用中に摩擦や摩耗によつて粘着性を
有するに至る。その理由は必ずしも明らかではな
いがプーリー側面に接触するベルトがその接触面
において、加硫ゴム中に存在する低分子物質の劣
化や分解が生じるからであるといわれており、こ
のように摩擦摩耗時にベルトが粘着性を有するよ
うになると、プーリーに粘着物質が付着して、ベ
ルト表面とプーリーとの間の摩擦係数が大きくな
り、ベルト表面に大きい摩擦力が作用する結果、
更にベルトが摩耗すると共に、ベルト寿命も大幅
に短くなる。また、プーリー底部に粘着物が塊状
に堆積し、ベルトの正常な駆動を妨げると共に、
ベルトを押圧してベルトを損傷させることもあ
る。このような結果、従来のクロロプレンゴムベ
ルトは耐久性、例えば、高負荷耐久性や耐熱耐久
性に劣り、製品寿命が短い。 一般に、クロロプレンゴムは、硫黄変性タイプ
の場合、通常、加硫剤として酸化亜鉛と酸化マグ
ネシウムとが用いられ、非硫黄変性の場合は、上
記金属酸化物に加えて加硫促進剤が併用されてい
る。このようなクロロプレンゴム組成物におい
て、硫黄、テトラメチルチウラムジスルフイド、
ジオルソトリルグアニジン等の加硫促進剤を配合
し、又は酸化亜鉛を増量して、加硫物における架
橋度を高めることにより、上記のような粘着性の
問題が一部解決され得ることは既に知られている
が、しかし、かかるゴム組成物においては、スコ
ーチ時間が短縮されて加工安全性が低下し、更
に、短繊維を含有するクロロプレンゴム組成物加
硫物を伝動ベルトの弾性体層とするとき、ベルト
に亀裂が発生しやすい問題は依然として解決され
ていない。更に、耐熱老化性等の加硫物物性も低
下する問題がある。 本発明者は、上記した問題を解決するために鋭
意研究した結果、クロロプレンゴム組成物に短繊
維を含有させずして、上記のような金属酸化物加
硫剤と共にビスマレイミドを併用することによ
り、クロロプレンゴム未加硫物の加工安全性を確
保しつつ、その加硫物における架橋度を高めて、
剛性を保持すると共に、かかるクロロプレンゴム
組成物の加硫物を伝動ベルトの弾性体層に用いる
ことにより、ベルト使用に伴う粘着性及び亀裂発
生の問題を解決し、その耐久性を著しく改善する
と共に、耐熱老化性等の加硫物物性をも改善し得
ることを見出して、本発明に至つたものである。 本発明による伝動ベルトは、抗張体層と弾性体
層とからなる伝動ベルトにおいて、少なくとも弾
性体層が、クロロプレンゴム100重量部につい
て、酸化亜鉛、酸化マグネシウム及び酸化鉛から
選ばれる少なくとも1種の加硫剤1〜20の重量部
と、ビスマレイミド0.5〜10重量部とを含有する
ことも特徴とするクロロプレンゴム組成物の加硫
物からなることを特徴とする。 本発明において弾性体層として用いるクロロプ
レンゴムは、硫黄変性及び非硫黄変性のいずれの
タイプであつてもよいが、特に、硫黄変性タイプ
の場合にその加工安全性を確保しつつ架橋度を高
めて、耐熱老化性等の加硫物物性を改善する効果
が顕著である。 本発明におけるクロロプレンゴム組成物は、加
硫剤成分として、クロロプレンゴム100重量部に
ついて酸化亜鉛、酸化マグネシウム及び酸化鉛か
ら選ばれる少なくとも1種の金属酸化物加硫剤1
〜20重量部、好ましくは2〜15重量部を含有す
る。これら金属酸化物加硫剤が1重量部よりも少
ないときは、クロロプレンゴムの架橋が十分に行
なわれず、加硫物が耐熱老化性ほか加硫物性に劣
る。一方、20重量部よりも多い場合は、金属酸化
物が酸化亜鉛のときは、配合生地の所謂腰が落ち
て、柔らかくなると同時に貯蔵安定性も悪くな
る。また、酸化マグネシウムのときは、加硫速度
が非常に遅くなる問題が生じる。酸化鉛のとき
は、加工安全性、貯蔵安定性等が損なわれる問題
が生じる。尚、本発明においては、特に好ましく
は、酸化亜鉛と酸化マグネシウムとが併用され、
その配合量はそれぞれクロロプレンゴム100重量
部について3〜8重量部である。 また、本発明において用いるビスマレイミド
は、二つの窒素原子が直接に結合されたN,
N′−連結ビスマレイミド及び二つの窒素がアル
キレン基、シクロアルキレン基、オキシジメチレ
ン基、フエニレン基、スルホン基、その他の二価
の有機基で結合されているビスマレイミドを含
み、これらの具体例として、N,N′−エチレン
ビスマレイミド、N,N′−ヘキサメチレンビス
マレイミド、N,N′−(1,4−フエニレン)ジ
マレイミド、N,N′−(o−フエニレン)ジマレ
イミド、N,N′−(m−フエニレン)ジマレイミ
ド、N,N′−(2,4−トリレン)ジマレイミ
ド、N,N′−デユリレンジマレイミド、N,
N′−〔4,4′(2,2′−ジクロロビフエニレン)〕
ジマレイミド、N,N′−〔4,4′−メチレンジフ
エニル)ジマレイミド、N,N′−(1,4−デユ
リレンジエチレン)ジマレイミド、N,N′−
〔4,4′−スルホニルジフエニル〕ジマレイミ
ド、2,6−ビス(マレイミドメチル)−4−t
−ブチルフエノール、N,N′−オキシジメチレ
ンジマレイミド等を挙げることができる。 上記のようなビスマレイミドは、ゴム100重量
部について0.5〜10重量部用いられる。ビスマレ
イミドが0.5重量部よりも少ないときは、前記金
属酸化物加硫剤と併用してもクロロプレンゴム組
成物未加硫物の加工安全性を確保しつつ、その加
硫物における架橋度を高める効果に欠け、一方、
10重量部よりも多く配合するときは、ビスマレイ
ミドのブルームが認められるようになるからであ
る。 本発明におけるクロロプレンゴム組成物は、上
記した金属酸化物加硫剤及びビスマレイミドを含
有するほかに、従来よりクロロプレンゴム組成物
に配合される補強剤、加硫促進剤、充填剤、滑
剤、老化防止剤、可塑剤等を含有していてもよ
い。これらの配合物の配合量はクロロプレンゴム
組成物について既によく知られている。 本発明の伝動ベルトにおいて抗張体層として用
いられる繊維は、例えばポリアミド繊維、ポリア
ラミド繊維、ポリエステル繊維、ビニロン繊維、
レーヨン、綿等の有機繊維や、炭素繊維、ガラス
繊維、スチール繊維、セラミツク繊維等の無機繊
維であるが、これらに限定されるものではない。
このような繊維は、ゴムとの接着性を改善する目
的で一般になされる接着処理を施されていること
が望ましい。かかる繊維処理としは、繊維をレゾ
ルシン−ホルマリンラテツクス(RFL液)に浸
漬し、加熱乾燥して表面に均一に接着剤層を形成
する方法が一般的であるが、RFL液に水に対し
て安定化したイソシアネート化合物やエポキシ化
合物を配合し、又はRFL処理とこのような活性
化合物による処理と併用してもよい。 このようなクロロプレンゴム組成物を用いる
種々の断面形状を有する伝動ベルトの製造は、従
来より知られている通常の方法によることができ
る。 本発明による伝動ベルトの例を図面に示す。第
1図は多突条ベルトの一例を示し、ベルトの長手
方向に延びるリブ1を有する保持弾性体層2と接
着弾性体層3とからなり、接着弾性体層に抗張体
4が長手方向に埋設され、ベルト表面に外被層5
を有する。また、第2図はVベルトの一例を示
し、表面から底面に向かつて接着弾性体層3及び
保持弾性体層2とから構成され、接着弾性体層に
抗張体4が埋設されていると共に、表面及び底面
に外被層5が設けられている。 以上のように、本発明によれば、少なくとも伝
動ベルトの保持弾性体層に前記金属酸化物加硫剤
と共にビスマレイミドを併用したクロロプレンゴ
ム組成物の加硫物を用いるので、未加硫物の加工
安全性を確保しつつ、摩擦摩耗等に粘着性を有さ
ず、また、弾性体層は短繊維を含有しないので亀
裂が生じ難く、しかも、耐熱老化性等の物性も改
善され、かくして、耐久性にすぐれる伝動ベルト
を得ることができるのである。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。 実施例 (1) 未加硫物及び加硫物の物性試験 常法により第1表に示す組成のクロロプレンゴ
ム組成物を調製し、未加流ゴムの物性及び153℃
で40分間プレス加硫して得た加硫物の物性を調べ
た。結果を第2表に示す。即ち、本発明の伝動ベ
ルトの弾性体層として用いるクロロプレンゴム組
成物によれば、加硫物はトルエン膨潤率及び貯蔵
弾性率から架橋度が高いにもかかわらず、未加硫
物においては、ムーニースコーチ時間が長く、加
工安全性にすぐれる。更に、熱老化試験結果より
耐熱老化性にすぐれることも明らかである。 これに対して、比較例1のクロロプレンゴム組
成物は架橋度が低く、また、加工安全性も劣る。
比較例2の組成物は比較例1よりも架橋度が高
く、また、加工安全性をすぐれているが、耐熱老
化性に劣る。比較例3の組成物は加工安全性及び
耐熱老化性のいずれにも劣る。 次に、常法により第3表に示すクロロプレンゴ
ム組成物を調製し、同様に未加硫物及び加硫物の
物性を調べた。結果を第4表に示す。これらのゴ
ム組成物も、架橋度は高いが、すぐれた加工安全
性を有することが明らかである。 (2) ベルト粘着試験 ベルト粘着試験は、第1図に示したように、
RMA(Rubber Manufctures Association、米
国)規格による長さ975mmのK型3リブベルト
(ピ
The present invention relates to a power transmission belt, and more particularly to a power transmission belt made of chloroprene rubber that does not have stickiness during running and is less prone to cracking. Power transmission belts are used in a wide range of fields, but
Transmission belts made of chloroprene rubber are widely used for automobile belts and the like that are strongly required to have oil resistance, heat resistance, bending resistance, and the like. These power transmission belts generally consist of a tensile material layer for imparting strength and an elastic material layer for holding this, and when large lateral pressure is applied, such as multi-protrusion belts or V-belts, In order to provide rigidity to the elastic layer and increase resistance to lateral pressure, short fibers are usually mixed into the elastic layer, which tends to cause cracks in the belt during use. That is, such short fibers are not elastic bodies, and do not have a unique bond with rubber like carbon black, and of course do not chemically bond with rubber. Since the belt is considerably large in comparison, fatigue occurs during use of the belt, for example, due to repeated compression and repeated bending, etc., due to the difference in elastic modulus at the interface between the rubber and short fibers and the weak bond between them. Stress concentration occurs and thus there is a tendency for interfacial debonding, which eventually results in cracks in the belt. For this reason, in the production of conventional belts containing short fibers, the shape of the short fibers, the orientation in the rubber, the adhesive treatment, etc. require complicated management and labor, and the manufacturing process is also complicated. Further, conventional power transmission belts made of chloroprene rubber become sticky due to friction and wear during use. The reason for this is not necessarily clear, but it is said that the low-molecular substances present in the vulcanized rubber deteriorate or decompose at the contact surface of the belt that comes into contact with the side of the pulley. When the belt becomes sticky, sticky substances adhere to the pulleys, increasing the coefficient of friction between the belt surface and the pulleys, and as a result, a large frictional force acts on the belt surface.
Furthermore, as the belt wears out, the belt life is also significantly shortened. In addition, a lump of sticky material accumulates on the bottom of the pulley, which prevents the belt from operating properly.
It may press on the belt and damage it. As a result, conventional chloroprene rubber belts have poor durability, such as high load durability and heat resistance, and have a short product life. Generally, in the case of sulfur-modified chloroprene rubber, zinc oxide and magnesium oxide are usually used as vulcanizing agents, and in the case of non-sulfur-modified chloroprene rubber, a vulcanization accelerator is used in addition to the metal oxides mentioned above. There is. In such a chloroprene rubber composition, sulfur, tetramethylthiuram disulfide,
It has already been shown that the above-mentioned problem of stickiness can be partially solved by incorporating a vulcanization accelerator such as diorthotolylguanidine or increasing the amount of zinc oxide to increase the degree of crosslinking in the vulcanizate. However, in such rubber compositions, the scorch time is shortened and the processing safety is reduced, and furthermore, the chloroprene rubber composition vulcanizate containing short fibers is used as the elastic layer of the power transmission belt. However, the problem of the belt being prone to cracking remains unsolved. Furthermore, there is a problem that the physical properties of the vulcanizate, such as heat aging resistance, also deteriorate. As a result of intensive research to solve the above-mentioned problems, the present inventor has discovered that by using bismaleimide together with the metal oxide vulcanizing agent as described above, without adding short fibers to the chloroprene rubber composition. , while ensuring the processing safety of unvulcanized chloroprene rubber and increasing the degree of crosslinking in the vulcanized product.
In addition to maintaining rigidity, by using a vulcanized product of such a chloroprene rubber composition in the elastic layer of a power transmission belt, problems of stickiness and cracking that occur when the belt is used can be solved, and its durability can be significantly improved. The inventors have discovered that the physical properties of vulcanizates, such as heat aging resistance, can also be improved, leading to the present invention. The power transmission belt according to the present invention is a power transmission belt comprising a tensile layer and an elastic layer, in which at least the elastic layer contains at least one material selected from zinc oxide, magnesium oxide, and lead oxide based on 100 parts by weight of chloroprene rubber. It is characterized in that it consists of a vulcanized product of a chloroprene rubber composition, which is also characterized in that it contains 1 to 20 parts by weight of a vulcanizing agent and 0.5 to 10 parts by weight of bismaleimide. The chloroprene rubber used as the elastic layer in the present invention may be of either sulfur-modified or non-sulfur-modified type, but in particular, in the case of sulfur-modified type, the degree of crosslinking is increased while ensuring processing safety. , the effect of improving the physical properties of vulcanizates such as heat aging resistance is remarkable. The chloroprene rubber composition of the present invention contains at least one metal oxide vulcanizing agent selected from zinc oxide, magnesium oxide, and lead oxide per 100 parts by weight of chloroprene rubber as a vulcanizing agent component.
~20 parts by weight, preferably 2 to 15 parts by weight. If the amount of these metal oxide vulcanizing agents is less than 1 part by weight, the chloroprene rubber will not be sufficiently crosslinked, and the vulcanizate will have poor heat aging resistance and other vulcanized physical properties. On the other hand, if the amount is more than 20 parts by weight, when the metal oxide is zinc oxide, the blended dough will have a so-called stiffness, become soft, and have poor storage stability. Further, when using magnesium oxide, there arises a problem that the vulcanization rate is extremely slow. When using lead oxide, problems arise in that processing safety, storage stability, etc. are impaired. In addition, in the present invention, it is particularly preferable that zinc oxide and magnesium oxide are used together,
The blending amount is 3 to 8 parts by weight per 100 parts by weight of chloroprene rubber. In addition, the bismaleimide used in the present invention is N, in which two nitrogen atoms are directly bonded,
N'-linked bismaleimides and bismaleimides in which two nitrogens are bonded by an alkylene group, cycloalkylene group, oxydimethylene group, phenylene group, sulfone group, or other divalent organic group; specific examples thereof as, N,N'-ethylene bismaleimide, N,N'-hexamethylene bismaleimide, N,N'-(1,4-phenylene) dimaleimide, N,N'-(o-phenylene) dimaleimide, N,N '-(m-phenylene) dimaleimide, N,N'-(2,4-tolylene) dimaleimide, N,N'-dulylene dimaleimide, N,
N′-[4,4′(2,2′-dichlorobiphenylene)]
Dimaleimide, N,N'-[4,4'-methylenediphenyl)dimaleimide, N,N'-(1,4-dyulylenediethylene)dimaleimide, N,N'-
[4,4'-sulfonyldiphenyl]dimalimide, 2,6-bis(maleimidomethyl)-4-t
-butylphenol, N,N'-oxydimethylene dimaleimide and the like. Bismaleimide as described above is used in an amount of 0.5 to 10 parts by weight per 100 parts by weight of rubber. When the amount of bismaleimide is less than 0.5 part by weight, even when used in combination with the metal oxide vulcanizing agent, it increases the degree of crosslinking in the vulcanized product while ensuring processing safety of the unvulcanized product of the chloroprene rubber composition. Lacking effectiveness, on the other hand,
This is because when more than 10 parts by weight is added, bloom of bismaleimide is observed. In addition to containing the metal oxide vulcanizing agent and bismaleimide described above, the chloroprene rubber composition of the present invention contains reinforcing agents, vulcanization accelerators, fillers, lubricants, It may contain inhibitors, plasticizers, etc. The loadings of these compounds are already well known for chloroprene rubber compositions. Examples of the fibers used as the tensile layer in the power transmission belt of the present invention include polyamide fibers, polyaramid fibers, polyester fibers, vinylon fibers,
These include organic fibers such as rayon and cotton, and inorganic fibers such as carbon fiber, glass fiber, steel fiber, and ceramic fiber, but are not limited to these.
It is desirable that such fibers be subjected to a commonly used adhesive treatment for the purpose of improving adhesion to rubber. A common method for such fiber treatment is to immerse the fiber in resorcinol-formalin latex (RFL liquid) and heat and dry it to form an adhesive layer uniformly on the surface. Stabilized isocyanate compounds or epoxy compounds may be incorporated, or RFL treatment and treatment with such active compounds may be used in combination. Transmission belts having various cross-sectional shapes using such a chloroprene rubber composition can be manufactured by conventionally known methods. An example of a transmission belt according to the invention is shown in the drawing. FIG. 1 shows an example of a multi-protrusion belt, which is composed of a holding elastic layer 2 having ribs 1 extending in the longitudinal direction of the belt, and an adhesive elastic layer 3. The outer coating layer 5 is embedded on the belt surface.
has. FIG. 2 shows an example of a V-belt, which is composed of an adhesive elastic layer 3 and a holding elastic layer 2 from the surface to the bottom, and has a tensile member 4 embedded in the adhesive elastic layer. , an outer covering layer 5 is provided on the top and bottom surfaces. As described above, according to the present invention, since a vulcanized product of a chloroprene rubber composition containing bismaleimide in combination with the metal oxide vulcanizing agent is used at least in the holding elastic layer of the power transmission belt, the unvulcanized material is While ensuring processing safety, it does not have tackiness due to friction and wear, and since the elastic layer does not contain short fibers, cracks are less likely to occur, and physical properties such as heat aging resistance are also improved. A transmission belt with excellent durability can be obtained. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. Example (1) Physical property test of unvulcanized product and vulcanized product A chloroprene rubber composition having the composition shown in Table 1 was prepared by a conventional method, and the physical properties of the unvulcanized rubber and the temperature at 153°C were
The physical properties of the vulcanized product obtained by press vulcanization for 40 minutes were investigated. The results are shown in Table 2. That is, according to the chloroprene rubber composition used as the elastic layer of the power transmission belt of the present invention, although the vulcanized product has a high degree of crosslinking based on the toluene swelling rate and storage modulus, the unvulcanized product has a Mooney Long scorch time and excellent processing safety. Furthermore, it is clear from the heat aging test results that it has excellent heat aging resistance. On the other hand, the chloroprene rubber composition of Comparative Example 1 has a low degree of crosslinking and is also inferior in processing safety.
The composition of Comparative Example 2 has a higher degree of crosslinking than Comparative Example 1, and has excellent processing safety, but is inferior in heat aging resistance. The composition of Comparative Example 3 is inferior in both processing safety and heat aging resistance. Next, chloroprene rubber compositions shown in Table 3 were prepared by a conventional method, and the physical properties of the unvulcanized product and the vulcanized product were similarly examined. The results are shown in Table 4. Although these rubber compositions also have a high degree of crosslinking, it is clear that they have excellent processing safety. (2) Belt adhesion test The belt adhesion test is performed as shown in Figure 1.
K-shaped 3-rib belt (pillar) with a length of 975 mm according to RMA (Rubber Manufacturers Association, USA) standards.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 ツチSg=3.56mm、リブ高さhr=2.9mm、ベルト
厚さhb=5.3mmリブ角度40゜)を直径各60mmの駆
動プーリー、従動プーリー及びアイドラープーリ
ーに架け渡し、駆動側を回転数2000rpmで駆動
し、アイドラープーリーのセツトウエイトを90ポ
ンドとし、4%強制スリツプの条件下に1時間走
行させて、粘着性を調べた。 実施例1のクロロプレンゴム組成物加硫物を弾
性体層として有する伝動ベルトは厳しい使用条件
下にも粘着性を示さないが、比較例1の加硫物を
弾性体層とするベルトは粘着性を示す。比較例2
及び3の場合は、粘着性は幾分改善されている
が、加工安全性又は耐熱老化性に劣る。 (3) ベルト耐久性試験 径120mmの駆動プーリー及び従動プーリーの他
に径60mmのアイドラープーリーを配置し、これら
プーリーに前記と同りK型3リブベルトを張りわ
たし、駆動側回転数4900rpm、アイドラープーリ
ーのセツトウエイトをA×10ポンドとして、従動
側に負荷A馬力を加え、30℃の温度でベルトを駆
動し、抗張体に達する亀裂の発生、保持弾性体層
の破断等が生じるまでの時間にて高負荷耐久性能
を評価した。結果を第3図に示す。 次に、上の高負荷耐久性試験と同じプーリー配
置で同じベルトを張りわたし、駆動側回転数
4900rpm、アイドラープーリーのセツトウエイト
を70ポンドとして従動側に負荷7馬力を与え、
110℃及び120℃の温度雰囲気下にベルトを駆動
し、上記と同様にして耐熱耐久性能を評価した。
結果を第4図に示す。 以上から、実施例1のクロロプレンゴム組成物
加硫物を弾性体層として有する伝動ベルトは、高
負荷耐久性能及び耐熱耐久性能のいずれにもすぐ
れているが、比較例1〜3の加硫物を弾性体層に
用いたベルトは耐久性能に劣ることが明らかであ
る。 (4) 短繊維含有ベルトとの比較 比較例1のゴム配合物に短繊維25重量%を混入
して、同様に3Kリブベルトを製作した。上の高
負荷耐久性試験と同じプーリー配置でこのベルト
を張りわたし、駆動側回転数4900rpm、アイドラ
ープーリーのセツトウエイトを150ポンドとして
従動側に負荷15馬力を与え、30℃の温度雰囲気下
にベルトを駆動し、上記と同様にして耐久性能を
評価したところ、寿命は100〜200時間であつた。
一方、同じ条件下で実施例1の加硫物を弾性体層
とするベルトの寿命は500〜600時間であつて、本
発明によるベルトの耐久性が大幅に向上されるこ
とが理解される。
[Table] Tsuchi Sg = 3.56 mm, rib height hr = 2.9 mm, belt thickness hb = 5.3 mm (rib angle 40°) is placed over a drive pulley, driven pulley, and idler pulley with a diameter of 60 mm each, and the drive side is rotated. The adhesion was examined by driving at several 2000 rpm, setting the idler pulley set weight to 90 pounds, and running for 1 hour under the condition of 4% forced slip. The transmission belt having the chloroprene rubber composition vulcanizate of Example 1 as the elastic layer does not exhibit tack even under severe usage conditions, but the belt of Comparative Example 1 having the vulcanizate of the chloroprene rubber composition as the elastic layer does not show tack. shows. Comparative example 2
In the case of No. 3 and No. 3, the adhesion is somewhat improved, but the processing safety or heat aging resistance is poor. (3) Belt durability test In addition to the drive pulley and driven pulley with a diameter of 120mm, an idler pulley with a diameter of 60mm was arranged, and a K-shaped 3-rib belt was stretched across these pulleys as described above, the rotation speed on the drive side was 4900 rpm, and the idler pulley was The set weight is A x 10 pounds, a load A horsepower is applied to the driven side, and the belt is driven at a temperature of 30°C, and the time required for cracks to reach the tensile member, rupture of the holding elastic layer, etc. to occur. The high load durability performance was evaluated. The results are shown in Figure 3. Next, we stretched the same belt with the same pulley arrangement as in the high-load durability test above, and
At 4900 rpm, with the idler pulley set weight at 70 pounds, a load of 7 horsepower is applied to the driven side.
The belt was driven in a temperature atmosphere of 110°C and 120°C, and the heat resistance and durability performance was evaluated in the same manner as above.
The results are shown in Figure 4. From the above, the power transmission belt having the chloroprene rubber composition vulcanizate of Example 1 as the elastic layer is excellent in both high load durability performance and heat resistance durability performance, but the vulcanizate of Comparative Examples 1 to 3 It is clear that the belt using the elastic material layer is inferior in durability performance. (4) Comparison with a belt containing short fibers A 3K ribbed belt was produced in the same manner by mixing 25% by weight of short fibers into the rubber compound of Comparative Example 1. This belt was stretched with the same pulley arrangement as in the high-load durability test above, the driving side rotation speed was 4900 rpm, the set weight of the idler pulley was 150 pounds, a load of 15 horsepower was applied to the driven side, and the belt was placed in a temperature atmosphere of 30°C. When the battery was driven and its durability was evaluated in the same manner as above, the lifespan was 100 to 200 hours.
On the other hand, under the same conditions, the life of the belt with the vulcanizate of Example 1 as the elastic layer was 500 to 600 hours, which indicates that the durability of the belt according to the present invention is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は伝動ベルトの一例を示す横断面図、第
2図は別の一例を示す横断面図、第3図は本発明
及び比較例による伝動ベルトの高負荷耐久性試験
の結果を示すグラフであり、第4図は同様に耐熱
耐久性試験の結果を示すグラフである。 1…リブ、2…保持弾性体層、3…抗張体、4
…外被層、5…接着弾性体層。
FIG. 1 is a cross-sectional view showing one example of a power transmission belt, FIG. 2 is a cross-sectional view showing another example, and FIG. 3 is a graph showing the results of a high-load durability test of power transmission belts according to the present invention and a comparative example. Similarly, FIG. 4 is a graph showing the results of the heat resistance and durability test. DESCRIPTION OF SYMBOLS 1... Rib, 2... Retention elastic body layer, 3... Tensile body, 4
... Outer covering layer, 5... Adhesive elastic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 抗張体層と弾性体層とからなる伝動ベルトに
おいて、少なくとも弾性体層が、クロロプレンゴ
ム100重量部について、酸化亜鉛、酸化マグネシ
ウム及び酸化鉛から選ばれる少なくとも1種の加
硫剤1〜20重量部と、ビスマレイミド0.5〜10重
量部とを含有するクロロプレンゴム組成物の加硫
物からなることを特徴とする伝動ベルト。
1. In a transmission belt consisting of a tensile layer and an elastic layer, at least the elastic layer contains at least one vulcanizing agent selected from zinc oxide, magnesium oxide, and lead oxide, based on 100 parts by weight of chloroprene rubber. 1. A power transmission belt comprising a vulcanized product of a chloroprene rubber composition containing parts by weight of bismaleimide and 0.5 to 10 parts by weight of bismaleimide.
JP22105382A 1982-12-15 1982-12-15 Transmission belt Granted JPS59110944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22105382A JPS59110944A (en) 1982-12-15 1982-12-15 Transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22105382A JPS59110944A (en) 1982-12-15 1982-12-15 Transmission belt

Publications (2)

Publication Number Publication Date
JPS59110944A JPS59110944A (en) 1984-06-27
JPS6146698B2 true JPS6146698B2 (en) 1986-10-15

Family

ID=16760752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22105382A Granted JPS59110944A (en) 1982-12-15 1982-12-15 Transmission belt

Country Status (1)

Country Link
JP (1) JPS59110944A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891998B2 (en) * 1987-02-20 1999-05-17 株式会社ブリヂストン Pneumatic radial tire for heavy loads

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506624A (en) * 1968-03-11 1970-04-14 Rudolf Adolf Behrens Elastomer compositions vulcanized with sulfur,a salt of an organic acid,and a maleimide compound
US3667308A (en) * 1969-12-03 1972-06-06 Semperit Ag V-belt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506624A (en) * 1968-03-11 1970-04-14 Rudolf Adolf Behrens Elastomer compositions vulcanized with sulfur,a salt of an organic acid,and a maleimide compound
US3667308A (en) * 1969-12-03 1972-06-06 Semperit Ag V-belt

Also Published As

Publication number Publication date
JPS59110944A (en) 1984-06-27

Similar Documents

Publication Publication Date Title
KR100464503B1 (en) Power transmission belt having high modulus adhesive rubber member
EP2711587B1 (en) Power transmission belt
US6641905B1 (en) Power transmission belt and process for production of the same
US5711734A (en) Power transmission belt
US20030087715A1 (en) Power transmission belt and process for production of the same
US5663225A (en) Rubber composition and belt for a power transmission
EP0169739B1 (en) Power transmission belt
JP3734915B2 (en) V-belt for transmission
EP0451983B1 (en) Power transmission belt
EP3396201A1 (en) Friction drive belt
JP4234954B2 (en) Transmission belt and manufacturing method thereof
JPS6146698B2 (en)
JPS61290256A (en) Rubber v-belt
JP2824399B2 (en) Toothed belt
JPS61290255A (en) Rubber v-belt
JPS59109541A (en) Chloroprene rubber composition
JPH10158612A (en) Method for bonding rubber to fiber and power transmission belt
JP3623667B2 (en) Power transmission belt
JP2506294B2 (en) V-ribbed belt
JP3734872B2 (en) Transmission belt
JPH04191545A (en) Belt
JP2006258201A (en) Transmission belt
JPH04211748A (en) Power transmission belt
KR100394547B1 (en) The method of improving properties of epdm rubber
JPS62104848A (en) Short fiber-containing rubber composition