JPS61290256A - Rubber v-belt - Google Patents

Rubber v-belt

Info

Publication number
JPS61290256A
JPS61290256A JP13350985A JP13350985A JPS61290256A JP S61290256 A JPS61290256 A JP S61290256A JP 13350985 A JP13350985 A JP 13350985A JP 13350985 A JP13350985 A JP 13350985A JP S61290256 A JPS61290256 A JP S61290256A
Authority
JP
Japan
Prior art keywords
rubber
belt
short fiber
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13350985A
Other languages
Japanese (ja)
Other versions
JPH0563656B2 (en
Inventor
Sadao Inoue
貞夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP13350985A priority Critical patent/JPS61290256A/en
Publication of JPS61290256A publication Critical patent/JPS61290256A/en
Publication of JPH0563656B2 publication Critical patent/JPH0563656B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a long life, by forming a holding elastic material layer b short fiber contained rubber, consisting of chloroprene rubber, reinforcing filler, metal oxide vulcanizing agent, bismaleimide and aramide short fiber, and arranging the aramide short fiber in the width direction of a belt. CONSTITUTION:A V-belt 1 provides holding elastic material layer 4, 5 to be arranged in the upper and the bottom of an adhesive elastic material layer 3 embedding cords 2. The holding elastic material layer is formed by short fiber contained rubber, which adds a reinforcing filler, metal oxide vulcanizing agent, bismaleamide and aramide short fiber to chloroprene rubber, and the aramide short fiber is arranged in the width direction of the belt. Consequently, the belt, providing large elastic modulus in the linear direction, enables high torque to be transmitted further a long life to be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ゴムVベルト、特に高負荷伝動に適するゴム
Vベルトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rubber V-belt, particularly a rubber V-belt suitable for high-load transmission.

(従来の技術) Vベルトは広範な分野で使用されているが、近年自動車
用無段変速機に使用できるVベルトが強く望まれている
。かかるVベルトとしては金属Vベルトが知られている
が、金属Vベルトは潤滑油の中で使用しなければならな
いが、ゴムVベルトはその必要がなく、コストやメンテ
ナンス面で有利である。
(Prior Art) V-belts are used in a wide range of fields, and in recent years there has been a strong desire for V-belts that can be used in continuously variable transmissions for automobiles. Metal V-belts are known as such V-belts, but while metal V-belts must be used in lubricating oil, rubber V-belts do not require this and are advantageous in terms of cost and maintenance.

自動車用無段変速機は極めて高トルクの伝達能力が要求
され、例えば1000ccエンジンの最大トルクを伝達
する場合にはVベルトは20Kg/J前後の側圧力に耐
えなければならない。
Continuously variable transmissions for automobiles are required to have an extremely high torque transmission capability. For example, when transmitting the maximum torque of a 1000 cc engine, the V-belt must withstand a side pressure of around 20 kg/J.

現在実用化されている標準的なゴムVベルトは通常4〜
5Kg/cd以下の、側圧条件下で使用され、高負荷用
のゴムVベルトにおいてもIQKg/c+J程度が限界
である。これは、ゴムVベルトが高側圧においては座屈
変形し、Vベルトの発熱を伴って破壊されるためである
The standard rubber V-belt currently in practical use is usually 4~
Even for high-load rubber V-belts that are used under lateral pressure conditions of 5 kg/cd or less, the limit is about IQ kg/c+J. This is because the rubber V-belt undergoes buckling deformation under high lateral pressure and is destroyed as the V-belt generates heat.

ところで、従来、変速機用ゴムVベルトは側圧に耐え屈
曲し易いことが要求されることから、コード(抗張体)
が埋設された接着弾性体層の上下に位置する保持弾性体
層(伸長層、圧縮層)は短繊維入ゴムによって構成され
ている。その短繊維配向方向(列理方向)はベルト幅方
向である。
By the way, conventional rubber V-belts for transmissions are required to withstand lateral pressure and be easily bent, so cords (tensile members) are used.
The holding elastic layers (stretching layer, compression layer) located above and below the adhesive elastic layer in which is embedded are made of rubber containing short fibers. The short fiber orientation direction (grain direction) is the belt width direction.

従来のゴムVベルトに使用される短繊維入ゴムの列理方
向の弾性率(たて弾性率)は1例えば粘弾性試験におけ
る動的弾性率E’p(oは配向方向を示す添字)で示す
と、100℃で1〜2X10’dynes/ aiが一
般的で、高いものでも3〜4X10’dynes/ a
lであった。
The elastic modulus in the grain direction (vertical elastic modulus) of short fiber-containing rubber used in conventional rubber V-belts is 1. For example, the dynamic elastic modulus E'p (o is a subscript indicating the orientation direction) in a viscoelastic test is Generally, 1~2X10'dynes/ai at 100℃, and even at higher temperatures 3~4X10'dynes/a
It was l.

自動車用変速ベルトとしてゴムVベルトを考えた場合、
上記側圧力に耐えるためには、100℃の高温において
、6 X 10 ’ dynes/a#以上のたて弾性
率の短繊維入ゴムで保持弾性体層を構成する必要がある
When considering a rubber V-belt as a transmission belt for an automobile,
In order to withstand the above-mentioned side pressure, the holding elastic layer must be made of short fiber-containing rubber having a warp modulus of 6 x 10'dynes/a# or more at a high temperature of 100°C.

短繊維入ゴムに用いる短繊維としては、カーボン、ガラ
ス、金属(スチール)、ナイロン、ポリエステル、ビニ
ロン、アラミド等が考えられる。
Examples of the short fibers used in the short fiber-containing rubber include carbon, glass, metal (steel), nylon, polyester, vinylon, aramid, and the like.

カーボン、ガラス繊維はゴム中への短繊維の分散、混練
り過程で切断しく例えば初期長さ6m→0.2m)、複
合後のアスペクト比(短繊維の長さしを外径りで除した
値L/D)が著しく低下し。
Carbon and glass fibers require dispersion of short fibers into rubber, cutting during the kneading process, for example, initial length 6 m → 0.2 m, aspect ratio after composite (short fiber length divided by outer diameter) The value L/D) decreased significantly.

全く補強機能を失う。Completely loses reinforcing function.

金属繊維(スチール)は 混線過程で、バンバリー、ロ
ール等の加工機を損傷するし、又たとえその短繊維入ゴ
ムでもってVベルトを形成できたとしても金属繊維によ
りプーリが損傷されるので問題がある。
Metal fibers (steel) can damage processing machines such as banburys and rolls during the cross-wire process, and even if a V-belt can be formed with rubber containing short fibers, the pulleys will be damaged by the metal fibers, which is a problem. be.

又、ナイロン、ポリエステル、ビニロン等の合成有機繊
維は外径、長さを自由に選択でき、加工時の切断を小さ
くすることができるが、繊維自体の弾性率がそれほど大
きくなく、補強性かつ耐熱性に劣り、プーリ面との摩擦
により溶融することも考えられる。
In addition, the outer diameter and length of synthetic organic fibers such as nylon, polyester, and vinylon can be freely selected, making it possible to reduce the amount of cutting during processing. It is also considered to have inferior properties and may melt due to friction with the pulley surface.

アラミド繊維(例えばデュポン社のケブラー、帝人社の
HM−50)は繊維自体の弾性率も高く、強度が高く加
工時の切断もしにくく耐熱性に優れる。
Aramid fibers (for example, DuPont's Kevlar, Teijin's HM-50) have high elastic modulus, high strength, are difficult to cut during processing, and have excellent heat resistance.

以上より6 X 10 ’ dynes/aJ以上のた
て弾性率を得るための短繊維として、アラミド繊維が選
択される。
From the above, aramid fibers are selected as short fibers for obtaining a warp elastic modulus of 6 x 10' dynes/aJ or more.

短繊維複合体のたて弾性率を示す式として、例えば修正
Halpin”Tsai式がある。
For example, there is a modified Halpin'Tsai equation as a formula showing the warp modulus of elasticity of a short fiber composite.

M : M t ・ (1+ABφz)/(1−Bφφ
2)A=2・L/D B= (Mz /Mt  1)/ (Ml /Mt +
A)ψ=1+φ2 (1−φm)/φm2 M:複合体弾性率 Ml:短繊維が混入されていないマトリックスゴムの弾
性率 Ml:短繊維の弾性率 L:短繊維長 D=短繊維の外径 φm:短繊維の最大容積分率 φ2:短繊維の実容積分率 上式より複合体弾性率を上げるためには(1)アスペク
ト比L/Dを大きくすなわちLを大きく、 (2)容積分率φ2を大きくすなわち短繊維配合量を大
きく、 (3)マトリックスゴムの弾性率M1を大きく、(4)
短繊維の弾性率を大きく することが必要である。
M: Mt・(1+ABφz)/(1−Bφφ
2) A=2・L/D B= (Mz /Mt 1)/ (Ml /Mt +
A) ψ=1+φ2 (1-φm)/φm2 M: Composite elastic modulus Ml: Elastic modulus of matrix rubber with no short fibers mixed Ml: Elastic modulus of short fibers L: Short fiber length D = outside short fibers Diameter φm: Maximum volume fraction of short fibers φ2: Actual volume fraction of short fibers From the above formula, in order to increase the composite elastic modulus, (1) increase the aspect ratio L/D, that is, increase L, (2) Volume (3) increase the elastic modulus M1 of the matrix rubber; (4) increase the fraction φ2, that is, increase the amount of short fibers;
It is necessary to increase the elastic modulus of short fibers.

(発明が解決しようとする問題点) ゴムVベルトには通常ゴムマトリックスポリマーとして
クロロプレンゴムが使用される。クロロプレンゴムマト
リックスへのアラミド短繊維の複合およびそれを用いた
ベルトの性能につき種々検討した結果、下記の問題があ
った。
(Problems to be Solved by the Invention) Chloroprene rubber is usually used as a rubber matrix polymer in rubber V-belts. As a result of various studies on the composite of short aramid fibers in a chloroprene rubber matrix and the performance of belts using the same, the following problems were found.

、通常クロロプレンゴムマトリックス配合はイオウ変性
クロロプレンゴム100重量部に対し、補強充填剤とし
てカーボンブラック40〜60重量部、プロセスオイル
、可塑剤等の油3〜10重量部、架橋剤として酸化マグ
ネシウム3〜5重量部、酸化亜鉛3〜20重量部、その
他加工助剤及び老化防止剤数重量部からなる。かかる通
常配合で、マトリックスゴムの弾性率を上げるべく補強
性カーボンブラックを多量、油を少量配釡すると一未加
硫ゴムの粘度が上昇し短繊維混練時の繊維の切断を大と
し、スコーチタイムが減少し、混線時又はシーテイング
時の短繊維入ゴムの焼け(スコーチ)を引起こす。
The usual chloroprene rubber matrix formulation is 100 parts by weight of sulfur-modified chloroprene rubber, 40 to 60 parts by weight of carbon black as a reinforcing filler, 3 to 10 parts by weight of oil such as process oil or plasticizer, and 3 to 3 parts of magnesium oxide as a crosslinking agent. 5 parts by weight, 3 to 20 parts by weight of zinc oxide, and several parts by weight of other processing aids and anti-aging agents. In such a normal formulation, if a large amount of reinforcing carbon black and a small amount of oil are added to increase the elastic modulus of the matrix rubber, the viscosity of the unvulcanized rubber will increase, increasing the cutting of fibers during short fiber kneading, and reducing the scorch time. decreases, causing scorching of short fiber-containing rubber during crosstalk or sheeting.

一方、アラミド短繊維を多量複合すると、たて弾性率は
大きくなるものの横弾性率も大となり、横方向の引張破
断伸びが低下し、かかる短繊維多量配合の短繊維入ゴム
でコグつきVベルトを構成すると、ベルト走行早期にお
いてコグ底より亀裂を生じベルトが早期に破損する。又
、この短繊維入ゴムを反列理方向に繰返し伸長させる定
歪伸長疲労試験をすると、早期に切断する。
On the other hand, when a large amount of short aramid fibers are combined, the warp modulus increases, but the transverse modulus also increases, and the tensile elongation at break in the transverse direction decreases. If this is configured, cracks will occur from the bottom of the cog in the early stages of belt running, and the belt will break early. Furthermore, when this short fiber-containing rubber is subjected to a constant strain elongation fatigue test in which it is repeatedly elongated in the anti-grain direction, it breaks early.

本発明は側圧性を維持し、ベルト寿命に優れる高負荷伝
動用ゴムVベルトを提供することを目的とするものであ
る。
An object of the present invention is to provide a rubber V-belt for high-load power transmission that maintains lateral pressure properties and has an excellent belt life.

(問題点を解決するための手段) 本発明は、上記目的を達成するために、ゴムVベルトに
おいて、クロロプレンゴム100重量部に対し、補強性
充填剤を40〜60重量部、酸化亜鉛、酸化マグネシウ
ム及び酸化鉛の少なくとも1種類からなる金属酸化物加
硫剤を1〜20重量部(望ましくは2〜15重量部)、
ビスマレイミドを2〜10重量部、アラミド短繊維を適
量(望ましくは13容量%以下)配合してなる短繊維入
ゴムを保持弾性体層に使用し、アラミド短繊維がベルト
幅方向に配列されていることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a rubber V belt in which 40 to 60 parts by weight of reinforcing fillers, zinc oxide, zinc oxide, etc. are added to 100 parts by weight of chloroprene rubber. 1 to 20 parts by weight (preferably 2 to 15 parts by weight) of a metal oxide vulcanizing agent consisting of at least one of magnesium and lead oxide;
A short fiber-containing rubber containing 2 to 10 parts by weight of bismaleimide and an appropriate amount (preferably 13% by volume or less) of aramid short fibers is used for the retention elastic layer, and the aramid short fibers are arranged in the belt width direction. It is characterized by the presence of

クロロプレンゴムは硫黄変性又は非硫黄変性のいずれの
タイプであっても良いが、特に硫黄変性タイプはビスマ
レイミドの架橋密度を上げる効果が顕著であり望ましい
The chloroprene rubber may be either sulfur-modified or non-sulfur-modified, but the sulfur-modified type is particularly desirable because it has a remarkable effect of increasing the crosslinking density of bismaleimide.

金属酸化物加硫剤は1重量部よりも少ない場合には、ク
ロロプレンゴムの架橋が十分に行なわれず、マトリック
スゴム加硫物が耐熱性だけでなく、加硫物性にも劣る。
If the amount of the metal oxide vulcanizing agent is less than 1 part by weight, the chloroprene rubber will not be sufficiently crosslinked, and the matrix rubber vulcanizate will be inferior not only in heat resistance but also in vulcanized physical properties.

一方、20重量部より多い場合は、金属酸化物が酸化亜
鉛のときは配合生地の腰が落ちて柔らかくなると同時に
貯蔵安定性も悪くなり、また酸化マグネシウムのときは
加硫速度が非常に遅くなる問題が生じ、さらに酸化鉛の
ときは加工安全性、貯蔵安定性が損なわれる問題が生ず
る。尚、本発明においては、特に好ましくは酸化亜鉛と
酸化マグネシウムが併用され、その配合量はクロロプレ
ンゴム100重量部についてそれぞれ3〜8重量部であ
る6 また、本発明において用いるビスマレイミドは、2つの
窒素原子が直接に結合されたN、N’一連結ビスマレイ
ミド及び2つの窒素がアルキレン基、シクロアルキレン
基、オキシジメチレン基、フェニレン基、スルホン基、
その他の2価の有機基で結合されているビスマレイミド
を含み、これらの具体例としては、N、N’−エチレン
ビスマレイミド、N、N’−ヘキサメチレンビスマレイ
ミド、N、N’−(1,4−フェニレン)シマレイミド
、N、N’−(○−フェニレン)シマレイミド、N。
On the other hand, if the metal oxide is more than 20 parts by weight, if the metal oxide is zinc oxide, the mixed dough will become stiff and soft, and at the same time the storage stability will be poor, and if the metal oxide is magnesium oxide, the vulcanization rate will be extremely slow. Further, when lead oxide is used, processing safety and storage stability are impaired. In the present invention, zinc oxide and magnesium oxide are particularly preferably used in combination, and the amount thereof is 3 to 8 parts by weight per 100 parts by weight of chloroprene rubber. N, N′-linked bismaleimide in which nitrogen atoms are directly bonded and two nitrogens are an alkylene group, a cycloalkylene group, an oxydimethylene group, a phenylene group, a sulfone group,
Contains bismaleimides bonded with other divalent organic groups, specific examples of which include N,N'-ethylene bismaleimide, N,N'-hexamethylene bismaleimide, N,N'-(1 , 4-phenylene) simaleimide, N, N'-(○-phenylene) simaleimide, N.

N’−(0−フェニレン)シマレイミド、N、N’−(
m−フェニレン)シマレイミド、N、N”−(2,4−
トリレン)シマレイミド、N、N″−デュリレンジマレ
イミド、N、N’−C4,4’(2,2’−ジクロロビ
フェニレン)〕シマレイミド、N、N’−(4,4’ 
(2,2’−ジクロロビフェニレン)〕シマレイミド、
N、N’−(4゜4′−メチレンジフェニルコシマレイ
ミド、N。
N'-(0-phenylene) simaleimide, N, N'-(
m-phenylene) simaleimide, N,N”-(2,4-
Tolylene) simaleimide, N, N''-Durylene dimaleimide, N, N'-C4,4'(2,2'-dichlorobiphenylene)] simaleimide, N, N'-(4,4'
(2,2'-dichlorobiphenylene)] simalimide,
N, N'-(4°4'-methylene diphenyl cosimaleimide, N.

N’−(1,4−デュリレンジエチレン)シマレイミド
、N、N’−(4,4’−スルホニルジフェニルクシマ
レイミド、2.6・ビス(マレイミドメチル)−4−t
−ブチルフェノール、N、N’−オキシジメチレンシマ
レイミド等を挙げることができる。
N'-(1,4-durylene diethylene) simalimide, N, N'-(4,4'-sulfonyldiphenyl shimaleimide, 2.6-bis(maleimidomethyl)-4-t
-butylphenol, N,N'-oxydimethylene cimaleimide, and the like.

ビスマレイミドはクロロプレンゴム100重量部につい
て2〜10重量部用いられる。2重量部以下では金属酸
化物加硫剤と併用しても未加硫物の加工安全性を確保し
つつその加硫物における架、橋度を高める効果に欠ける
一方、10重量部よりも多く配合するときはビスマレイ
ミドのブルームが認められるようになるからである。
Bismaleimide is used in an amount of 2 to 10 parts by weight per 100 parts by weight of chloroprene rubber. If it is less than 2 parts by weight, even if it is used in combination with a metal oxide vulcanizing agent, it will lack the effect of increasing crosslinking in the vulcanized product while ensuring processing safety of the unvulcanized product, while if it is more than 10 parts by weight. This is because when it is blended, bloom of bismaleimide is observed.

、油はマトリックスゴムの耐寒性の付与、又は混線加工
性の付与のために添加されるが、15重量部以上の添加
はマトリックスゴムの弾性率を低下させ、これを補うべ
くカーボンブラックを増量すると、加硫ゴムの耐熱老化
性、動的特性を悪化せしめる。
Oil is added to give the matrix rubber cold resistance or cross-wire processability, but addition of 15 parts by weight or more lowers the elastic modulus of the matrix rubber, and increasing the amount of carbon black to compensate for this decreases the elastic modulus of the matrix rubber. , which deteriorates the heat aging resistance and dynamic properties of vulcanized rubber.

補強性充填剤としてのカーボンブラックの量はビスマレ
イミドを添加しないマトリックス加硫ゴムの弾性率を適
度とし、マトリックス未加硫ゴムの粘度が大きすぎず、
スコーチタイムが加工安全性を保持しうる程度になるよ
う決められる。
The amount of carbon black as a reinforcing filler is such that the elastic modulus of the matrix vulcanized rubber without adding bismaleimide is appropriate, and the viscosity of the matrix unvulcanized rubber is not too high.
The scorch time is determined to maintain processing safety.

短繊維長は短かすぎると、アスペクト比が小さいために
補強性に劣り、一方長すぎると繊維同士のからみ合いが
生じてゴム中への分散不良が生じたり、混線過程での切
断が生ずるため問題がある。
If the short fiber length is too short, the aspect ratio will be low, resulting in inferior reinforcing properties, while if it is too long, the fibers will become entangled with each other, resulting in poor dispersion in the rubber or breakage during the cross-wire process. There's a problem.

短繊維長としては2〜10■、望ましくは3〜6■が良
い。
The short fiber length is preferably 2 to 10 cm, preferably 3 to 6 cm.

短繊維とクロロブレンゴムとの接着性付与のために短繊
維は通常接着処理される。短繊維の接着処理として、ま
ずアラミド長繊維をイソシアネート化合物やエポキシ化
合物によるディップ処理(浸漬→加熱乾燥)後、レゾル
シン−ホルマリン−ラテックス(RFL液)にてディッ
プ処理し。
The short fibers are usually subjected to an adhesive treatment in order to impart adhesion between the short fibers and the chloroprene rubber. As an adhesive treatment for the short fibers, first, the aramid long fibers were dipped in an isocyanate compound or an epoxy compound (immersion → heat-dried), and then dipped in resorcinol-formalin-latex (RFL liquid).

その後カットすることによってなされる。又、イソシア
ネート系接着剤(例えばロード社のケムロック402)
でディップ処理(1回のみ)しても良い。又未処理繊維
をまず所定長さにカット後接着処理液に浸漬し、遠心分
離で余分の液を除き、その後、加熱乾燥することによっ
てもよい。
This is then done by cutting. Also, isocyanate-based adhesives (for example, Chemlock 402 from Lord Co.)
Dip treatment (only once) may be performed. Alternatively, the untreated fibers may be first cut into a predetermined length and then immersed in an adhesive treatment solution, the excess solution removed by centrifugation, and then heated and dried.

アラミド短繊維の配合量は多すぎると、反列理7方向(
ベルトにしたときのベルト進行方向)の屈曲疲労性(伸
長疲労性)を著しく悪化せしめる。
If the amount of aramid staple fibers is too large, anti-grain 7 directions (
When made into a belt, the bending fatigue resistance (stretching fatigue resistance) of the belt (in the belt traveling direction) is significantly deteriorated.

そのため、アラミド短繊維配合量は13容量%以下が良
い。
Therefore, the blending amount of aramid short fibers is preferably 13% by volume or less.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

本発明の実施例(1)、(2)と比較例(1)〜(4)
の保持弾性体層のゴム配合を表1に、マトリックスゴム
特性等を表2に、短繊維入りゴム特性を表3に、そして
ベルト性能を表4に示す。
Examples (1) and (2) of the present invention and comparative examples (1) to (4)
Table 1 shows the rubber composition of the holding elastic layer, Table 2 shows the properties of the matrix rubber, Table 3 shows the properties of the rubber containing short fibers, and Table 4 shows the belt performance.

表1に示すように、比較例(1)、(2)は補強性充填
剤としてのカーボンブラックを多量配合することによっ
てマトリックスゴムの弾性率を高め、それよって短繊維
量ゴムの弾性率を高めるようにしたものである。又、比
較例(3)、(4)は通常のマトリックスゴムに対し短
繊維を多量配合することによって短繊維量ゴムの弾性率
を高めるようにしたものである。
As shown in Table 1, Comparative Examples (1) and (2) increase the elastic modulus of the matrix rubber by incorporating a large amount of carbon black as a reinforcing filler, thereby increasing the elastic modulus of the short fiber content rubber. This is how it was done. Moreover, in Comparative Examples (3) and (4), the elastic modulus of the rubber containing short fibers was increased by blending a large amount of short fibers with respect to the ordinary matrix rubber.

マトリックスゴム特性を比較すると、表2に示すように
、比較例(1)、(2)のマトリックスゴムは実施例(
1)、(2)のマトリックスゴムに比較してほぼ同等の
弾性率(100%モジュラス、硬さ、 E’ (100
℃))を示すが、ムーニー粘度が高く、スコーチタイム
が短かく加工安全性に問題がある。又、tanδも著し
く大きく、動的発熱も大きいと考えられる。比較例(3
)、(4)は、加工安全性は一応満足されるものの1弾
性率が低(、tanδが大きい。
Comparing the matrix rubber properties, as shown in Table 2, the matrix rubbers of Comparative Examples (1) and (2) were the same as those of Example (
Compared to the matrix rubbers 1) and (2), the elastic modulus (100% modulus, hardness, E' (100%
°C)), but the Mooney viscosity is high, the scorch time is short, and there are problems with processing safety. Furthermore, tan δ is also significantly large, and dynamic heat generation is also considered to be large. Comparative example (3
) and (4), although the processing safety is somewhat satisfied, the first elastic modulus is low (and tan δ is large.

次に、短繊維量ゴムについて述べる。短繊維を混入した
未加硫ゴムをトルエンに溶解後、溶出した繊維の長さを
顕微鏡で測定したn=60本の平均値を表3に示した。
Next, short fiber content rubber will be described. After dissolving the unvulcanized rubber mixed with short fibers in toluene, the lengths of the eluted fibers were measured using a microscope, and the average value of n=60 fibers is shown in Table 3.

比較例(1)、(2)はマトリックスゴムが高ムーニー
粘度のために、混線後の繊維長は他と比較してかなり短
かくなっている。その結果、列理方向の弾性率が実施例
より小さくなっている。比較例(3)(4)は繊維量が
多いために反列理方向の伸びが小さい。
In Comparative Examples (1) and (2), the matrix rubber has a high Mooney viscosity, so the fiber length after cross-crossing is considerably shorter than in the other examples. As a result, the elastic modulus in the grain direction is smaller than in the example. Comparative Examples (3) and (4) have a large amount of fiber, so the elongation in the antigrain direction is small.

又、実施例(1)、(2)は短繊維量が少なく。In addition, Examples (1) and (2) have a small amount of short fibers.

マトリックスゴムのtanδが小さいために短繊維量ゴ
ムの反列理方向のE’ (100℃)が小、tanδが
小、 E” (100℃)が小であり、屈曲発熱性の小
さい繊維入ゴムである。さらに反列理方向の伸長疲労寿
命にも著しく優れる。
Because the tan δ of the matrix rubber is small, the short fiber content rubber has a small E' (100°C) in the anti-grain direction, a small tan δ, and a small E'' (100°C), making it a fiber-filled rubber with low flexural heat generation properties. Furthermore, it has a significantly superior elongation fatigue life in the anti-grain direction.

次に各短繊維量ゴムをコグつきゴムVベルトに構成し、
ベルト性能を比較した結果を述べる。
Next, each short fiber amount rubber is configured into a rubber V-belt with cogs,
The results of comparing belt performance are described below.

試験ベルトは、第1図に示すように、コグつきゴムVベ
ルト1で、コード2が埋設された接着弾性体層3の上下
に保持弾性体層4,5が配設され、下側の保持弾性体層
5の下面に帆布6が付設されており、ベルト幅35+m
、ベルト角度26度、ベルト長さ780膳である。
As shown in FIG. 1, the test belt is a rubber V-belt 1 with cogs, in which holding elastic layers 4 and 5 are disposed above and below an adhesive elastic layer 3 in which a cord 2 is embedded, and the lower holding A canvas 6 is attached to the lower surface of the elastic layer 5, and the belt width is 35+m.
, the belt angle is 26 degrees, and the belt length is 780 degrees.

なお、ベルト走行寿命は、直径17;’+mの駆動プー
リ (回転数3200r″pm、トルク3.2Kgm)
と直径861111の従動プーリとの間に試験ベルトを
巻回し、80℃の雰囲気で走行させ、クランク発生まで
の時間を測定し、それをベルト走行寿命とした。ただし
、比較例(1)を100として基準とし、指数表示した
The belt running life is based on a drive pulley with a diameter of 17'+m (rotation speed 3200r''pm, torque 3.2Kgm)
A test belt was wound between the belt and a driven pulley having a diameter of 861,111 mm, and the test belt was run in an atmosphere of 80° C., and the time until the occurrence of a crank was measured, and this was taken as the belt running life. However, Comparative Example (1) was set as 100 and expressed as an index.

伝動可能トルクは、直径86mmの駆動プーリ(回転数
260Orpm)と直径172■の従動プーリとの間に
試験ベルトを巻回して温室した。
Transmissible torque was determined by winding a test belt between a driving pulley (rotation speed: 260 rpm) having a diameter of 86 mm and a driven pulley having a diameter of 172 cm.

また、低速時伝達可能トルク(3%スリップ以下で伝達
可能なベルトの最大伝達トルク)と高速時寿命指数をそ
れぞれ第2図および第3図に示す。
Furthermore, the transmittable torque at low speeds (maximum transmittable torque of the belt that can be transmitted with 3% slip or less) and the life index at high speeds are shown in FIGS. 2 and 3, respectively.

低速時伝達可能トルクは短繊維入ゴムの列理方向E ’
 100℃と相関関係を示し、実施例(1)。
The torque that can be transmitted at low speed is the grain direction of short fiber-filled rubber E'
Example (1) shows a correlation with 100°C.

(2)と比較例(3)、(4)とはほぼ同じ伝達能力を
示す、比較例(1)、(2)は伝達能力に劣る。
(2) and Comparative Examples (3) and (4) show almost the same transmission ability, while Comparative Examples (1) and (2) have inferior transmission ability.

一方、高速時寿命指数は同一伝達可能トルクのところで
比較して本発明の実施例は比較例に比較して著しく優れ
ることが明らかである。
On the other hand, when comparing the life index at high speed at the same transmittable torque, it is clear that the embodiment of the present invention is significantly superior to the comparative example.

なお、接着弾性体層には5X10” dynes/dの
動的弾性率、JISA硬さ89’の硬度のゴムを使用し
ている。
The adhesive elastic layer is made of rubber having a dynamic elastic modulus of 5 x 10'' dynes/d and a JISA hardness of 89'.

したがって、クロロプレンゴムのマトリックスゴム配合
にビスマレイミドを添加することによりマトリックスゴ
ムの架橋密度が高められ、弾性率を大きくすることがで
き、この際マトリックス未加硫ゴムの粘度、スコーチタ
イムは、ビスマレイミド無添加時と比較して悪化せず、
したがって加工安全性に優れかつ弾性率が高くかつ動特
性に優れるマトリックスゴムが得られる。また、上記マ
トリックスゴムに短繊維を混入する際、マトリックスゴ
ムのムーニー粘度を低く設定でき、短繊維の切断が少な
い1列理方向において同一弾性率の短繊維入ゴムを得る
ための短繊維複合量が少なくて済み短繊維入ゴムの反列
理方向の伸び、伸長疲労寿命が優れる。また、tanδ
の小さな短繊維入ゴムが得られ、E”=:=E’Xta
nδを小とすることができ、屈曲発熱が小さい。アラミ
ド短繊維の複合によって6X10” dynes/cI
I以上のたて弾性率(ioo℃)の短繊維入ゴムが得ら
れる。
Therefore, by adding bismaleimide to the matrix rubber formulation of chloroprene rubber, the crosslinking density of the matrix rubber can be increased and the elastic modulus can be increased. No deterioration compared to when no additive was added,
Therefore, a matrix rubber with excellent processing safety, high elastic modulus, and excellent dynamic properties can be obtained. In addition, when mixing short fibers into the matrix rubber, the Mooney viscosity of the matrix rubber can be set low, and the amount of combined short fibers can be set to obtain a short fiber-containing rubber with the same elastic modulus in one grain direction with less cutting of short fibers. Short fiber-containing rubber has excellent elongation in the anti-grain direction and elongation fatigue life. Also, tan δ
Rubber with small short fibers is obtained, and E''=:=E'Xta
nδ can be made small, and bending heat generation is small. 6X10” dynes/cI by composite of aramid short fibers
A short fiber-containing rubber having a warp elastic modulus (ioo°C) of I or more can be obtained.

(発明の効果) 本発明は1列理方向の弾性率が大きく1反列理方向の特
性に優れる短繊維入ゴムを用いて保持弾性体層を形成し
たので、高トルク伝達が可能でかつ高寿命で、自動車用
変速機に適用することができる。
(Effects of the Invention) In the present invention, the holding elastic layer is formed using short fiber-containing rubber that has a large elastic modulus in the 1-grain direction and excellent properties in the 1-iron grain direction, so it is possible to transmit high torque and With a long service life, it can be applied to automobile transmissions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるゴムVベルトの斜視図
、第2図および第3図は試験結果の説明図である。 ■・・・・・・ゴムVベルト、2・・・・・・コード、
3・・・・・・接着弾性体層、4,5・・・・・・保持
弾性体層。
FIG. 1 is a perspective view of a rubber V-belt according to an embodiment of the present invention, and FIGS. 2 and 3 are illustrations of test results. ■・・・Rubber V belt, 2・・・Cord,
3... Adhesive elastic layer, 4, 5... Holding elastic layer.

Claims (2)

【特許請求の範囲】[Claims] (1)コードが埋設された接着弾性体層の上下側に保持
弾性体層が位置するベルトであって、上記保持弾性体層
がクロロプレンゴム100重量部、補強性充填剤40〜
60重量部、酸化亜鉛、酸化マグネシウム及び酸化鉛の
少なくとも1種類からなる金属酸化物加硫剤1〜20重
量部、ビスマレイミド2〜10重量部及びアラミド短繊
維適量を配合した短繊維入ゴムで構成され、該アラミド
短繊維がベルト幅方向に配列されていることを特徴とす
るゴムVベルト。
(1) A belt in which a holding elastic layer is located above and below an adhesive elastic layer in which a cord is embedded, and the holding elastic layer contains 100 parts by weight of chloroprene rubber and 40 to 40 parts by weight of reinforcing filler.
60 parts by weight, 1 to 20 parts by weight of a metal oxide vulcanizing agent consisting of at least one of zinc oxide, magnesium oxide, and lead oxide, 2 to 10 parts by weight of bismaleimide, and an appropriate amount of aramid short fibers. A rubber V-belt characterized in that the aramid short fibers are arranged in the width direction of the belt.
(2)アラミド短繊維の配合量が容積分率で13容量%
以下であるところの特許請求の範囲第1項記載のゴムV
ベルト。
(2) The volume fraction of aramid short fibers is 13% by volume.
Rubber V according to claim 1 as follows:
belt.
JP13350985A 1985-06-18 1985-06-18 Rubber v-belt Granted JPS61290256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13350985A JPS61290256A (en) 1985-06-18 1985-06-18 Rubber v-belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13350985A JPS61290256A (en) 1985-06-18 1985-06-18 Rubber v-belt

Publications (2)

Publication Number Publication Date
JPS61290256A true JPS61290256A (en) 1986-12-20
JPH0563656B2 JPH0563656B2 (en) 1993-09-13

Family

ID=15106438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13350985A Granted JPS61290256A (en) 1985-06-18 1985-06-18 Rubber v-belt

Country Status (1)

Country Link
JP (1) JPS61290256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265740A (en) * 1990-03-12 1991-11-26 Bando Chem Ind Ltd Power transmitting belt

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2423498C (en) 2002-03-28 2006-08-01 Mitsuboshi Belting Ltd. Power transmission belt
JP5813996B2 (en) 2011-05-20 2015-11-17 三ツ星ベルト株式会社 Transmission belt
JP5945562B2 (en) 2013-03-28 2016-07-05 三ツ星ベルト株式会社 Transmission belt and belt transmission
JP6055430B2 (en) 2013-03-29 2016-12-27 三ツ星ベルト株式会社 Transmission belt
WO2018139578A1 (en) 2017-01-26 2018-08-02 三ツ星ベルト株式会社 Transmission v-belt and manufacturing method therefor
JP6654653B2 (en) 2017-01-26 2020-02-26 三ツ星ベルト株式会社 Transmission V-belt and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265740A (en) * 1990-03-12 1991-11-26 Bando Chem Ind Ltd Power transmitting belt

Also Published As

Publication number Publication date
JPH0563656B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
KR100464503B1 (en) Power transmission belt having high modulus adhesive rubber member
EP3045771B1 (en) V-belt and production method therefor
US7927243B2 (en) Transmission belt
WO2012161141A1 (en) Power transmission belt
US20050043486A1 (en) Rubber composition for high-load transmission belt and high-load transmission belt from the rubber composition
EP0776938B1 (en) Power transmission belt
JP2018523062A (en) CVT belt
US11300178B2 (en) Friction drive belt
CN101099053B (en) Friction transmission belt
US5663225A (en) Rubber composition and belt for a power transmission
JP3734915B2 (en) V-belt for transmission
EP0451983B1 (en) Power transmission belt
JPH0381350A (en) Driving belt
JPS61290256A (en) Rubber v-belt
EP3396201A1 (en) Friction drive belt
JP2506294B2 (en) V-ribbed belt
JPS61290255A (en) Rubber v-belt
EP3971331A1 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JPH10158612A (en) Method for bonding rubber to fiber and power transmission belt
JPS59110944A (en) Transmission belt
JPH09303487A (en) Transmission belt
JPH03133814A (en) Heat resistant belt
JP2002130400A (en) Driving device using power transmission belt
JPH09196125A (en) Transmission belt
JPH08244134A (en) Transmission belt

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term