JPS6146247A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS6146247A
JPS6146247A JP59166066A JP16606684A JPS6146247A JP S6146247 A JPS6146247 A JP S6146247A JP 59166066 A JP59166066 A JP 59166066A JP 16606684 A JP16606684 A JP 16606684A JP S6146247 A JPS6146247 A JP S6146247A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
alumina
lanthanum
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59166066A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Eto
江渡 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59166066A priority Critical patent/JPS6146247A/en
Publication of JPS6146247A publication Critical patent/JPS6146247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled catalyst sufficient in conversion degree of NOx and CO even in the low-temp. exhaust gas by using a calcined body having specified component constitution of a carrier deposited with the catalytic metals in the three-dimensional catalyst for purifying the exhaust gas discharged from an internal combustion engine of automobile. CONSTITUTION:Lanthanum oxide powder contg. one or more kinds of perovskite type oxide selected from the group of both the perovskite oxide consisting of Fe plus La and the perovskite type oxide consisting of Ni plus La is prepared. Activated alumina deposited with Ce preliminarily, cerium oxide powder and alumina sol are prepared and the slurry obtained by kneading these with the above-mentioned lanthanum oxide powder is coated on a monolithic base body, dried and calcined in an air current to obtain a carrier. When a simple substance such as Pt and Rh or a catalytic metal combined with them is deposited on the catalytic carrier, the aimed catalyst for purifying the exhaust gas is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕       −この発明状、特
に内燃機関から排出されるガスを浄化するための排ガス
浄化用触媒。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] - The present invention, particularly an exhaust gas purifying catalyst for purifying gas discharged from an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、排ガス浄化用触媒として紘、特に自動車の内燃機
関からの排ガス浄化用の3元触媒の開発が進められてい
る。三元触媒の性能向上のために拡、0.ストシージ効
果を有するセリウムを含む担体に貴金属触媒を担持され
たものが知られている。−例えtf4?開昭52−11
6779号公報、特開昭54゜−159391号公報K
a・あらかじめセリウ!°を含有させた活性アルミナ粉
末をモノリス担体基材の表面に付着させた後に、白金、
ロジウム・パラジウム等の単独又は組合せてなる触媒金
属を担持させた触媒が開示されている。
BACKGROUND ART Conventionally, the development of catalysts for purifying exhaust gases, particularly three-way catalysts for purifying exhaust gases from internal combustion engines of automobiles, has been progressing. To improve the performance of the three-way catalyst, it is expanded to 0. It is known that a noble metal catalyst is supported on a cerium-containing carrier that has a storage effect. -For example, TF4? Kaisho 52-11
No. 6779, JP-A-54-159391 K
a.Seriu in advance! After adhering activated alumina powder containing ° to the surface of the monolithic carrier substrate, platinum,
Catalysts are disclosed in which catalytic metals such as rhodium and palladium are supported singly or in combination.

〔発明が解決しようとする問題点〕    □かかる3
元M1m紘、通常の温度域で使用する場合には、排ガス
甲の炭化水素(IiC)、−酸化炭素(CO)、窒素酸
化物(NOx)を高い転換率で浄化することができ、H
C,CO,NOxの転換率80−以上を示す!燃比ゾー
ン、すなわち80−ウィンド中が充分に確保される。し
かしながら、近年、開発中の自動車の内燃機関からの排
ガスの温度が下がる傾向があシ・このような低温の排ガ
スを排出する内燃機関の排ガスを浄化するには、かかる
触媒はNOxおよびCOの転換率が充分でなくなる恐れ
があるという問題点があった。
[Problem that the invention seeks to solve] □Such 3
When used in the normal temperature range, it can purify hydrocarbons (IiC), -carbon oxides (CO), and nitrogen oxides (NOx) in the exhaust gas with a high conversion rate, and
Shows a conversion rate of 80- or more for C, CO, and NOx! The fuel ratio zone, i.e. 80-wind, is fully secured. However, in recent years, the temperature of exhaust gas from internal combustion engines of automobiles under development has tended to decrease.In order to purify exhaust gas from internal combustion engines that emit such low-temperature exhaust gas, such catalysts are required to convert NOx and CO There was a problem that the rate might not be sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

とめ発明は、このような従来の問題点に着目してなされ
たもので、鉄とランタンのペロプスカイト型酸化物又は
ニッケルとランタンのペロプスカイト型酸化物、あるい
はこれらの混合物を含む酸化ランタン粉末と、あらかじ
めセリウムを含有せしめた活性アルミナと、欧化セリウ
ム粉末と、アルミナゾルと混線して得られるスラリーを
モノリス基体に被覆して焼成した担体に、白金、パラジ
ウム、ロジウム等の単独又は組合せてなる貴金属触媒を
担持させた触媒とすることによル、前記問題点を解決す
ることを目的としている。
The stop invention was made by focusing on these conventional problems, and it is based on a lanthanum oxide powder containing a perovskite-type oxide of iron and lanthanum, a perovskite-type oxide of nickel and lanthanum, or a mixture thereof. A noble metal catalyst consisting of platinum, palladium, rhodium, etc., alone or in combination, is coated on a monolithic substrate and fired with a slurry obtained by mixing activated alumina containing cerium in advance, cerium chloride powder, and alumina sol. The purpose of the present invention is to solve the above-mentioned problems by providing a catalyst supported with .

〔作用〕[Effect]

一般にδ又はr−アルミナを主成分とする活性アルミナ
は、触媒用担体として知られているが、高温度下では、
不活性で安定なα−アルミナに変移してしまい、触媒用
担体としては不都合となるしかし活性アルミナに適当量
のセリウムを添加すると、著しく耐熱性が向上すること
が解ったが、あtシ少量ではその効果が弱く又あtシ多
量では活性アルミナ自身の持つ高比表面積を低下させる
ことになシ、貴金属の分散性の面から見て不都合であっ
た。本発明では、好ましくは対アルミナ比1〜5 wt
%で特に好ましくは約3 wt%のセリウムを含有させ
ることで比表面積を低下させる事なく耐熱性を向上させ
ている。酸化セリウムはほとんど全てが4価のセリウム
の酸化物であシ一般にceotで表わされる。CIO,
はそれ自体0.ストレージ効果を持ち、触媒のさらされ
る雰囲気に対し、応答雰囲気を拡げる効果を持っている
。本発明では%C1!10゜の持つ0.ストレージ効果
をよシ有効に発揮させるために、鉄−ランタン系および
/lたはニッケルランタン系のペロプスカイト型複合酸
化物を含む厚を触媒担体上に塗布する。ペロブスカイト
型複合酸化物の特徴は酸素02−の内部拡散が、陽イオ
″″拡散3きわめて太き“ことから・非常に強  1い
0.ストレージ効果が期待でき、前記c eQlの0!
ストレージ効果と合わせて、触媒の活性雰囲気を拡大す
ることができる。又、特に鉄−ランタン系ペロブスカイ
ト型複合酸化物の持つCO、K)x K対する活性また
はニッケルーランタン系ペロブスカイト型複合酸化物の
持つCOに対する活性を利用することによシ、触媒の低
温時(たとえば400℃ンでのウィンド巾を広げること
が出来る。また、上記ペロブスカイト複合酸化物を含む
コート層を、最表層部のみとすると、排ガス流のような
高Sv(?!間速度〕下で起る反応に1.ランタンを少
量でよシ有効に活性を維持させることができる。
Generally, activated alumina mainly composed of δ or r-alumina is known as a catalyst support, but under high temperature,
It transforms into inactive and stable α-alumina, making it inconvenient as a catalyst carrier. However, it has been found that adding an appropriate amount of cerium to activated alumina significantly improves heat resistance. However, the effect is weak, and in large amounts, the high specific surface area of activated alumina itself is reduced, which is disadvantageous from the viewpoint of noble metal dispersibility. In the present invention, preferably the alumina ratio is 1 to 5 wt.
By containing cerium, preferably about 3 wt%, the heat resistance is improved without reducing the specific surface area. Cerium oxide is almost entirely an oxide of tetravalent cerium and is generally expressed as ceot. CIO,
is itself 0. It has a storage effect and has the effect of expanding the response atmosphere to the atmosphere to which the catalyst is exposed. In the present invention, %C1!10° has 0. In order to exhibit the storage effect more effectively, a layer containing iron-lanthanum based perovskite type composite oxide and /l or nickel lanthanum based perovskite type composite oxide is coated on the catalyst carrier. The characteristic of perovskite-type composite oxides is that the internal diffusion of oxygen 02- is very thick as cationic diffusion 3. A very strong storage effect can be expected, and the above-mentioned ceQl of 0!
Combined with the storage effect, it is possible to expand the active atmosphere of the catalyst. In addition, by utilizing the activity against CO, K) For example, it is possible to widen the window width at 400°C.Also, if the coating layer containing the above-mentioned perovskite composite oxide is applied only to the outermost layer, it is possible to increase the wind width under high Sv (? 1. The activity of lanthanum can be maintained effectively with a small amount of lanthanum.

尚、本発明で用いるペロプスカイト型複合酸化物は仄の
ように作成するのが好ましい。酸化ランタン粉末に、鉄
を、金夙換算で・酸化ランタンに対して%3wt%〜1
0 vt% Kなる量の硝酸第1鉄を加”え・少量の純
水と共に混練する。その後乾燥し、還元ガス雰囲気中で
850℃〜950℃で2時間−温ステップを用いずに焼
成同雰囲気中で放冷する。この結果加えた鉄はライタン
と、一般にLace’sで示されるペロブスカイト型複
合酸化物を形成し、反応に関与しなかった余分の酸化ラ
ンタンは、そのまま残る。ニッケルについても、硝酸ニ
ッケルを用いることが異なるだけで、同様K LaNl
0.で示されるベロプスカイ)ffl複合欧化物を作成
することができる。ニッケルーランタン系と鉄−ランタ
ン系のペロプスカイト型複合酸化物を併用する場合には
、酸化ランタン粉末III酸第1鉄と硝酸ニッケルとを
一緒に混合して還元ガス雰囲気で焼成しても良い。
Incidentally, the perovskite type composite oxide used in the present invention is preferably prepared as shown below. Add iron to lanthanum oxide powder, in terms of gold, %3wt% to 1% relative to lanthanum oxide
Ferrous nitrate in an amount of 0 vt% K is added and kneaded with a small amount of pure water. After that, it is dried and fired at 850°C to 950°C in a reducing gas atmosphere for 2 hours without using a temperature step. Allow to cool in an atmosphere.As a result, the added iron forms a perovskite-type composite oxide, generally referred to as Lace's, with lanthanum, and the excess lanthanum oxide that did not participate in the reaction remains as it is.As for nickel, , KLaNl is similar, except that nickel nitrate is used.
0. It is possible to create a complex european compound (velop sky) ffl denoted by . When using nickel-lanthanum based and iron-lanthanum based perovskite type composite oxides, lanthanum oxide powder ferrous III acid and nickel nitrate may be mixed together and fired in a reducing gas atmosphere. .

又、セリウムを担持させた活性アルミナは、粉。Activated alumina loaded with cerium is powder.

末又は粒状の宿性アルミナ、例えばr−アルミナを・硝
酸セリウム等の水溶性セリウム塩の水溶液に含潰し、引
上げた後、100〜200℃の熱風中で乾燥し、次いで
500℃以上で空気中で焼成するととくよって作成する
ことができる。
Powdered or granular host alumina, such as r-alumina, is crushed in an aqueous solution of a water-soluble cerium salt such as cerium nitrate, pulled up, dried in hot air at 100 to 200°C, and then dried in air at 500°C or higher. It can be created by firing it.

ランタンを有効に用いるに社、担体の最表面部のみに存
在させるようKすることが好ましい。そのためには、久
のように担体を作成すると良い。
In order to use lanthanum effectively, it is preferable to make it exist only on the outermost surface of the carrier. For that purpose, it is good to create a carrier like Hisashi.

すなわち、ペロブスカイト型複合酸化物を含む酸化ラン
タン粉末を、あらかじめセリウムを含むδ又はr−アル
ミナを主成分とする活性アルミナ粒状又は粉末状担体、
市販酸化セリウム粉末、および硝酸酸性アルミナ・ゾル
と共に磁製ボールミルに投入し、粉砕混練して、スラリ
ーを得る。次に前記酸化ランタン粉末を含まない以外は
同一仕様のスラリーを作成して、コーディエライト質を
主成分とするモノリス担体に複数回に分けて所定量のコ
ーティングを行ない、最後に前記ペロプスカイト型複合
酸化物を含むスラリーのコーティングを1回のみ行う。
That is, lanthanum oxide powder containing a perovskite-type composite oxide is preliminarily transferred to an activated alumina granular or powder carrier mainly composed of δ or r-alumina containing cerium,
The mixture was placed in a porcelain ball mill together with commercially available cerium oxide powder and nitric acidic alumina sol, and pulverized and kneaded to obtain a slurry. Next, a slurry with the same specifications except that it does not contain the lanthanum oxide powder is prepared, and a predetermined amount of coating is applied to the monolithic support mainly composed of cordierite in multiple steps. Coating with the slurry containing the composite oxide is performed only once.

乾燥終了後・空気気流中・又は燃焼ガス気流中600℃
〜750℃望ましくは650℃〜700℃で2時間以内
、同温度を保持する昇温ステップを含む、パターンで焼
成して触媒担体を得る。このように作成した担体は、排
ガスの最も接触する最表面部にのみランタンが存在する
ので、高価なランタンを少量にして充分の触媒性能を得
ることができる。
After drying, in air flow, or in combustion gas flow at 600℃
A catalyst support is obtained by firing in a pattern at ~750°C, preferably at 650°C ~ 700°C for less than 2 hours, including a temperature raising step of maintaining the same temperature. Since lanthanum is present only on the outermost surface of the carrier prepared in this way, which is most in contact with exhaust gas, sufficient catalytic performance can be obtained with a small amount of expensive lanthanum.

〔実施例〕〔Example〕

以下実施例によシ説明する。 This will be explained below using examples.

〈実施例1〉市販酸化ランタン1000 x置部と硝酸
第1鉄154.5重量部を純水に溶解した溶液とを混練
し、乾燥機中100℃で5時間乾燥した。この乾燥した
ケーキを、磁製皿に移し、水素気流中850℃に加熱し
た炉中に入れ、同温度を保持したまま2時間焼成した。
<Example 1> 1000 parts of commercially available lanthanum oxide and a solution prepared by dissolving 154.5 parts by weight of ferrous nitrate in pure water were kneaded and dried at 100° C. for 5 hours in a dryer. This dried cake was transferred to a porcelain dish, placed in a furnace heated to 850° C. in a hydrogen stream, and baked for 2 hours while maintaining the same temperature.

焼成終了後、同雰凹気中で100℃になるまで放冷した
後とり出した。取シ出された焼成品は、鉄−ランタン系
ペロプスカイト型複合酸化物を含む酸化ランタン粉末で
ある。この酸化ランタン粉末234.8Fとセリウムを
金属換算で対アルミナ比3 wt%含有する活性アルミ
ナ粒状担体720.5/、市販酸化セリウム491.3
J’、硝酸酸性アルミナ・ゾル2563JFとを、磁性
ポットに投入し、1分間80回転で8時間粉砕混合して
スラリーを得た。ζこに得たスラリーを、コーディエラ
イトを主成分とするモノリス構造体基材(40〇七ル・
1.7j)K、次の仕様のスラリーを用いて、あらかじ
めコーティングを行った担体にコーティングを行り。す
なわち、セリウムを金属換算対アルミナ比3 wt%含
有する活性アルミナ粒状担体1006t・市販酸化セリ
ウム516 P・硝酸酸性アルミナ 1ゾル2478 
P t−磁製ボールミルに投入し毎分80回転で6時間
粉砕混合して得たスラリーを用い、コーティング回数2
回で、コート量モノリス担体1コ当υ200Pとした担
体である。該最終コート量は、モノリス担体lコ当シ1
407とした。コーティング終了後・、乾燥し・□空気
気流中、650℃で2時間焼成して触媒担体とした。こ
の触媒担体に塩化白金酸、塩化ロジウムの混合溶液を用
い、含浸法によシ、白金を、触媒1コ当シ1.2869
 J’ 、ロジウムを触媒1コ当、!7 G、2142
 P担持した後、乾燥し、燃焼ガス気流中600℃で0
.5時間以上焼成して触媒1を得た。この触媒1は、ア
ルミナコート層200 J’/ノで、アルミナ122.
7P/J、セリア65.3t/ノ、ランタナ10.5P
/ノベロプス力イト型複合酸化物(LaFeOs ) 
1.51/1と、白金0.757111 aジウム0.
126 PEAを含んでいる。
After the firing was completed, it was allowed to cool down to 100° C. in the same atmosphere and then taken out. The fired product taken out is a lanthanum oxide powder containing an iron-lanthanum based perovskite type composite oxide. Activated alumina granular carrier containing this lanthanum oxide powder 234.8F and cerium at a metal equivalent ratio of 3 wt% to alumina 720.5/, commercially available cerium oxide 491.3
J' and nitric acid acidic alumina sol 2563JF were placed in a magnetic pot and pulverized and mixed at 80 rpm for 8 hours to obtain a slurry. ζThe slurry obtained in this step was used as a monolithic structure base material (4007L) whose main component was cordierite.
1.7j) K, coat the previously coated carrier with a slurry having the following specifications. That is, 1006 tons of activated alumina granular carrier containing cerium at a metal equivalent to alumina ratio of 3 wt%, commercially available cerium oxide 516 P, nitric acid acidic alumina 1 sol 2478
Using a slurry obtained by pulverizing and mixing in a Pt-porcelain ball mill for 6 hours at 80 revolutions per minute, the slurry was coated 2 times.
The coating amount was υ200P per monolithic carrier. The final coating amount is 1 per monolithic carrier.
407. After coating, it was dried and fired at 650° C. for 2 hours in an air stream to obtain a catalyst carrier. A mixed solution of chloroplatinic acid and rhodium chloride was used on the catalyst carrier, and platinum was added to the catalyst by an impregnation method at a concentration of 1.2869 g per catalyst.
J', you won one rhodium catalyst! 7 G, 2142
After supporting P, it is dried and heated to 0 at 600°C in a combustion gas stream.
.. Catalyst 1 was obtained by firing for 5 hours or more. This catalyst 1 has an alumina coating layer of 200 J'/min and an alumina coating of 122.
7P/J, Seria 65.3t/no, Lantana 10.5P
/Novelops cylindrical composite oxide (LaFeOs)
1.51/1, platinum 0.757111 a, and 0.757111 a of platinum.
Contains 126 PEA.

(実施例2) 実施例iにおいて、最終コーティングに用いるスラリー
を、ランタン酸化物−(ランタナ) 1000重量部に
対し硝讃第1鉄257.8重量部混合し、焼成して得た
ペロプスカイト型複合酸化物を含むランタナ粉末241
.2JP、セリウムを金属換算3 wt%含む活性アル
ξす粒状担体720.5 F 、市販セリア491.3
JF、硝酸酸性アルミナゾルzss3pt−m合粉砕す
る以外同様にして触媒2を得た。この−媒2は1アルミ
ナ、コート層200 PEAでアルミナ122.5P/
j、セリア65.2?/*、ランタナ9.8P/ノ、ペ
ロプスカイト型複合酸化物(LaFeOs ) 2.5
7’/ノと、白金0.757p/l、ロジウム0.12
6JP/ノを含ん→いる。
(Example 2) In Example i, the slurry used for the final coating was prepared by mixing 257.8 parts by weight of ferrous nitrate with 1000 parts by weight of lanthanum oxide (lanthana), and firing the mixture to obtain a perovskite type. Lantana powder 241 containing complex oxide
.. 2JP, activated aluminum ξ granular carrier containing 3 wt% cerium (metal equivalent) 720.5 F, commercially available ceria 491.3
Catalyst 2 was obtained in the same manner except that JF and nitric acid acidic alumina sol zss3pt-m were combined and ground. This medium 2 is 1 alumina, coated layer 200 PEA and alumina 122.5P/
j, Celia 65.2? /*, lantana 9.8P/no, perovskite type composite oxide (LaFeOs) 2.5
7'/no, platinum 0.757 p/l, rhodium 0.12
Contains 6JP/ノ.

(実施例3〕 実施例2において、白金を担体1コ当1) 1.36 
F。
(Example 3) In Example 2, platinum was added per carrier (1) 1.36
F.

ロジウムを担体1コ当、90.136JFを担持する以
外は同様にして、触媒3を得た。この触媒3は、アルミ
ナ、コート層200111でアルミナ122.5J’ン
ノ。
Catalyst 3 was obtained in the same manner except that rhodium was supported on one support and 90.136JF was supported on the support. This catalyst 3 has an alumina coating layer of 200111 and an alumina coating of 122.5J'.

セリア−65,2P/J、ランタナ9.87’/ノ、ペ
ロプスカイト型複合酸化物(’LILFI!Os72.
5171と、白金0.803171 、  ロジウム0
.080’J’/jを含んでいる。
Ceria-65,2P/J, Lanthana 9.87'/no, peropskite-type composite oxide ('LILFI!Os72.
5171, platinum 0.803171, rhodium 0
.. Contains 080'J'/j.

(実施例4) 実施例1において、最終コーティングに用いるスラリー
を、ランタン酸化物(ランタナ)1000部に対し硝酸
第1鉄515.5重量部混合し、焼□成して得たペロプ
スカイト型複合酸化物を含むランタナ粉末257.3J
’、セリウムを金属換算3 wt%含む活性アルミナ粒
状担体720.5 F 、市販セリア4913t、硝酸
酸性アルミナゾル2563 J’ 、を混合粉砕する以
外同様にして触媒4を得た。この触媒4は、アルミナコ
ート層2007/ノで、アルミナ122.I P7ノ。
(Example 4) In Example 1, the slurry used for the final coating was mixed with 1000 parts of lanthanum oxide (lanthana) and 515.5 parts by weight of ferrous nitrate, and the mixture was fired to obtain a perovskite-type composite. Lantana powder containing oxides 257.3J
Catalyst 4 was obtained in the same manner except that 720.5 F of active alumina granular carrier containing 3 wt% of cerium (metal equivalent), commercially available ceria 4913t, and nitric acid acidic alumina sol 2563 J' were mixed and ground. This catalyst 4 has an alumina coat layer of 2007/no and an alumina 122. I P7ノ.

セリ764.9P#  、ランタナ8. l P/J、
ペロプスカイト型複合酸化物(LaFe0a ) 4.
9 / /j と、白金075778、ロジウム0.I
Z6P/Jを含んでいる。
Seri 764.9P#, Lantana 8. l P/J,
Perovskite type composite oxide (LaFe0a) 4.
9 / /j, platinum 075778, rhodium 0. I
Contains Z6P/J.

(実施例5) 実施例4において、白金を担体1コ当シ4.36JP。(Example 5) In Example 4, platinum was 4.36 JP per carrier.

ロジウムを担体lコ当シ0.136Fを担持する以外は
同様にして触媒5を得た。この触媒5は、アルミナコー
ト層200J’/ノで、アルミナIZ2.IP/J 。
Catalyst 5 was obtained in the same manner except that 0.136F of rhodium was supported on each carrier. This catalyst 5 has an alumina coating layer of 200 J'/no and an alumina IZ2. IP/J.

セリア64#/ノ、ランタナ8.1171 、ペロプス
カイト型複合酸化物(LaFIIOl ) 4.9 P
/ノと、白金0.803P/J 、 ロジウム0.08
0111を含んでいる。
Ceria 64#/no, Lanthana 8.1171, Perovskite type composite oxide (LaFIIOL) 4.9 P
/not, platinum 0.803P/J, rhodium 0.08
Contains 0111.

(実施例6] 実施例4におりて、白金を担体lコ当1)0.772I
、ロジウムを担体lコ当J0.129Fを担持する以外
は同様にして、触媒6を得た。この触媒6は、アルミナ
 コート層200P#でアルミナ122.1 P/J。
(Example 6) In Example 4, platinum was added to the carrier (1) 0.772I
A catalyst 6 was obtained in the same manner except that rhodium was supported on each J0.129F carrier. This catalyst 6 has an alumina coating layer of 200P# and an alumina of 122.1 P/J.

セリア64.9P/j 、ランタナ8. I P7ノ 
、ペロプスカイト型複合酸化物(LaFe01 ) 4
.9171と、白金0.454t/ノ、ロジウム0.0
76P/ノを含んでいる。
Seria 64.9P/j, Lantana 8. I P7ノ
, perovskite type composite oxide (LaFe01) 4
.. 9171, platinum 0.454t/no, rhodium 0.0
Contains 76P/no.

(実施例7〕 実施例4において、白金を担体1=を当fi0.82P
(Example 7) In Example 4, platinum was used as a carrier with a fi of 0.82P.
.

ロジウムを担体lコ当、6o、osz、pを担持する以
外は同様にして、触媒7を得た。この触媒7はアルミナ
コート層200111でアルミナ122.IP/ノ、セ
リア64.9111 、ランタナ8. I P/J 、
ペロプスカイト型複合酸化物(LaFe0s) 4.9
171と、白金0.482t/ノ、ロジウム0.048
 P/jを含んでいる。
Catalyst 7 was obtained in the same manner except that rhodium was supported on one support and 6o, osz, and p were supported on the support. This catalyst 7 has an alumina coat layer of 200,111 and alumina of 122. IP/no, Seria 64.9111, Lantana 8. IP/J,
Perovskite type composite oxide (LaFe0s) 4.9
171, platinum 0.482 t/no, rhodium 0.048
Contains P/j.

(実施例8)市販酸化ランタン10001量部と硝酸ニ
ッケル148.3重量部を純水に溶解した溶液とを混疎
し、乾燥機中100℃で5時間乾燥した。この乾燥した
ケーキを、磁製皿に移し、水素気流中850℃に加熱し
た炉中に入れ、同温匹を2時間保   1持した後、同
雰囲気気流中で放冷した。取シ出された焼成品はニッケ
ルーランタン系ペロプスカイト型複合酸化物を含む酸化
ランタン粉末である。
(Example 8) 10,001 parts by weight of commercially available lanthanum oxide and a solution prepared by dissolving 148.3 parts by weight of nickel nitrate in pure water were mixed and dried at 100° C. for 5 hours in a dryer. This dried cake was transferred to a porcelain plate, placed in a furnace heated to 850°C in a hydrogen stream, kept at the same temperature for 2 hours, and then allowed to cool in the same atmosphere. The fired product taken out is a lanthanum oxide powder containing a nickel-lanthanum perovskite complex oxide.

この酸化ランタン粉末234.6JFと、セリウム金属
換算で対アルミナ比3 vt−含有する活性アルミナ粒
状担体720.5 F 、市販11化セtJ ウA 4
91.3 F 。
This lanthanum oxide powder 234.6JF and activated alumina granular carrier 720.5F containing 3 vt-to-alumina ratio in terms of cerium metal, commercially available 11-oxide CetJ U A 4
91.3F.

硝酸酸性アルミナゾル2563 #とを、aSボットに
投入し、毎分80回転で8時間粉砕混合して・スラリー
を得る。このスラリーを、コーディエライトを主成分と
するモノリス担体fr材(x、7*。
Nitric acid acidic alumina sol 2563 # was charged into an aS bot and pulverized and mixed at 80 revolutions per minute for 8 hours to obtain a slurry. This slurry is applied to a monolith carrier fr material (x, 7*) whose main component is cordierite.

400セル)に次の仕様のスラリーを用いて、あらかじ
めコーティングを行った担体にコーティングを行う。す
なわちセリウムを金属換算対アルミナ比3 wt−含有
する活性アルミナ粒状担体1006/。
400 cells) using a slurry having the following specifications to coat the previously coated carrier. That is, activated alumina granular support 1006/ containing cerium at a metal equivalent to alumina ratio of 3 wt.

市販酸化セリウム516 /硝酸酸性アルミナゾル24
78P t−mmボールミルに投入し、毎分80回転テ
゛6時間粉砕混合して得たスラリーを用い、コーティン
グ回数2回で1コート量、モノリス担体1フ当シ200
tとした担体である・該最終コート量は、モノリス担体
1:1当υ140 /とした。コーティング終了後、乾
燥し・空気気流中650”Cで2時間焼成して触媒担体
とした。この触媒担体に、塩化白金rR%塩化ロジウム
の混合溶液を用い、含浸法によシ白金を触媒1コ当シ1
.2869F、ロジウムを触媒1コ当シ0.21421
担持し友後、乾燥し、燃焼ガス気流中600℃で0.5
時間以上焼成して触媒8を得喪。この触媒8は、アルミ
ナコート層200 f/lで、アルミナ122.7 f
/l 、セリア65.3 f/lランタナ10.5 f
/L 、ペロプスカイト型複合酸化物(LaNiOs)
1.5f/Aと白金0.757 f/l 、ロジウム0
.126 f/lを含んでいる。
Commercially available cerium oxide 516/nitric acid acidic alumina sol 24
Using the slurry obtained by putting it in a 78P t-mm ball mill and grinding and mixing at 80 rotations per minute for 6 hours, one coating amount was obtained by coating twice, and 200 ml per monolithic carrier.
The final coating amount was 1:1 υ140/monolith support. After coating, it was dried and calcined for 2 hours at 650"C in an air stream to form a catalyst carrier. Platinum was added to the catalyst carrier by an impregnation method using a mixed solution of platinum chloride rR% rhodium chloride. Kotoshi 1
.. 2869F, rhodium per catalyst 0.21421
After supporting, dry and heat to 0.5 at 600℃ in combustion gas stream.
After firing for more than an hour, catalyst 8 was not obtained. This catalyst 8 has an alumina coating layer of 200 f/l and an alumina coating of 122.7 f/l.
/l, Seria 65.3 f/l Lantana 10.5 f
/L, perovskite type composite oxide (LaNiOs)
1.5 f/A and platinum 0.757 f/l, rhodium 0
.. Contains 126 f/l.

(実施例9) 1[例8において、最終コーティングに用いるスラリー
を、ランタン酸化物(ランタナ)1000重量部に対し
、硝11=ツケル247.8重量部を混合し、焼成して
得たペロブスカイトN−合酸化物を含むランタナ粉末2
41.11.セリウムを金属換算3wt%を含む活性ア
ルミナ粒状担体720.5 t 、市販セリア491.
3 t 、硝酸酸性アルミナゾル2563fを混合粉砕
する以外同様にして触媒9を得た。この触媒9は、アル
ミナコート層2002μで、アルミナ122.5 f/
L 、セリア65.2f/l、ランタナ9.8p/j、
ペロプスカイト型複合酸化物(Lal’JiOs) 2
.5pitと白金0.7571!7ノ、ロジウム0.1
26F/ノを含んでいる。
(Example 9) 1 [In Example 8, the slurry used for the final coating was prepared by mixing 1000 parts by weight of lanthanum oxide (lanthana) with 247.8 parts by weight of nitrate 11 = 247.8 parts by weight, and firing the mixture. -Lantana powder 2 containing synthetic oxides
41.11. 720.5 t of activated alumina granular carrier containing 3 wt% of cerium as metal, commercially available ceria 491.
Catalyst 9 was obtained in the same manner except that 3 t and nitric acid acidic alumina sol 2563f were mixed and ground. This catalyst 9 has an alumina coating layer of 2002μ and an alumina coating of 122.5f/
L, Seria 65.2f/l, Lantana 9.8p/j,
Perovskite type composite oxide (Lal'JiOs) 2
.. 5 pit and platinum 0.7571!7, rhodium 0.1
Contains 26F/no.

(実施例10) 実施例9において、白金を触媒担体lコ当、り1.36
t、ロジウムを担体1コ当シ0.136/担持する以外
は同様にして触媒10を得た。この触媒10は、アルミ
ナコート層200 P/Jで、アルミナ122.5P/
A。
(Example 10) In Example 9, platinum was added at 1.36 ml per 1 catalyst carrier.
Catalyst 10 was obtained in the same manner except that 0.136/t of rhodium was supported per carrier. This catalyst 10 has an alumina coating layer of 200 P/J and an alumina coating of 122.5 P/J.
A.

セリア6B、2P/A 、ランタナ9.8F/ノ、ペロ
プスカイト型複合酸化物(L畠Nid、) 2.5 p
/ノ、と白金0B031/j、ロジウム0.0801/
jを含んでいる。
Ceria 6B, 2P/A, Lanthana 9.8F/no, perovskite type composite oxide (L Hatake Nid,) 2.5 p
/ノ, platinum 0B031/j, rhodium 0.0801/
Contains j.

(実施例11) 実施例8において、最終コーティングに用いるスラリー
を、ランタン酸化物(ランタナ)1000重量部に対し
硝酸ニッケル495.6重量部混合し、焼成して得たペ
ロプスカイト型複合酸化物を含むう/タナ粉末256.
9/、七リクムを金属換算aWt−含む活性アルミナ粒
状担体720.5 F 、市販セリフ491.3JP、
硝酸酸性アルミナゾル2563 Pを混合粉砕する以外
同様にして触媒11を得た・この触媒11は、アルミナ
コート層200 P/jで、アルミナ122.1 P/
j 、セリア64.9 P/ノ、ランタナ8,1?/ノ
(Example 11) In Example 8, a perovskite-type composite oxide obtained by mixing 495.6 parts by weight of nickel nitrate with 1000 parts by weight of lanthanum oxide (lanthana) and firing the slurry used for the final coating was prepared. Ingredients/tana powder 256.
9/, activated alumina granular carrier containing 7 Licum in metal equivalent aWt 720.5 F, commercially available Serif 491.3JP,
Catalyst 11 was obtained in the same manner except that nitric acid acidic alumina sol 2563 P was mixed and crushed. This catalyst 11 had an alumina coat layer of 200 P/j and alumina 122.1 P/j.
j, Seria 64.9 P/no, Lantana 8.1? /of.

ペロプスカイト型複合酸化物(LaNl0s) 4.9
 P/Jと白金0.757171 、ロジウム0.12
6J’/ノを含んでいる。
Perovskite type composite oxide (LaNl0s) 4.9
P/J and platinum 0.757171, rhodium 0.12
Contains 6J'/ノ.

(実施例12) 実施例11Vcおいて、白金を触媒担体1コ当シ1.3
6F、ロジウムを担体1コ当シ0.136Pを担持する
以外は同様にして、触媒12を得た。との触媒12は、
アルばナコー) 200 P/jで、その組成は、実施
例11で得られた触媒11と同一であシ、白金は0.8
031/1 、ロジウムは0.080P/jを含んでい
る。
(Example 12) In Example 11 Vc, platinum was added per catalyst carrier at 1.3
Catalyst 12 was obtained in the same manner except that 6F and rhodium were supported in an amount of 0.136P per carrier. The catalyst 12 with
Albanako) 200 P/j, its composition was the same as catalyst 11 obtained in Example 11, and the platinum content was 0.8
031/1, rhodium contains 0.080P/j.

(実施例13) 実施例11において、白金を触媒担体lコ当シ0、’1
721.ロジウムを担体1コ当シ0.129F担持する
以外は同様にして、触媒13を得た。この触媒13は、
アルミナコート層200 P/lで、その組 1或は実
施例11で得た触媒11と同一であシ、白金は0.45
4171 、ロジウムは0.0761!/ノを含んでい
る。
(Example 13) In Example 11, platinum was applied to the catalyst carrier 0, '1
721. Catalyst 13 was obtained in the same manner except that rhodium was supported at 0.129F per carrier. This catalyst 13 is
The alumina coat layer was 200 P/l, the same as the catalyst 11 obtained in Group 1 or Example 11, and the platinum content was 0.45
4171, rhodium is 0.0761! Contains /.

(実施例14) 実施例xtにおいて、白金を触媒担体1=r当シ0.8
2?、ロジウムを担体1:2当シ0.082F担持する
以外は同様にして、触媒14を得た。との触媒14は、
アルミナコート層Zoo P/jで、組成は、実施例1
1で得た触媒11と同一であシ、白金は0.482P/
j9日ジウムは0.048171を含んでいる。
(Example 14) In Example
2? A catalyst 14 was obtained in the same manner except that rhodium was supported at 1:2/0.082F on the carrier. The catalyst 14 is
The alumina coat layer Zoo P/j has the composition of Example 1.
It is the same as the catalyst 11 obtained in 1, and the platinum content is 0.482P/
j9 day dium contains 0.048171.

(実施例15)市販識化うンタス1000重量部と、硝
酸第1鉄154.5X量部、硝酸ニッケル148.3重
量部を純水に溶解した溶液とを混疎し、乾燥機中100
℃で5時間乾燥した。この乾燥したケーキを、磁製皿に
移し、水素気流中850℃に加熱した炉中−入れ、同温
度を保持したまま、2時間finalた。
(Example 15) A solution prepared by dissolving 1000 parts by weight of commercially available nitrate, 154.5 parts by weight of ferrous nitrate, and 148.3 parts by weight of nickel nitrate in pure water,
It was dried at ℃ for 5 hours. This dried cake was transferred to a porcelain dish, placed in a furnace heated to 850°C in a hydrogen stream, and finalized for 2 hours while maintaining the same temperature.

tRIIt終了後同雰囲気中で放冷し、鉄−ランタン系
およびニッケルーランタン系ペロプスカイト型複合酸化
物を含む酸化ランタン粉末を得た。この酸化ランタン粉
末234.8Fとセリウムを金属換算で対アルミナ比3
 wt%含有する活性アルミナ粒状担体720.5P、
市販酸化セリウム粉末491.3J’、硝酸酸性アルミ
ナゾル2563 Fとを磁製ポットに投入する以外は実
施例1と同様にして、触媒15を得た。この触媒15は
、アルミナコート層2001/Jで、アルミナ122.
71/j、セリア65.3 PH1,、ランタナ9.0
171 、ペロプスカイト型複合酸化物 。
After completion of tRIIt, the mixture was allowed to cool in the same atmosphere to obtain lanthanum oxide powder containing iron-lanthanum and nickel-lanthanum perovskite complex oxides. This lanthanum oxide powder 234.8F and cerium have a metal equivalent ratio of 3 to alumina.
activated alumina granular carrier containing wt% 720.5P,
Catalyst 15 was obtained in the same manner as in Example 1 except that commercially available cerium oxide powder 491.3J' and nitric acid acidic alumina sol 2563F were placed in a porcelain pot. This catalyst 15 has alumina coat layer 2001/J and alumina 122.
71/j, Seria 65.3 PH1,, Lantana 9.0
171, Peropskite-type composite oxide.

(LjLF110畠*  LjLNloi ン 3. 
0 171  、  (Fe:N1=1  : l  
)と、白金0.757F/ノ、はジクム0.126P/
ノを含んでいる。
(LjLF110 * LjLNloi in 3.
0 171, (Fe:N1=1:l
), platinum 0.757F/no, and Zikum 0.126P/
Contains no.

(比・較例1) 活性アルミナ粒状担体1437 P 、と硝酸酸性アル
ミナゾル2563 #とを、amボールミルに投入し、
毎分80回転で6時間粉砕した後、得られたスラリーを
、モノリス担体基材(1,7j 、 400セルノにコ
ーティングし、空気雰囲気〒650℃で2時間焼成して
触媒担体とした。この時アルミナコート量は340 P
/ケに設定した。久にこの触媒担体を、塩化白金酸と塩
化算ジウムの混合水溶液に浸漬シ、白金、ロジウムの担
持量が、白金1.97’イケロジウム0.197’/ケ
となるようKした後、空気気流中又は燃焼ガス気流中6
00℃で2時間焼成して触媒A得た。この触媒Aは、ア
ルミナコート層200t/ノで、白金1.12.?/ノ
、ロジウム0.112 P/jを含んでいる。
(Comparison/Comparative Example 1) Activated alumina granular carrier 1437P and nitric acid acidic alumina sol 2563# were put into an am ball mill,
After pulverizing at 80 revolutions per minute for 6 hours, the resulting slurry was coated onto a monolithic carrier substrate (1,7j, 400 cels) and fired in an air atmosphere at 650°C for 2 hours to obtain a catalyst carrier. Alumina coating amount is 340P
/ke was set. The catalyst carrier was immersed in a mixed aqueous solution of chloroplatinic acid and dicalcium chloride, heated so that the amount of platinum and rhodium supported was 1.97% platinum and 0.197% chelodium, and then heated in an air stream. Medium or combustion gas stream 6
Catalyst A was obtained by calcining at 00°C for 2 hours. This catalyst A had an alumina coat layer of 200 tons/no and platinum of 1.12. ? Contains 0.112 P/j of rhodium.

(比較例2ノ セリウムを金属換算5 wt%を含む活性アルミナ粒状
担体1437 / 、と硝酸酸性アルミナゾル2563
tとを用いる以外、比較例1と同様にして触媒Bを得た
。この触媒Bは、アルミナ;−ト層200P/)で、ア
ルミナ189 P/J 、セリ、ア11.OF/ノと白
金lユ2P/!、ロジウムO,112F/ノを含んでい
る。
(Comparative Example 2 Activated alumina granular carrier 1437/1 containing 5 wt% of nocerium as metal, and nitric acid acidic alumina sol 2563)
Catalyst B was obtained in the same manner as Comparative Example 1 except that t was used. This catalyst B is made of alumina; OF/no and Shirokane lyu 2P/! , rhodium O, 112F/no.

(比較例3ノ セリウムを金属換算0.5 wt−含む活性アルミナ粒
状担体1367.2JF、市販上リア粉末89.J3J
F、硝駿酸性アルミナゾル2563 #を用いる以外は
、比較例1と同様にして触媒Cを得た。この触媒Cは、
アルミナコート層200 P/Aで、アルミナ190.
2P/j。
(Comparative Example 3 Activated alumina granular carrier 1367.2JF containing 0.5 wt of nocerium in terms of metal, commercially available rear powder 89.J3J)
Catalyst C was obtained in the same manner as in Comparative Example 1 except that F, Nitsun acidic alumina sol 2563 # was used. This catalyst C is
Alumina coat layer 200 P/A, alumina 190.
2P/j.

セリア9.8P/)、と白金1.12 P/J 、ロジ
ウム0.112P/Jを含んでいる。□ (比較例4) 比較例3において、白金を担体1コ当シ0.772t、
ロジウムを担体1コ当!po、1zsp担持させる以外
は同様にして、触媒りを得た。この触媒りは、アルミナ
コート層Zoo P/jで、アルミナ1902171゜
セリア9.8 P# 、と白金0.4547’/ノ、ロ
ジウム0.076t/ノを含んでいる。
It contains 9.8 P/J of ceria, 1.12 P/J of platinum, and 0.112 P/J of rhodium. □ (Comparative Example 4) In Comparative Example 3, 0.772 t of platinum per carrier,
Win one rhodium carrier! A catalyst was obtained in the same manner except that po and 1zsp were supported. This catalyst has an alumina coat layer Zoo P/j containing 1902171° alumina and 9.8 t/h ceria, 0.4547 t/h platinum, and 0.076 t/h rhodium.

(比較例5ノ シリカ2563 ? 、セリウムを金属換算3 wt%
を含む活性アルミナ粒状担体1437 #をボールミル
に混ぜ込み、6時間粉砕の後、モノリス担体基材(1,
7j 400セルンに付着させ、650℃×2時間焼成
した。この時の付着量は340 P/ケに設定した。
(Comparative Example 5 Nosilica 2563?, cerium equivalent to 3 wt% as metal)
Activated alumina granular carrier 1437 # containing activated alumina granular carrier was mixed in a ball mill and milled for 6 hours.
7j 400 Cern and baked at 650° C. for 2 hours. The adhesion amount at this time was set at 340 P/piece.

さらに、この担体を塩化白金酸と塩化ロジウムの混合水
溶液に浸漬し、H,/ N、流中で還元する。
Furthermore, this carrier is immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and reduced in H,/N, flow.

白金とロジウムの担持量は白金1.9Plケ、ロジウム
0.19F/ケとなるようにした。この後600℃×2
七焼成して触媒Eを得た。  − (比較例6ノ アルミナゾル2563 F 、活性アルミナ粒状担体 
 ・1437 J’をボールミルで6時間粉砕した後、
モノリス担体基材(1,7J 400セル〕に付着させ
、650”Cp X 2Hr焼成した。この時の付着量
は340 P/ケに設定した。次いで(:e(NOI)
sの水溶液で、セリウム金属換算28t/ケのセリウム
を付着させ、120℃で3時間乾燥後、600℃X 2
Hr焼成した。さらに塩化白金酸と塩化ロジウムの混合
水溶液に浸漬し、白金1.9 P/ケ田ジウムO,19
Plケとなるよう担持した後、焼成して触@Fを得た。
The supported amounts of platinum and rhodium were set to 1.9 Pl/kg of platinum and 0.19 F/kg of rhodium. After this, 600℃×2
After seven calcinations, Catalyst E was obtained. - (Comparative Example 6 Noalumina Sol 2563 F, activated alumina granular carrier
・After pulverizing 1437 J' in a ball mill for 6 hours,
It was deposited on a monolithic carrier substrate (1,7J 400 cells) and fired at 650"Cp x 2Hr. The amount of deposition at this time was set at 340P/piece. Then (:e(NOI)
s aqueous solution to deposit 28 t/piece of cerium in terms of cerium metal, and after drying at 120°C for 3 hours, 600°C
Fired for hr. Furthermore, it was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride to obtain platinum 1.9 P/kedadium O, 19
After supporting Pl, it was fired to obtain catalyst@F.

試験例 実施例1〜15よシ得た触媒1〜15.比較例1〜6で
得た触媒A−Fにつき下記の条件で耐久試験を行った後
、性能評価試験を行い、その結果を、付賢に示した。
Test Examples Catalysts 1 to 15 obtained from Examples 1 to 15. After carrying out a durability test on the catalysts A to F obtained in Comparative Examples 1 to 6 under the following conditions, a performance evaluation test was carried out, and the results were shown in the table below.

耐久試験条件 触、 媒 実施例のモノリス屋貴金属触媒から直径36
5m5長さ58−m’の円筒状に切シ出した小製の触媒 触媒容量 約60CC 雰゛囲気 空気気流中 温度X時間 750℃X24時間 動的試験法 振@ Z = 0.5  振動数1回/秒
中心設定2値  0.4 0.7 1.0 1.2の4
点“触媒入口ガス温度 400℃ 空間速度(SV)  27500Hr−’触媒容量 6
0CG ガス組成 モデルガス混合(10%迅0を含む) 各2値におけ名NOx 、 HC、COの転化率を付図
に示すようにグラフに作成した。付図は触媒8に関する
グラフである。5OIJ6ウインド幅は−No:C。
Durability test conditions Catalyst, medium Diameter 36 from the monolith shop precious metal catalyst of the example
Small catalyst cut into a cylindrical shape with a length of 5 m5 and a length of 58 m' Catalyst capacity: Approximately 60 cc Atmosphere: Temperature x time in air flow: 750°C x 24 hours Dynamic test method Vibration @ Z = 0.5 Frequency: 1 times/second center setting 2 values 0.4 0.7 1.0 1.2 of 4
Point "Catalyst inlet gas temperature 400℃ Space velocity (SV) 27500Hr-' Catalyst capacity 6
0CG Gas Composition Model Gas Mixture (Including 10% 0CG) The conversion rates of NOx, HC, and CO at each binary value were created in a graph as shown in the attached figure. The attached figure is a graph regarding the catalyst 8. 5OIJ6 window width is -No:C.

HC,COの転化率のグラフが80%転化率の線を横ぎ
る点の2値の、最大値と最小値の差とした。
The difference between the maximum value and the minimum value of the two values at the point where the graph of the conversion rate of HC and CO crosses the line of 80% conversion rate was taken as the difference.

付図では、NOxの80−転化率を示す2値と、COの
80%@化率を示す2値との差となる。
In the attached figure, it is the difference between the two values indicating the 80-conversion rate of NOx and the two values indicating the 80% conversion rate of CO.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたようK、この発11によれば、その構
成を酸化ランタンと硝酸第1鉄又は硝酸ニッケルとを混
合し、還元性ガス雰囲気中で焼成して得たペロブスカイ
トa複合酸化物を含む酸化ランタン粉末と、あらかじめ
セリウムを含有する活性アルミナ粒状又は粉末状担体と
、酸化セリウム粉末を硝酸酸性アルミナゾルとを混線し
て得たスラリーを、無機多孔質缶ノリス基体に、コーテ
ィングし、暁成して触媒担体となした後、貴金属を担持
させるとしたため、低温にもかかわらず高い転化性能と
、高耐久性を持つことができるという効果が得られる。
As explained above, according to this publication 11, the composition includes a perovskite a composite oxide obtained by mixing lanthanum oxide and ferrous nitrate or nickel nitrate and firing the mixture in a reducing gas atmosphere. A slurry obtained by mixing lanthanum oxide powder, activated alumina granular or powdered carrier containing cerium in advance, and cerium oxide powder with nitric acid acidic alumina sol is coated on an inorganic porous can Norris substrate, and then oxidized. After forming the catalyst into a catalyst carrier, noble metals are supported on the catalyst, resulting in high conversion performance and high durability despite low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

付図は、本発明の実施例8の触媒のHC,Co。 NOxの転化率を示すグラフである。 −2纏− The attached figure shows HC and Co of the catalyst of Example 8 of the present invention. It is a graph showing the conversion rate of NOx. -2 coats-

Claims (1)

【特許請求の範囲】[Claims] (1)鉄とランタンとからなるペロブスカイト型酸化物
とニッケルとランタンとからなるペロブスカイト型酸化
物とからなる群から選択した少くとも1種のペロブスカ
イト型酸化物を含む酸化ランタン粉末と、あらかじめセ
リウムを担持した活性アルミナと、酸化セリウム粉末と
、アルミナゾルとを混練して得られるスラリーを、モノ
リス基体に付着して焼成してなる担体に触媒金属を担持
してなることを特徴とする排ガス浄化用触媒。
(1) Lanthanum oxide powder containing at least one perovskite oxide selected from the group consisting of perovskite oxides consisting of iron and lanthanum and perovskite oxides consisting of nickel and lanthanum, and cerium in advance. A catalyst for exhaust gas purification, characterized in that a slurry obtained by kneading supported activated alumina, cerium oxide powder, and alumina sol is adhered to a monolith substrate and fired, and a catalytic metal is supported on a carrier. .
JP59166066A 1984-08-08 1984-08-08 Catalyst for purifying exhaust gas Pending JPS6146247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166066A JPS6146247A (en) 1984-08-08 1984-08-08 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166066A JPS6146247A (en) 1984-08-08 1984-08-08 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS6146247A true JPS6146247A (en) 1986-03-06

Family

ID=15824342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166066A Pending JPS6146247A (en) 1984-08-08 1984-08-08 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6146247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125721A (en) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd Oxidation catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156349A (en) * 1982-03-12 1983-09-17 Mitsui Mining & Smelting Co Ltd Tertinally-component catalyst for purifying exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156349A (en) * 1982-03-12 1983-09-17 Mitsui Mining & Smelting Co Ltd Tertinally-component catalyst for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125721A (en) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd Oxidation catalyst

Similar Documents

Publication Publication Date Title
EP0832688B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JPS6377543A (en) Catalyst for purifying exhaust gas
CN108722399A (en) Exhaust gas purification catalyst
JPH02214540A (en) Catalyst for purification of exhaust gas and production thereof
JPS6377544A (en) Catalyst for purifying exhaust gas
JPH04193345A (en) Catalyst for purification of exhaust gas
JPH0531367A (en) Catalyst for exhaust gas purification
JPH08131830A (en) Catalyst for purification of exhaust gas
JPS59127649A (en) Catalyst for purifying exhaust gas
JPS63205141A (en) Catalyst for purifying exhaust gas
JPS60190236A (en) Preparation of catalyst having high temperature heat resistance
JPH0312936B2 (en)
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JP2004041946A (en) Catalyst for cleaning exhaust gas of engine
JPS6146247A (en) Catalyst for purifying exhaust gas
JPS63116742A (en) Catalyst for purifying exhaust gas
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPH0622675B2 (en) Engine exhaust gas purification catalyst
JPS63104651A (en) Catalyst for purifying exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JPS63236541A (en) Catalyst for purifying exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH04334548A (en) Exhaust gas purifying catalyst