JPS6377544A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS6377544A
JPS6377544A JP61219808A JP21980886A JPS6377544A JP S6377544 A JPS6377544 A JP S6377544A JP 61219808 A JP61219808 A JP 61219808A JP 21980886 A JP21980886 A JP 21980886A JP S6377544 A JPS6377544 A JP S6377544A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
rare earth
oxide
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219808A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Eto
江渡 義行
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61219808A priority Critical patent/JPS6377544A/en
Publication of JPS6377544A publication Critical patent/JPS6377544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat resistance and to prevent the activity reduction by depositing Rh on a carrier which has a second wash coated layer incorporating different kind of activated alumina on a first wash coated layer incorporating activated alumina. CONSTITUTION:A carrier is obtained by impregnating activated alumina with a rare earth salt aq. soln. incorporating La as an essential component and thereafter drying and calcining it at about 600 deg.C at about 1hr. This carrier is impregnated with a palladium chloride aq. soln., dried and thereafter calcined, and after mixing this carrier with alumina sol and crushing the mixture, a wash coat of a first layer is obtained by sticking it on the base body of a monolithic carrier. Then activated alumina is impregnated with a rare earth salt aq. soln. incorporating Ce as the essential component, dried and calcined to obtain the carrier and thereafter this carrier is mixed with alumina sol and zirconium oxide powder and the mixture is crushed and stuck on the first wash coat. Further a catalyst for purifying exhaust gas is obtained by depositing Pt or the like thereon.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、車両の内燃機関等、特に自動車の内燃機関
から排出される排気ガス中の窒素酸化物(NOx)、炭
化水素(IC)および−酸化炭素(CO)を効率よく低
減させる排気ガス浄化用触媒に関する。
Detailed Description of the Invention (Industrial Application Field) This invention is directed to the treatment of nitrogen oxides (NOx), hydrocarbons (IC) and -Regarding an exhaust gas purification catalyst that efficiently reduces carbon oxide (CO).

(従来の技術) 従来、車両の機関等から排出される排気ガス中のNOx
、 l(C,Coを浄化する排気ガス浄化用触媒は種々
提案されている。一方希土類酸化物を触媒として又担体
に用いることも研究され、なかでもセリウムは活性アル
ミナに適当量添加されると耐熱性が著しく向上すること
からあらかじめ酸化セリウムを含有させた活性アルミナ
粉末をモノリス担体基材の表面に付着させた後、白金、
ロジウム、パラジウム等の触媒金属をそれぞれ単独ある
いは組合わせて担持した触媒等が提案されており、例え
ば特開昭52−116779号、特開昭54−1593
92号公報などに開示されている。
(Conventional technology) Conventionally, NOx in exhaust gas emitted from vehicle engines, etc.
Various exhaust gas purification catalysts have been proposed to purify C and Co. On the other hand, research has also been conducted on the use of rare earth oxides as catalysts and as supports. Platinum,
Catalysts supporting catalytic metals such as rhodium and palladium, either singly or in combination, have been proposed; for example, JP-A-52-116779 and JP-A-54-1593
This is disclosed in Publication No. 92, etc.

(発明が解決しようとする問題点) しかしながら、このような従来の排気ガス浄化用触媒に
あっては、白金、ロジウム、パラジウム等の貴金属がウ
オツシュコーテイング層中に均一に担持されていたため
、特に被毒に弱いパラジウムについてはウオツシュコー
テイング層表面近くに担持された部分は劣化しやすいと
いう問題があった。
(Problems to be Solved by the Invention) However, in such conventional exhaust gas purification catalysts, noble metals such as platinum, rhodium, palladium, etc. are uniformly supported in the wash coating layer. Palladium, which is susceptible to poisoning, has a problem in that the portion supported near the surface of the wash coating layer is susceptible to deterioration.

(問題点を解決するための手段) この発明は活性アルミナに酸化ランタンを生成分とする
希土類酸化物とパラジウムを担持せしめて得た粉末を内
側のコーティング層に用い、ウォッシュコート表面近く
の被毒物質からパラジウムを遠ざけることにより上記問
題点を解決し得ることを知見したことに基づくものであ
る。
(Means for Solving the Problems) This invention uses a powder obtained by supporting a rare earth oxide and palladium containing lanthanum oxide on activated alumina for the inner coating layer, and prevents poisoning near the washcoat surface. This is based on the discovery that the above problems can be solved by keeping palladium away from the substance.

従ってこの発明の排気ガス浄化用触媒は酸化ランタンを
主成分とする希土類酸化物とパラジウムを担持する活性
アルミナを含む第1のウオ・7シユコ一ト層と、この第
1のウォッシュコート層上に酸化セリウムを主成分とす
る希±1a化物を担持する活性アルミナと酸化ジルコニ
ウムを含む第2のウォッシュコート層を備えた触媒担体
にロジウムが担持されていることを特徴とする。尚、本
発明の触媒には、浄化性能向上のため、第1のウォッシ
ュコート層及び/または第2のウォッシュコート層に白
金を担持させてもよい。
Therefore, the exhaust gas purifying catalyst of the present invention has a first wash coat layer containing a rare earth oxide mainly composed of lanthanum oxide and activated alumina supporting palladium, and a first wash coat layer on the first wash coat layer. The present invention is characterized in that rhodium is supported on a catalyst carrier having a second wash coat layer containing activated alumina and zirconium oxide, which supports a diluted 1a compound containing cerium oxide as a main component. In addition, in the catalyst of the present invention, platinum may be supported on the first washcoat layer and/or the second washcoat layer in order to improve the purification performance.

次にこの発明の触媒の製造方法を説明する。Next, a method for producing the catalyst of the present invention will be explained.

先ず活性アルミナをランタンを主成分とする希土類塩水
溶液に含浸後乾燥し、例えば600℃で1時間、空気中
で焼成し、アルミナに対して希土類酸化物を金属換算で
3〜10重量%含む担体を得る。
First, activated alumina is impregnated with a rare earth salt aqueous solution containing lanthanum as a main component, dried, and calcined in air at, for example, 600°C for 1 hour to form a carrier containing 3 to 10% by weight of rare earth oxides based on the alumina in terms of metal. get.

ランタンを主成分とする希土類塩は90重呈%以上がラ
ンタン塩であり、残部はプラセオジウム、ネオジウム、
サマリウム、ユーロピウム、ジスプロシウム、イッテリ
ビウム等の塩である。この内特にプラセオジウム、ネオ
ジウムはアルミナおよびセリウムの熱安定性を高めるの
に有効であり、含まれていると望ましい。この担体を塩
化パラジウム水溶液に含浸後、乾燥し、例えば400〜
600°Cで1時間空気中で焼成し、アルミナに対して
パラジウムを0.1〜1重量%含む担体を得る。次にこ
の担体とアルミナゾル(ベーマイトアルミナ懸濁液に硝
酸を添加して得られるゾル)を混合、粉砕した後、触媒
担体、例えばモノリス担体基材に付着させ、例えば40
0〜650℃の温度で焼成し、第1層のウォッシュコー
トを得る。
More than 90% of the rare earth salts whose main component is lanthanum are lanthanum salts, and the remainder is praseodymium, neodymium,
Salts of samarium, europium, dysprosium, ytterbium, etc. Among these, praseodymium and neodymium are particularly effective in increasing the thermal stability of alumina and cerium, and are preferably included. After impregnating this carrier with an aqueous palladium chloride solution, it is dried and
Calcination is performed in air at 600° C. for 1 hour to obtain a carrier containing 0.1 to 1% by weight of palladium based on alumina. Next, this carrier and alumina sol (a sol obtained by adding nitric acid to a boehmite alumina suspension) are mixed and pulverized, and then attached to a catalyst carrier, for example, a monolithic carrier base material.
Firing at a temperature of 0 to 650°C yields a first layer washcoat.

次に活性アルミナをセリウムを主成分とする希土類塩(
セリウム90%以上、残部はプラセオジウム、ネオジウ
ム、サマリウム、ユーロピウム、ジスプロシウム、イフ
テリビウム等)水溶液に含浸後乾燥し、例えば600℃
、1時間で空気中で焼成し、アルミナに対して希土類酸
化物を金属換算で1〜5重量%含む担体を得る。この担
体とアルミナゾルと酸化ジルコニウム粉末を混合粉砕し
た後、前記の第1のウォッシュコート層上に付着させ、
例えば400〜650℃の温度で焼成した。しかる後白
金及び/またはロジウムの塩酸酸性混合溶液を用い特定
条件下で含浸し、所定量の貴金属を所定比率で担持し、
乾燥した後、空気雰囲気中で550〜600°Cで0.
5時間以上焼成して排気ガス浄化用触媒を得る。
Next, activated alumina is added to a rare earth salt containing cerium as the main component (
After impregnating in an aqueous solution (90% or more of cerium, the remainder being praseodymium, neodymium, samarium, europium, dysprosium, ifteribium, etc.), dry at 600°C.
, in air for 1 hour to obtain a carrier containing 1 to 5% by weight of rare earth oxide based on alumina in terms of metal. After mixing and pulverizing this carrier, alumina sol, and zirconium oxide powder, depositing it on the first wash coat layer,
For example, it was fired at a temperature of 400 to 650°C. After that, it is impregnated with an acidic mixed solution of platinum and/or rhodium in hydrochloric acid under specific conditions to support a predetermined amount of precious metals in a predetermined ratio.
After drying, heat at 550-600°C in an air atmosphere to 0.
The mixture is fired for 5 hours or more to obtain an exhaust gas purifying catalyst.

(作 用) −aにパラジウムは白金と同様酸化触媒として働き、特
にCOの酸化に有効であるが、被毒(特に鉛被前)に対
して弱い傾向にある。したがってコート層表面から、被
毒物質が浸透したところまでの部分に担持されたパラジ
ウムは被毒されて活性を失なってしまう。またパラジウ
ムは高温にさらされるとシンクリングし易く活性が低下
してしまう。本発明ではパラジウムの被毒を防止する目
的で、あらかじめパラジウムを担持したアルミナで第1
のウォッシュコート層を形成し、この層上に第2のウォ
ッシュコート層を形成する。この結果、被毒物質がパラ
ジウムの担持位置まで浸透せず、触媒の被毒に対する耐
久性が向上する。さらにパラジウムおよびロジウムの熱
安定性を向上させる目的でパラジウムを含むコート層に
は酸化ランタンを、ロジウムを含むコート層には酸化ジ
ルコニウムを添加する。これらの酸化物には金属と化合
物を形成し安定化させる働きがある。例えばパラジウム
は酸化セリウムとは化合物をつくらないが、酸化ランタ
ンとはしa−0−Pdなる表面化合物を形成するので触
媒の耐熱性能を高めるために第1層に用いる活性アルミ
ナにはあらかじめランタンを担持させる。
(Function) Palladium (a) works as an oxidation catalyst like platinum, and is particularly effective in oxidizing CO, but tends to be weak against poisoning (particularly when exposed to lead). Therefore, the palladium supported in the area from the surface of the coating layer to the point where the poisonous substance has permeated is poisoned and loses its activity. Furthermore, when palladium is exposed to high temperatures, it tends to sink and its activity decreases. In the present invention, in order to prevent palladium from being poisoned, alumina pre-supported with palladium is used as the first material.
A washcoat layer is formed, and a second washcoat layer is formed on this layer. As a result, the poisoning substance does not penetrate to the palladium supported position, and the durability of the catalyst against poisoning is improved. Further, in order to improve the thermal stability of palladium and rhodium, lanthanum oxide is added to the coat layer containing palladium, and zirconium oxide is added to the coat layer containing rhodium. These oxides have the function of forming and stabilizing compounds with metals. For example, palladium does not form a compound with cerium oxide, but it forms a surface compound called a-0-Pd with lanthanum oxide, so in order to improve the heat resistance of the catalyst, lanthanum is added to the activated alumina used in the first layer in advance. carry it.

(実施例) 次に実施例、比較例および試験例により説明する。(Example) Next, examples, comparative examples, and test examples will be explained.

ス新l生1 粒状活性アルミナ担体を、ランタンを主成分とする希土
類硝酸塩水溶液に含浸した後、乾燥し、600℃1時間
空気中で焼成し、アルミナに対して希土類酸化物を金属
換算で5重量%含む担体を得た。希土類酸化物中70〜
95%が酸化ランタンであり、残りは酸化セリウム、酸
化プラセオジウム、酸化ネオジウムを含む。この担体を
塩化パラジウム水溶液に含浸後乾燥し、600℃1時間
空気中で焼成しアルミナに対してパラジウムを0.2重
量%含む担体を得た。この担体1500 gと硝酸酸性
アルミナゾル2500 gをボールミルに混ぜ込み6時
間粉砕したのち、このアルミナを含む液(以下コーテイ
ング液Aと呼ぶ)をモノリス担体基材(1,1400セ
ル)に付着させ焼成(600℃×2時間)した。
After impregnating a granular activated alumina carrier with a rare earth nitrate aqueous solution containing lanthanum as the main component, it was dried and calcined in air at 600°C for 1 hour, and the amount of rare earth oxide was 5% in terms of metal compared to the alumina. A carrier containing % by weight was obtained. 70~ in rare earth oxides
95% is lanthanum oxide, and the remainder includes cerium oxide, praseodymium oxide, and neodymium oxide. This carrier was impregnated with an aqueous palladium chloride solution, dried, and calcined in air at 600°C for 1 hour to obtain a carrier containing 0.2% by weight of palladium based on alumina. 1,500 g of this carrier and 2,500 g of nitric acidic alumina sol were mixed in a ball mill and pulverized for 6 hours, and then this alumina-containing liquid (hereinafter referred to as coating liquid A) was adhered to a monolithic carrier base material (1,1400 cells) and baked ( 600°C x 2 hours).

この時の付着量は220 g /個に設定した。これが
第1のウォッシュコート層である。
The amount of adhesion at this time was set at 220 g/piece. This is the first washcoat layer.

次に粒状活性アルミナ担体を、セリウムを主成分とする
希土類硝酸塩水溶液に含浸後乾燥し、600℃で1時間
空気中で焼成し、アルミナに対して希土類酸化物を金属
換算で3重量%含む担体を得た。
Next, the granular activated alumina support was impregnated with a rare earth nitrate aqueous solution containing cerium as a main component, dried, and calcined in air at 600°C for 1 hour. I got it.

希土類酸化物中70〜95%が酸化セリウムであり、残
りは酸化ランタン、酸化プラセオジウム、酸化ネオジウ
ムを含む。この担体1500 g 、 F、f化ジルコ
ニウム100 g、硝酸酸性アルミナゾル2500 g
をボールミルに混ぜ込み6時間粉砕した後、この液(コ
ーテイング液B)を前記の第1のウォッシュコート層の
上に付着させ焼成(600°CX2時間)した。
70 to 95% of the rare earth oxide is cerium oxide, and the remainder includes lanthanum oxide, praseodymium oxide, and neodymium oxide. 1500 g of this carrier, 100 g of F, zirconium fluoride, 2500 g of nitric acid acidic alumina sol
After mixing in a ball mill and pulverizing for 6 hours, this liquid (coating liquid B) was deposited on the first wash coat layer and baked (at 600° C. for 2 hours).

この時の付着量は200 g /個に設定した。さらに
この付着した担体に白金0.40g、ロジウム0.15
gになるように担持した後焼成(600℃×2時間)し
、触媒1を得た。
The amount of adhesion at this time was set at 200 g/piece. Furthermore, 0.40 g of platinum and 0.15 g of rhodium were added to the adhered carrier.
After supporting the catalyst so as to give a weight of 1.5 g, the catalyst was calcined (600° C. for 2 hours) to obtain catalyst 1.

尖施±1 実施例1においてアルミナに対して酸化ランタンを主成
分とする希土類酸化物を金属換算で3重量%にした以外
同様にして触媒2を得た。
1. Catalyst 2 was obtained in the same manner as in Example 1 except that the amount of rare earth oxide mainly composed of lanthanum oxide was 3% by weight in terms of metal relative to the alumina.

大侮桝主 実施例1においてアルミナに対して酸化ランタンを主成
分とする希土類酸化物を金属換算で10重量%にした以
外同様にして触媒3を得た。
Catalyst 3 was obtained in the same manner as in Example 1 except that the rare earth oxide containing lanthanum oxide as the main component was changed to 10% by weight in terms of metal relative to the alumina.

去庭開↓ 実施例1において酸化ジルコニウムを50gに変えた以
外同様にして触媒4を得た。
Kai Shiba ↓ Catalyst 4 was obtained in the same manner as in Example 1 except that zirconium oxide was changed to 50 g.

実隻炭工 実施例1において酸化ジルコニウムを150gに変えた
以外同様にして触媒5を得た。
Catalyst 5 was obtained in the same manner as in Example 1 except that the amount of zirconium oxide was changed to 150 g.

尖ル拠i 実施例1においてパラジウム0.15重世%、白金0.
30g、ロジウム0.10 gに変えた以外同様にして
触媒6を得た。
In Example 1, 0.15% palladium and 0.15% platinum were used.
Catalyst 6 was obtained in the same manner except that the amount of rhodium was changed to 30 g and 0.10 g of rhodium.

尖立開ユ 実施例1においてパラジウムの担持量を2倍にし、白金
を担持させるのをやめた以外同様にして触媒7を得た。
Catalyst 7 was obtained in the same manner as in Example 1 except that the amount of palladium supported was doubled and platinum was not supported.

大侮開主 実施例1においてパラジウム0.2重量%を0.4重量
%に、白金0.40gをパラジウム0.80gに、ロジ
ウム0.15gを0.30gに変える以外同様にして触
媒8を得た。
Catalyst 8 was prepared in the same manner as in Example 1 except that 0.2% by weight of palladium was changed to 0.4% by weight, 0.40g of platinum was changed to 0.80g of palladium, and 0.15g of rhodium was changed to 0.30g. Obtained.

ル較■土 実施例1において酸化ランタンを主成分とする希土類酸
化物を含まないものに変えた以外同様にして触媒Aを得
た。
Comparative Example 2 Catalyst A was obtained in the same manner as in Example 1 except that the catalyst was changed to one containing no rare earth oxide containing lanthanum oxide as the main component.

止較貞1 実施例1において酸化ジルコニウムを含まないものに変
えた以外同様にして触媒Bを得た。
Stop Calibration 1 Catalyst B was obtained in the same manner as in Example 1 except that the catalyst did not contain zirconium oxide.

ル較貫ユ 実施例1において酸化ランタンを主成分とする希土類酸
化物を含まず、かつ酸化ジルコニウムを含まないものに
変えた以外同様にして触媒Cを得た。
Catalyst C was obtained in the same manner as in Example 1, except that it did not contain a rare earth oxide containing lanthanum oxide as a main component and did not contain zirconium oxide.

此1シボ土 実施例1に記すコーテイング液Aとコーテイング液Bを
同重量混合しこの混合液をモノリス担体基材C1,11
,400セル)に付着させ、焼成(600’c×2時間
)した。この時の付着量は420 g /個に設定した
。さらにこの付着した担体に白金0.40 g、ロジウ
ム0.15 gになるように担持した後、焼成(600
℃×2時間)し、触媒りを得た。
This 1 Grained soil Mix the coating liquid A and the coating liquid B described in Example 1 by the same weight, and apply this mixed liquid to the monolithic carrier base material C1, 11.
, 400 cells) and fired (600'c x 2 hours). The amount of adhesion at this time was set at 420 g/piece. Furthermore, 0.40 g of platinum and 0.15 g of rhodium were supported on the adhered carrier, and then fired (600 g).
℃ x 2 hours) to obtain a catalyst.

ル鮫阻l 実施例1に記すコーテイング液Bをモノリス担体基材(
1,7β、400セル)に付着させ乾燥した。
Coating liquid B described in Example 1 was applied to a monolithic carrier base (
1,7β, 400 cells) and dried.

この時の付着量は200 g /個に設定した。この付
着した担体の上にコーティング液入を付着させ、焼成(
600℃×2時間)した。この時の付着量は220g/
個に設定した。さらにこの付着した担体に白金0.40
g、ロジウム0.15 gになるように担持した後、6
00℃で2時間焼成し、触媒Eを得た。
The amount of adhesion at this time was set at 200 g/piece. A coating liquid container is applied onto this adhered carrier and baked (
600°C x 2 hours). The amount of adhesion at this time is 220g/
It was set to 1. Furthermore, 0.40% platinum was added to this adhered carrier.
g, after supporting rhodium to 0.15 g, 6
Catalyst E was obtained by calcining at 00°C for 2 hours.

成」(炭 実施例1〜8から得た触媒1〜8、比較例1〜5から得
た触媒A−Eについて、下記の条件で有鉛耐久を行ない
10モードエミツシヨンの浄化率を評価し、得た結果を
表1に示した。
Catalysts 1 to 8 obtained from Charcoal Examples 1 to 8 and Catalysts A to E obtained from Comparative Examples 1 to 5 were subjected to leaded durability under the following conditions and the purification rate of 10 mode emission was evaluated. The results obtained are shown in Table 1.

而  1   − 触 媒        モノリス型貴金属触媒エンジン
排気量    2200 ccガソリン中pb含有ff
i   50 mg/IIsガロン触媒入ロガス温度 
  750℃ 空間速度       約7万H−1 耐久時間       100時間 入ロエミッション   Go   0.4〜0.6%0
ffi    o、s  ±0.1  %NO1500
ppm HC1000ppm C0z   14.9±0.1  % −表一一」一 本ランタンを主成分とする希土類酸化物。
1-Catalyst Monolithic precious metal catalyst Engine displacement 2200 cc PB content in gasoline ff
i 50 mg/IIs gallon Catalyst log gas temperature
750℃ Space velocity Approximately 70,000H-1 Durability time 100 hours Low emission Go 0.4~0.6%0
ffi o,s ±0.1%NO1500
ppm HC1000ppm C0z 14.9±0.1 % -Table 11 Rare earth oxide whose main component is lanthanum.

(発明の効果) 以上説明してきたように、この発明によれば、その構成
を酸化ランタンを主成分とする希土類酸化物とパラジウ
ムを担持する活性アルミナを含む第1のウォッシュコー
トiを形成し、その面上に酸化セリウムを主成分とする
希土類酸化物を担持する活性アルミナと酸化ジルコニウ
ムを含む第2のウォッシュコート層を設けた触媒担体上
にロジウムを担持させて構成したことにより、パラジウ
ムが被毒物質より遠ざけられ、またパラジウムが酸化ラ
ンタンと、ロジウムが酸化ジルコニウムと化合物を形成
し安定化する働きによりパラジウムおよびロジウムの耐
熱性を向上でき、長期に亘り触媒活性化の低下が生じな
いという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the first washcoat i is formed which includes a rare earth oxide mainly composed of lanthanum oxide and activated alumina supporting palladium, By having rhodium supported on a catalyst carrier having a second wash coat layer containing activated alumina and zirconium oxide supporting a rare earth oxide mainly composed of cerium oxide, palladium is covered. It is kept away from poisonous substances, and the heat resistance of palladium and rhodium can be improved by forming compounds with palladium and lanthanum oxide and rhodium and zirconium oxide to stabilize them, and the effect is that catalyst activation does not decrease over a long period of time. is obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化ランタンを主成分とする希土類酸化物とパラジ
ウムを担持する活性アルミナを含む第1のウォッシュコ
ート層と、この第1のウォッシュコート層上に酸化セリ
ウムを主成分とする希土類酸化物を担持する活性アルミ
ナと酸化ジルコニウムとを含む第2のウォッシュコート
層を備えた触媒担体にロジウムが担持されている排気ガ
ス浄化用触媒。
1. A first washcoat layer containing a rare earth oxide mainly composed of lanthanum oxide and activated alumina supporting palladium, and a rare earth oxide mainly composed of cerium oxide supported on this first washcoat layer. An exhaust gas purifying catalyst in which rhodium is supported on a catalyst carrier having a second washcoat layer containing activated alumina and zirconium oxide.
JP61219808A 1986-09-19 1986-09-19 Catalyst for purifying exhaust gas Pending JPS6377544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219808A JPS6377544A (en) 1986-09-19 1986-09-19 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219808A JPS6377544A (en) 1986-09-19 1986-09-19 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS6377544A true JPS6377544A (en) 1988-04-07

Family

ID=16741358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219808A Pending JPS6377544A (en) 1986-09-19 1986-09-19 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6377544A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019546A (en) * 1989-02-16 1991-05-28 Mazda Motor Corporation Catalyst for purifying exhaust gas and method of manufacturing the same
US5147842A (en) * 1989-06-09 1992-09-15 N.E. Chemcat Corporation Exhaust gas-purifying catalyst and process for preparation thereof
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
US5318757A (en) * 1990-12-21 1994-06-07 Ngk Insulators, Ltd. Honeycomb heater and catalytic converter
US5702675A (en) * 1994-12-16 1997-12-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US6044644A (en) * 1994-12-06 2000-04-04 Engelhard Corporation Close coupled catalyst
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6464946B1 (en) 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6576200B1 (en) 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
US6682706B1 (en) 1998-12-09 2004-01-27 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and process for making catalytic converter
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019546A (en) * 1989-02-16 1991-05-28 Mazda Motor Corporation Catalyst for purifying exhaust gas and method of manufacturing the same
US5147842A (en) * 1989-06-09 1992-09-15 N.E. Chemcat Corporation Exhaust gas-purifying catalyst and process for preparation thereof
US5318757A (en) * 1990-12-21 1994-06-07 Ngk Insulators, Ltd. Honeycomb heater and catalytic converter
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
US6044644A (en) * 1994-12-06 2000-04-04 Engelhard Corporation Close coupled catalyst
US6254842B1 (en) 1994-12-06 2001-07-03 Engelhard Corporation Method for using a close coupled catalyst
US5702675A (en) * 1994-12-16 1997-12-30 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
US5989507A (en) * 1996-09-04 1999-11-23 Engelhard Corporation Catalyst composition
US5948723A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Layered catalyst composite
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US6248688B1 (en) 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US6921738B2 (en) * 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
EP1977819A2 (en) 1996-12-06 2008-10-08 Basf Catalysts Llc Catalytic metal plate
US6110862A (en) * 1998-05-07 2000-08-29 Engelhard Corporation Catalytic material having improved conversion performance
US6576200B1 (en) 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
US6682706B1 (en) 1998-12-09 2004-01-27 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and process for making catalytic converter
US6464946B1 (en) 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US7678347B2 (en) 2005-07-15 2010-03-16 Basf Catalysts Llc High phosphorous poisoning resistant catalysts for treating automobile exhaust
EP2781261A1 (en) 2005-07-15 2014-09-24 BASF Catalysts LLC High phosphorous poisoning resistant catalysts for treating automobile exhaust
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications

Similar Documents

Publication Publication Date Title
JPS6377544A (en) Catalyst for purifying exhaust gas
JP2979809B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS60110334A (en) Preparation of catalyst for purifying exhaust gas
JP3688974B2 (en) Exhaust gas purification catalyst
US4963521A (en) Exhaust-gas catalyst with reduced tendency to store sulfur oxides and to emit hydrogen sulfide and process for preparing the catalyst
US7037875B2 (en) Catalyst support
JPH08281107A (en) Catalyst for purifying exhaust gas
JPH10286462A (en) Catalyst of purifying exhaust gas
KR101147055B1 (en) Catalyst for purification of exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JP2734808B2 (en) Exhaust gas purification catalyst
JPH0622675B2 (en) Engine exhaust gas purification catalyst
JPS6362548A (en) Production of catalyst for purifying exhaust gas
JPS59162948A (en) Catalyst for purifying exhaust gas
JP3426792B2 (en) Exhaust gas purification catalyst
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP2744275B2 (en) Method for producing exhaust gas purifying catalyst
JP4103407B2 (en) NOx storage reduction catalyst
JP2000070717A (en) Exhaust gas purification catalyst and catalyst carrier
JPH04114742A (en) Catalyst for purifying exhaust gas
JPH06190282A (en) Catalyst for purification of exhaust gas
JP2948232B2 (en) Exhaust gas purification catalyst