JPS6145207A - 合焦検出装置 - Google Patents

合焦検出装置

Info

Publication number
JPS6145207A
JPS6145207A JP16752784A JP16752784A JPS6145207A JP S6145207 A JPS6145207 A JP S6145207A JP 16752784 A JP16752784 A JP 16752784A JP 16752784 A JP16752784 A JP 16752784A JP S6145207 A JPS6145207 A JP S6145207A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
receiving
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16752784A
Other languages
English (en)
Inventor
Asao Hayashi
林 朝男
Junichi Nakamura
淳一 中村
Yuji Imai
右二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP16752784A priority Critical patent/JPS6145207A/ja
Publication of JPS6145207A publication Critical patent/JPS6145207A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (技術分野) 本発明は、スチルカメラ、ビデオカメラ、Mt4黴鏡等
の光学装置における結像レンズの合焦状態を検出する合
焦検出装置に関する。
(従来技W) 従来の合焦検出装置は、−眼し7レツクス力メラ形式の
カメラを例に挙げて説明すると、8F!1図に示すよう
に撮影レンズ1を通過する被写体2からの光が観察用の
可動ミラー3によって2分割され、同町動ミy  31
Cよって反射された一方の光は、7オーカシングスクリ
ーン4、ペンタプリズム5等でなるファインダ光学系に
導かれる。また可動ミラー3の中央に形成されたバー7
ミ;y−3aを通過した他方の光は、同可動ミラー3の
背面に設けられた合焦検出用のサブミラー6bによりて
全反射され、この反射光は、同反射光の中心を境として
第1の領域と第2の領域に2分割する光分配素子10に
よって第1の光束と第2の光束に分離される。この分離
された第1の光束と第2の光束は、光学的にフィルム6
0面と共役な予定結像面の位置、または、その近傍に配
置された受光部20に導かれる。この受光部20は、光
分配素子10によって分離された第1の光束を主として
受ける第1の受光素子列と、同党分配素子10によって
分離された第2の光束を主として受ける第2の受光素子
列とを有し工いる。
そして、受光部20の第1の受光素子列と第2の受光素
子列のそれぞれに入射される被写体隊の光斂分布に相当
する鼠として、周波数空間におけるフーリエ変換成分を
求め、この値に基づい【合焦検出を行なうようにしたも
のである。
即ち、上記第1及び第2の受光素子列のそれぞれを形成
する複数の受光素子のそれぞれの出力をai、 biと
して、この出力ai、 biが被写体像の光斂分布に相
当する量として同出力aiの望間周波数石に関するフー
リエ斐換成分をAjとすると、同7−リエ変換成分Aノ
は下式のようになる。
ここでNは受光素子列を形成する受光素子の数である。
従って、フーリエ変換成分A1を用いると同成分Ajに
比べて距1111 foだけ変位した位置にある受光素
子列の出力biのフーリエ変換成分B1は下式のように
なる。
bi ” ”(i−A6 ) 従って、上記フーリエ変換成分Bノは下式のようになる
= A2 ・exp (−2yt−e書io/N)そし
て、2つの物体像が相対的に変化している被写体像の相
対的変位量ioの各々に比例する。従って、2つの被写
体像のそれぞれの7−リエ変換値を求め、両者の位相差
を検出することにより合焦状態を決定することができる
こりよプな7−リエ変換値を電気的に求める方法として
は例えば特開昭54−104859号公報に記載されて
いるように受光素子列を形成する複数の受光素子のそれ
ぞれの出力端を演算回路に接続し、同(ロ)路によりて
純電気的に7−リエ変換値を求めるようにしたものがあ
る。しかし、この方法によれば極めて複雑な構成を付す
る演算回路を用いなければならず大形化すると共に、演
算時間が多くかかりリアルタイム性に欠は実用性に劣る
ものである。
また、受光索子列を形成する複数の受光素子のそれぞれ
の暗電流特性、感度等が完全に一致しないので正確なフ
ーリエ変換成分が得られず、更に、1つの受光素子の面
積が小さいので出力ff号を得るに要する電荷蓄積時間
が多くかかり、この結果応答性が慈くなるという欠点を
有している。
(目的) 本発明の目的は被写体像の払ずれ像を検出して、この横
ずれ鍬のフーリエ変換成分を求め周波数空間の位相差を
求めることによって合焦検出を行なうものにおいて、純
電気的にフーリエfc侯成分を求めずに極めて簡単な受
光菓子の配fa′構成でもって実時間処理が行なえる合
焦検出装置を提供することにある。
(IA要) 本発fJHc係る合焦検出装置は、実効的な受光効率が
正弦波状に変化する複数の受光系子でなる第1の受光素
子列と、実効的な受光効率が余弦波状に変化する複数の
受光素子でなる第2の受光素子列と、実効的な受光効率
が均等な複数の受光素子でなる第3の受光素子列とで一
組の受光部をm成し、この受光部を2組配置して、その
それぞれに、結成レンズからの光束を2つに分配したそ
れぞれの光を入射させ、このときに上記2組の受光部に
おける第1ないし@3の受光素子列からの出力信号に基
づいて、上記2組の受光部に入射する光像のそれぞれの
フーリエ変換成分の位相差を求めることによって細織レ
ンズの合焦状aを検出するようにしたものである。
(実施例) 以下、本発明を1示の実施例に基づいて説明する。
先ず、本発EJAK係る合焦検出装置における光分配素
子と受光部の一例を第2.第5図によりて説明する。
第2図及び第3図において、光分配素子100は例えば
特開昭59−15207号公報に記載された合焦検出装
置のものと同様に構成されていて、薄板状のガラス基板
101の上面には幅Sを有する帯状のツ゛  不透過膜
でなるマスク1021〜102nがピッチTでもりて1
1個形成されている。
このように構成された光分配素子100の下面には、受
光部200が密接して設けられている。この受光部20
0は、上記ガラス基板101の外形と略同−外形を有す
る絶縁基板201を有し、この絶縁基板201の上面に
は上記マスク102.〜102nの長手方向に直交する
方向に平行し℃配置された第1の受光素子列204.第
2の受光素子列210.第3の受光素子列216の3列
でなる1組の受光部と、第1の受光素子列207.第2
の受光素子列213.第3の受光素子列 21903列
でなる1組の受光部との2組の受光部が形成されている
上記1組の第1の受光素子列204は、上記マスク10
21〜102nのピッチTのピッチで1111i1の受
光素子202.〜202nをマスクに平行な直線状に配
置されてい工、各々の受光素子2021〜202nの平
行方向の形状は、N4図に概念的に示すように正弦波の
1周期の形状を4分割して形成される受光素子a〜dを
繰返し配置したものとなっている。これらの受光素子2
021〜202nのそれぞれの基端は直線状の接続部2
03でもりて連結されている。そして、この1組の第1
の受光素子列204の各受光素子202.〜202nの
各間、即ち2021と202□の間。
2022と20230間、 202.と2024の間・
・・・の各々には、上記受光素子202.〜202nと
対称的な受光素子205.〜205nが配置されている
。この受光素子205.〜205nは上記接続部203
と同様の接続部206でもって連結され、他の組の第1
の受光素子列207を形成している。
上記各組の第1の受光素子列204.207とiスフ1
02、〜102nとの位相関係は第5図に示すようにマ
スク102.〜102nの形成面に直交する光束面を境
として第1の領域の第1の光束Q1tQ1・・・が、主
として受光系子202.〜202nで形成される第1の
受光素子列204に入射され、同様に第2の領域の第2
の光束Q2#Q2・・・が主とし℃受光素子205゜〜
205nで形成される第1の受光素子列207に入射さ
れるよう罠なっている。
上記1組の第2の受光素子列210も上述同様にn個の
受光素子2081〜208nと接続部209で形成され
ていて、同受光素子208.〜208nの各形状は第3
図に概念的に示すように余弦波の1周期の形状を4分割
して形成される受光系子A−Dを繰返し配置したもので
ある。また上記第2の受光素子列210の各受光素子2
08.〜208nの各間、即ち208、と208□の間
、208□と2083の間、 2083と2084の間
・0・0の各々には受光素子211.〜211nが配置
されている。この受光素子2111〜211nの形状は
上記受光素子208.〜208nの各々に対称なものと
なっていて、各々の受光系子2111〜211nは上記
接続部209と同様の接続部1212でもって連結され
、第2の受光素子列213となっている。そして、第2
の受光素子列210には第1の光束Q。
(第5図参照)が主として入射され、第2の受光素子列
213には第2の光束Q2(第5図参照)が主とし1入
射されるようになっている。
更に1組の第3の受光素子列216も上記第2の受光素
子列210と同様にn個の受光系子214.〜214n
と接続部215で形成されていて、同受光素子2141
〜214nの形状は上記受光素子2021〜202n。
2051〜205n1208.〜208n、 211.
〜211nの各々の最大高さの7の高さを有し、各々が
均等な角形状を有するようになっている。この受光素子
214、〜214nのそれぞれの間、即ち、214.と
214□0間、2142と21430間1214.と2
144の間−・・・・の谷々には、上記受光素子214
1〜214nの各々と同一形状の受光素子217.〜2
17nが対称的に配置されている。この受光素子217
.〜217nの各々は上記接続部215と同様の接続部
218でもって連結され、他の組の第3の受光素子列2
19となっている。そして第3の受光素子列216には
第1の光束Q、 (第5図参照)が主として入射され、
第3の受光素子列219には第2の光束Q2(第5図参
照)が主として入射されるようになりている。
なお、上記接続部203.2(16,209,212,
215,218の各々の幅は憶めて細くなって−て同接
続部203・・・に入射される光は実質的に無視できる
ものとなっている。
また、第1ないし第3の受光素子列204,207゜2
10.215,216,219の列方向の幅はなるべく
小さい方が良く、1mm程度が望ましくまた列方向に直
交する方向の幅は、第1の受光素子列204,207の
幅が100μm程度で第2の受光素子列210,213
の幅が100μm程度で、第3の受光素子列216,2
19の幅が50μm@度が原ましい。これは、被写体か
らの光量をほぼ同一と見なせる位置を蜆創するためであ
る。また、各々の接続部206,206,209,21
2゜215.218から各受光素子列204,207,
210,213,216゜219の受光出力が取り出せ
るようになっている。
そして、光分配素子100によって分割された光束を受
けた受光部200の出力によって合焦検出を行なうには
、第8図に示すbx埋図のように受光部200からの電
気出力信号がアナログ演算回路30に入力され、同−路
30により12組のフーリエ変換成分の位相差が求めら
れ、この位相差データが表示回路40に送られ、前ビン
・合焦・後ビンの表示が表示回路4(lなされる。また
アナログ演算回路30によって求められたデフォーカス
にデータに基づいエレンズ駆動回路50が作動し、細織
レンズ1を駆動することができる。
受光素子202〜202  、205.〜205nの実
効幅1        n Wlllsは第1の受光素子列204,207の長手方
向の座w4xを用いて W2B = 1 + sin (2πfo a: )と
表わされる。
同様に受光素子208.〜208n、 211.〜21
1nの実効幅W。0は第2の受光素子列210,213
の長手方向の座標Xを用いて W、c= 1 + Cog (2πfo s )と表わ
される。
なお、foは、各受光素子列204,207,210,
213の各々における各受光素子202〜202  、
205.〜1       n 205n、 2081〜208n、 211.〜211
nにおける4分割された正弦波状または余弦波状の周波
数を表わす。
従りて、今、N1の受光素子列204,207上に形成
される先縁が光電変換されると、その電気出力は、同光
量のフーリエ変換成分を表わす。そして、各受光素子列
204.207上に形成される光量の光量分布をそれぞ
れ工。a (x) −I。b(&)とし、各受光素子列
204,207の電気出力Poa(s) 、 POb(
s)は下式のようになる。
Poa(s) = f 工。a(り ・(1+sin 
(2rf(、a:月dxx J’ i。、(s) dg
 +J’I。a(J) esin (2yr fo”)
dg ””(1)Pob(s) = f ”ob □・
(1+sin (2rr、 ” ) )d”=J’I。
b(J)dz+J’I。b(g)−sin(2gfoa
:)ds −、−(2)となる。
上記(1)式、(2)式における第2項は、周波数f。
におけるフーリエ級数変換成分の正弦波成分である。
ところが上記(1)式、(2)式における第1項は光量
の全光蓋を表わす、フーリエ変俟成分でない項である。
この項を除去するために第3の受光素子列216.21
9がaけられている。仁の第5の受光素子列216,2
19 Kおける各受光素子214.〜214n、217
゜〜217nにおける受光面積は一定であるので、第3
の受光素子列216,219の各々の電気出方P。a 
(F)tPOb(F)は下式のようになる。
POb(F):==f工Ob(idx・・・・・(4)
従って上記(1)式から上記(3)式を賦昇、言い換え
−P ればP。a、8)   。2(F)を求めることによっ
てフーリエ変換成分の正弦波成分のみを求めることかで
きる。
また、フーリエ変換成分の余弦波成分も上述同様にして
第2の受光素子列210,213及び第3の受光素子列
216,219の1気出力から求めることかできる。
そして、光に分布工。a(−f)と工。b (3)は合
焦時には一致し、合焦状態からずれるに従りて、その光
量分布が互に一軸方向に反対側にずれていく。
このようにして工。a(剖t I。b<srの2つの光
像についてのフーリエ級数変換成分の正弦波成分と余弦
波成分とが求められれば、2つの物体縁の相対的なχ軸
方向のずれ量が求められる。
次に1非合焦状悪にある時の2つの物体縁の相対的なx
@方向のずれ?oを求める方法の一例について説明する
11   第1ないし第3の受光素子列204,210
,216上に生じる光像の分布工。b(3:)は第1な
いし第3の受光素子列207,213,219上に生じ
る光像の分布との関係からx、bG”J =Ioa (
x  so )となる。
従って、第1ないし第3の受光素子列204,210゜
216の電気出力によって求められる、周波数foにお
けるフーリエ弯換成分A(fQ)は下式のようになる。
A(fo)” J’”□B (”)” eXp (−i
 2πf、、z=) −−−−(5)また、第1ないし
第3の受光素子列207,213゜219の電気出力に
よって求められる周波数f0におけるフーリエ変換成分
B(fQ)は下式のよ5にムる。
B(1o) =ffob (g) ・exp (−t 
2 x fo x )従って B((o) ” A(f、) eXp (−12KfO
&、)  @−−−− (6)となる。より【上記(5
)式を上記(6)式で除すことで、両者の位相差φ。が
φ。=2π’o”oとして求まる。
ここで位相差φ。は第7図に示すように虚数項Imを実
数項肋で除した逆正接として求められるからとなる。従
りて歇のずれta−0は zo=φ。/2πf、     −@−−−(8)とし
て求まる。
更に結像レンズのPナンバーが既知である場合だしFは
絞り値)とすると結像レンズのデフォーカス量2゜は Z  =2F、Z−o−−−−−(9)として求めるこ
とができる。従りて各受光素子列の出力から上式(力(
8) (9)の演算を行うことにより工直接にデフォー
カス量を求めることができる。
また細織レンズのFナンバーが既知でない場合には、例
えば特開昭58−218613号公報に記載されている
Fナンバー検出方法のように受光部に入射される射出瞳
の像の大きさを検出するととKよりてFナンバーを求め
た後に上式によりてデフォーカスIkzoを求めるよう
にすれは良い。
上記実施例においては、単一周波数における7−−リエ
ー級数変換成分を求めるよ5に構成されているが、被写
体からの光像に基づく空間周波数は非常に広い範囲にわ
たりているために正確な合焦検出が行なえなくなる場合
が生じる。このために第1ないし第3の受光素子列20
4,207,210,213,216゜219 VCお
ける受光素子配列ピッチを変え、即ち正弦波状、余弦波
状の1#期を変えたものを退加し工設け、複数の空間周
波数におけるそれぞれの7−y二級数変換成分を求める
ことによって被写体からの光像に基づく空間周波数の広
い範囲にわたる合焦検出を行なうことができる。
また受光素子列を形成する受光素子の配置は上記実施例
における配置のみならず第9図に示すように構成しても
よい。即ち上述同様にして作られたガラス基板101の
上面にマスク102.〜102oが形成された光分配素
子100の下面に配置される受光素子列を次のように配
置する。正弦鼓形状を4分割した受光面を有する複数の
受光素子202.〜202nおよび接続部206とでな
るmlの受光素子列204と、この第1の受光素子列2
04におり゛る各受光素子202.〜202nの間に配
置された、同第1の受光素子列204と同様に正弦波形
状を4分割した受光面を有する複数の受光素子205.
〜205nおよび接続部206とでなる第1の受光素子
列207と、更に上記第1の受光素子列204,207
と同様にして第2の受光素子列210,215を、余弦
波形状を4分割した受光面を存する受光素子208.〜
208nおよび接続部209と、余弦波形状を4分割し
た受光面を有する受光素子2111〜211nおよび接
続部212とで形成し、また、第3の受光素子列216
.219は均等な受光面を有する受光素子214.〜2
14nおよび接続部215と、上記受光素子214.〜
214nに互に櫛廁状に対向する均等な受光面を有する
受光素子217.〜217nおよび接続部218とで形
成する。
従って、この例においては@1ないし第3の受光索子列
204,207,210,215,216,219の総
幅を短かくすることができるので、受光面の有効利用が
図れ、全体の寸法を小形化できる。
上述の実施例においては正弦波状または余弦波状の受光
素子の形状は正弦波または余弦波の一部と同一形状に形
成されているが、第10図に示すよ5に正弦波を4分割
しそのサンプリングの代表値で受光素子の幅を決定し、
それぞれ幅の異なる矩形状の受光素子a〜dとし、余弦
波においても同O 様に第11図に示すようにそれぞれ1−の異なる矩形状
の受光素子A0〜Doとしても良い。
上記の谷側においては各受光素子202.〜202n#
205 〜205  、208 〜208 .211.
〜211nの形1        n       f
        flJ状がそれぞれ異なっているが、
第12図に示すよ5Kfe縁基板201の上面に形成さ
れる受光素子2021〜202n・壷・・の受光面を同
一な矩形状に形成し、このような受光部200の上面に
配置される光分配素子100を第13図(A)〜(C)
のように構成しても良いO 即ち、上述同様べしてガラス基板101の上面にはマス
ク102.〜102nが形成されていて、同ガラス基板
101の下面には!15図(C)に示すよ5なマスク5
00が形成されている。同マスク300の受光素子20
2.〜202nに対応する位置には、上記受光素子20
21〜202nの各々が分割された正弦波状の開口30
1.〜301nを存し、上記受光素子2051〜205
nに対応する位置にも上記開口601.〜301nと同
様の開口302.〜302nを有し℃いる。また、受光
索子208.〜208n、 211.〜211nの各々
に対応する位置には同受光素子208〜208  、2
11.〜1       n 211nのそれぞれに対応する余弦波状の関口303゜
〜303n、 304.〜604nを存している。更に
、受光索子214.〜214n、 217.〜217n
に対応する位置には帯状の開口305を傅している。
従って、各受光索子202.〜202n・・・・・にお
ける必要とする受光面のみが露出し、他の部分が遮光さ
れているので外乱光、内部反射等が防止できるO また、上記の例において開口3011〜301n。
302、〜302n、 3051〜503n = 30
4.〜304n、 305を設ける代りにマスク300
における透過率を部分的に変化させ、各受光索子におけ
る実質的な受光効率が正弦波状、余弦波状、均等となる
ようにしても良い。
更に、上記第1ないし第3の受光素子列の配列は直線状
には限定されず、例えば円弧列状に形成しても良いこと
勿論である。
また更に、光分配素子としては特開昭58−59418
号公報に記載されている合焦検出装置のように微小グリ
メムを列状に形成したものや、特公昭57−49841
号公報に記載されている距離決定装置に用いられ工いる
ような7ツイアイレンズを列状に形成したものを用いて
も良い。
(発明の効果゛) このよ5に本発明によれば、受光索子の数が少なぐ、か
つ少ない演算量でもって合焦状態の検出が行なえ、その
ときのデフォーカス量も簡単な演算でもって求められる
・ また、複数の受光素子を並列的に用いて受光素子列を形
成しているので受光出力が多く得られ、より正確な合焦
検出を行なうことがモきると共に各受光素子を積分形式
で出力を取り出す必要がないので、実時間で合焦状態の
判定ができ極めて応容性の良い検出となる。
【図面の簡単な説明】
!!1図は、−眼し7レツクスカメラにおげろ合焦検出
装置の構成の一例を示す概路線崗、第2図は、本発明の
一実施例を示す合焦検出装置の検出部の拡大平面図、 第3図は、上記第2図に示した合焦検出部の分解斜視囚
、 第4図は、受光素子列を形成する受光素子の形状を説明
するための線図、 第5図は、受光素子とマスクとの配置関係を説明す委た
めの部分拡大11図、 第3図は、受光素子列を形成する受光素子の形状を説明
するための線画、 第7図は、位相差を説明するための線図。 第8図は、本発明の合焦検出装置の動作の一例を説明す
るためのブロック線図、 1   第9図は、本発明の合焦検出装置における合焦
検出部の他の例を示す拡大平面図、 第10図および第11図は、受光素子列を形成する受光
素子の他の形状を示す線図、 8g12図は、本発明の他の実施例を示す合焦検出装置
における合焦検出部の拡大平面図、第13図(A)(B
)(C)は、上記第12図の合焦検出部に用いられる光
分配素子の平面図、正面図および底面図である。 1・φ・・・・・・・・・結像レンズ 10.100・・・・ψΦ光分配素子 20.200・e・・・拳受光部 202〜202.205.〜205. 、2081〜2
08n、211.〜1     n 211.214〜214.217〜217  ・・働Φ
Φ受光累子fllf11f1 204.207・・・・・第1の受光素子列210.2
13−・・■第2の受光素子列216.219・O・・
・第3の受光素子列102〜102・・・マスク 1     n 30  ・・・・・・・・・アナログ演算回路(直真回
路)%10図    %11図 手続補正書(自発) 昭和59年9月18日

Claims (1)

  1. 【特許請求の範囲】 結像レンズからの光束を第1の領域と第2の領域に分割
    して通過させる光分配素子を、上記結像レンズと同結像
    レンズの予定結像面との間に配置し、 実効的な受光効率が正弦波状に変化する複数の受光素子
    でなる第1の受光素子列と、実効的な受光効率が余弦波
    状に変化する複数の受光素子でなる第2の受光素子列と
    、実効的な受光効率が均等な複数の受光素子でなる第3
    の受光素子列とで形成された受光部を2組、その一組の
    受光部に主として上記第1の領域の光束が、他の組の受
    光部に上記第2の領域の光束がそれぞれ入射するように
    、同2組の受光部を上記結像レンズの予定結像面または
    同予定結像面の近傍に設けると共に、 上記2組の受光部における第1ないし第3の受光素子列
    からの出力信号に基づいて上記2組の受光部に入射する
    光像のそれぞれのフーリエ変換成分の位相差を求める演
    算回路を設け、 この演算回路の出力に基づいて上記結像レンズの合焦状
    態を検出することを特徴とする合焦検出装置。
JP16752784A 1984-08-10 1984-08-10 合焦検出装置 Pending JPS6145207A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16752784A JPS6145207A (ja) 1984-08-10 1984-08-10 合焦検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16752784A JPS6145207A (ja) 1984-08-10 1984-08-10 合焦検出装置

Publications (1)

Publication Number Publication Date
JPS6145207A true JPS6145207A (ja) 1986-03-05

Family

ID=15851344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16752784A Pending JPS6145207A (ja) 1984-08-10 1984-08-10 合焦検出装置

Country Status (1)

Country Link
JP (1) JPS6145207A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032012A (en) * 1988-12-28 1991-07-16 Olympus Optical Co., Ltd. Rear converter lens system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032012A (en) * 1988-12-28 1991-07-16 Olympus Optical Co., Ltd. Rear converter lens system

Similar Documents

Publication Publication Date Title
US20180007261A1 (en) Image-capturing device and image processing method
US3586665A (en) Apparatus for producing phase-shifted electric signals
CA2319898C (en) Position encoding optical device and method
JPS6365922B2 (ja)
US4071297A (en) Method and apparatus for photoelectrically determining the position of at least one image focus plane
CN109470173B (zh) 一种双通道同时相移干涉显微***
US5410397A (en) Method and apparatus for holographic wavefront diagnostics
EP0872722B1 (en) Particle measuring apparatus and its calibration method
US8456641B1 (en) Optical system
JP2764373B2 (ja) 多座標測定装置
JPS5962811A (ja) 焦点検出装置
US4207002A (en) Apparatus for detecting an output image of an optical correlation
JPH0385413A (ja) 平均化回折モアレ位置検出器
CN108180993A (zh) 红外偏振干涉成像光谱仪及制作方法
JPS6145207A (ja) 合焦検出装置
CN107917759A (zh) 基于阶梯相位反射镜的偏振干涉成像光谱仪及制作方法
JPS6129813A (ja) 合焦検出装置におけるサンプリング補正装置
JPS6117016A (ja) 平均化回折モアレ位置検出器
JPH02242104A (ja) 多点膜厚測定装置
JPS6057047B2 (ja) 焦点検出装置
JP3396284B2 (ja) 位相振幅測定装置
JPH0820470B2 (ja) 電圧検出装置
JP2003148933A (ja) 位相シフト干渉縞同時撮像における平面形状計測方法
JPH0755432A (ja) 長さ及び高さ測定装置
JP2001330557A (ja) 光スキャナ及びこれを用いた断層画像取得装置