JPS6142171A - Manufacture of nonvolatile semiconductor memory device - Google Patents

Manufacture of nonvolatile semiconductor memory device

Info

Publication number
JPS6142171A
JPS6142171A JP16367984A JP16367984A JPS6142171A JP S6142171 A JPS6142171 A JP S6142171A JP 16367984 A JP16367984 A JP 16367984A JP 16367984 A JP16367984 A JP 16367984A JP S6142171 A JPS6142171 A JP S6142171A
Authority
JP
Japan
Prior art keywords
peripheral circuit
oxide film
gate
famos
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16367984A
Other languages
Japanese (ja)
Inventor
Masao Kiyohara
清原 雅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16367984A priority Critical patent/JPS6142171A/en
Publication of JPS6142171A publication Critical patent/JPS6142171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7886Hot carrier produced by avalanche breakdown of a PN junction, e.g. FAMOS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To eliminate the problem of auto doping by a method wherein the film thickness is adjusted by oxidation after a gate oxide film is etched back to a required film thickness. CONSTITUTION:The first poly Si layer 42 serving as the floating gate electrode of a FAMOS is formed and then left at a memory transistor region (a). Next, in order to adjust the thickness of the gate oxide film of the peripheral circuit transistor and to prevent the auto doping from the layer 42, the gate oxide films 44 at regions (b) and (c) and the interlayer oxide film 46 of a FAMOS are formed at the same time by whole oxidation after etch-back of the gate oxide films 38 at peripheral circuit transistor regions (b) and (c).

Description

【発明の詳細な説明】 (技術分野) 本発明はメモリトランジスタとしての二層ポリシリコン
ゲート構造のF A M OS (Floaシingg
ate  Avalanche  1njecヒion
  Metal  0xide  Sem1−cond
ucter)と0MO8構成の単一ポリシリコンゲート
構造の周辺回路トランジスタとを同一基板上に形成して
なる半導体メモリ装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an F A MOS (Floa Si...
ate Avalanche 1njechiion
Metal Oxide Sem1-cond
The present invention relates to a method for manufacturing a semiconductor memory device in which a peripheral circuit transistor having a single polysilicon gate structure having an 0MO8 configuration and a peripheral circuit transistor formed on the same substrate.

(従来技術) 第2図はメモリトランジスタとしてのFAMOSと周辺
回路のNMO8I−ランジスタとを同一基板上に形成し
てなる半導体メモリ装置であるが、この半導体メモリ装
置の製造方法として次の方法が提案されている。
(Prior art) Figure 2 shows a semiconductor memory device in which a FAMOS as a memory transistor and an NMO8I-transistor as a peripheral circuit are formed on the same substrate.The following method is proposed as a manufacturing method for this semiconductor memory device. has been done.

シリコン基板2上に、フィールド酸化膜4、ゲート酸化
膜6を形成し、メモリトランジスタ領域aのみにイオン
゛注入を施した後、全体に第1のポリシリコン層8、層
間酸化膜10及び第2のポリシリコン層12を順次形成
する。
After forming a field oxide film 4 and a gate oxide film 6 on a silicon substrate 2 and performing ion implantation only in the memory transistor region a, a first polysilicon layer 8, an interlayer oxide film 10 and a second polysilicon layer are formed on the entire silicon substrate 2. Polysilicon layers 12 are sequentially formed.

次に、ホトリソグラフィ技法によりメモリトランジスタ
領域aにFAMOSゲートを形成する。
Next, a FAMOS gate is formed in the memory transistor area a by photolithography.

このとき、周辺回路トランジスタ領域すではシリコン基
板2が露出する。
At this time, the silicon substrate 2 is exposed in the peripheral circuit transistor region.

次に、ゲート酸化膜14及び第3のポリシリコン層16
を順次形成した後、ホトリソグラフィ技法により周辺回
路トランジスタのゲート電極を形成する。
Next, a gate oxide film 14 and a third polysilicon layer 16 are formed.
After sequentially forming the gate electrodes of peripheral circuit transistors, photolithography techniques are used to form gate electrodes of peripheral circuit transistors.

その後、砒素(As)拡散によるソース・ドレイン拡散
層18.20の形成、中間絶縁膜22の形成、コンタク
トホールの形成、配線24の形成などを行なう。
Thereafter, formation of source/drain diffusion layers 18 and 20 by arsenic (As) diffusion, formation of an intermediate insulating film 22, formation of contact holes, formation of wiring 24, etc. are performed.

ところで、上記の方法によれば、FAMOSの層間酸化
膜10と周辺回路トランジスタのゲート酸化膜14とを
独立に最適膜厚に形成できる利煮を有する反面、FAM
OSのゲート形成時に周辺回路トランジスタ領域すのシ
リコン基板が露出してしまう欠点を有する。つまり、ポ
リシリコン層8、工2には通常、不純物が含有されてい
るので、シリコン基板が露出するとポリシリコン層8゜
12の不純物が気相状態を経て周辺回路トラNジメタ領
域すの基板に拡散(オートドーピング)し、そこに形成
されるトランジスタのしきい値電圧に影響を及ぼすから
である。
By the way, according to the above method, although the interlayer oxide film 10 of the FAMOS and the gate oxide film 14 of the peripheral circuit transistor can be independently formed to the optimal film thickness,
This method has the disadvantage that the silicon substrate of the peripheral circuit transistor region is exposed when forming the gate of the OS. In other words, since the polysilicon layer 8 and step 2 usually contain impurities, when the silicon substrate is exposed, the impurities in the polysilicon layer 8 and 12 pass through the gas phase and enter the substrate of the peripheral circuit transistor region. This is because it diffuses (autodoping) and affects the threshold voltage of the transistor formed there.

また、FAMOSのフローティングゲート電極8、コン
トロールゲート電極12及び周辺回路トランジスタのゲ
ート電極16はそれぞれ異なる工程のポリシリコン層に
より形成されるため、3回のポリシリコン層形成工程が
必要となり工程数が多くなる問題もある。
Furthermore, since the floating gate electrode 8, control gate electrode 12, and gate electrode 16 of the peripheral circuit transistor of the FAMOS are formed using polysilicon layers in different processes, three polysilicon layer formation processes are required, resulting in a large number of processes. There is also a problem.

(目的) 本発明は、二層ポリシリコンゲート構造のFAMOSメ
モリトランジスタとCMO3構成の単一ポリシリコンゲ
ート構造の周辺回路トランジスタとを同一基板上に形成
してなる不揮発性半導体メモリ装置を、FAMOSの層
間酸化膜の膜厚と周辺回路トランジスタのゲート酸化膜
の膜厚をそれぞれに適するように調整しつつ、オートド
ーピングの問題がなく、しかもポリシリコン層の形成工
程を2回に抑えて製造することのできる方法を提供する
ことを目的とするものである。
(Objective) The present invention provides a nonvolatile semiconductor memory device in which a FAMOS memory transistor with a two-layer polysilicon gate structure and a peripheral circuit transistor with a single polysilicon gate structure with a CMO3 configuration are formed on the same substrate. The thickness of the interlayer oxide film and the gate oxide film of the peripheral circuit transistor are adjusted to suit each other, and the process of forming the polysilicon layer is reduced to two without the problem of autodoping. The purpose is to provide a method that allows for

(構成) 本発明の製造方法では、FAMOSのフローティングゲ
ート電極となる第1のポリシリコン層をメモリトランジ
スタ領域に残した後、FAMOSの層間酸化膜と周辺回
路トランジスタのゲート酸化膜を形成するために、既に
存在する周辺回路トランジスタ領域のゲート酸化膜を所
定の膜厚までエッチパックした後に酸化処理を施こす。
(Structure) In the manufacturing method of the present invention, after leaving the first polysilicon layer that will become the floating gate electrode of the FAMOS in the memory transistor area, the interlayer oxide film of the FAMOS and the gate oxide film of the peripheral circuit transistor are formed. After the gate oxide film in the peripheral circuit transistor region that already exists is etch-packed to a predetermined thickness, oxidation treatment is performed.

また、FAMOSのコントロールゲート電極と周辺回路
トランジスタのゲート電極は同一の第2のポリシリコン
層により形成する。そして、ゲートを形成するパターン
化工程は、まず1周辺回路トランジスタ領域をレジスト
で被ってFAMOSのゲートを形成し、その後にFAM
OSメモリトランジスタ領域をレジストで被って周辺回
路トランジスタのゲート電極を形成するようにする。
Further, the control gate electrode of the FAMOS and the gate electrode of the peripheral circuit transistor are formed of the same second polysilicon layer. In the patterning process for forming the gate, first, one peripheral circuit transistor region is covered with resist to form the FAMOS gate, and then the FAM
The OS memory transistor area is covered with a resist to form a gate electrode of a peripheral circuit transistor.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本発明の一実施例を表わす。FIG. 1 represents one embodiment of the invention.

同図(A)に示されるように、通常の方法によりP型基
板30にP型チャネルストッパ32、N型ウェル34、
フィールド酸化膜36及びゲート酸化膜38.39を形
成する。より具体的には、P型基板30としては引上げ
法(CZ法)で形成された(100)P型シリコン基板
を使用し、P型チャネルストッパ32はエネルギ50K
eV、ドーズ量10”/cm”オーダのイオン注入によ
り形成し、N型ウェル34はエネルギ160KeV、ド
ーズ量1012/am”オーダのイオン注入により形成
した。フィールド酸化膜36の形成時(a、s  gr
own)の膜厚は13000人、ゲート酸化膜38.3
9の膜厚は700人とした°。
As shown in FIG. 3A, a P-type channel stopper 32, an N-type well 34, and a P-type channel stopper 32, an N-type well 34,
A field oxide film 36 and gate oxide films 38 and 39 are formed. More specifically, as the P-type substrate 30, a (100) P-type silicon substrate formed by a pulling method (CZ method) is used, and the P-type channel stopper 32 is
eV and a dose on the order of 10"/cm", and the N-type well 34 was formed by ion implantation at an energy of 160 KeV and a dose on the order of 1012/am". When the field oxide film 36 was formed (a, s gr
own) film thickness is 13000, gate oxide film 38.3
The film thickness of 9 was 700 people.

その後、ホトリソグラフィ技法を用いてメモリトランジ
スタ領域aに選択的に、しきい値電圧制御用のボロンの
チャネルドープ40をイオン注入により行なった後、F
AMoSのフローティングゲート電極となる第1のポリ
シリコン層42を形成し、このポリシリコン層42をホ
トリソグラフィ技法によりメモリトランジスタ領域aに
残す。チャネルドープ40のボロンの注入量は 10”
 /cm”オーダとし、第1のポリシリコン層42の膜
厚は形成時で1600人とした。
Thereafter, channel doping 40 of boron for threshold voltage control is selectively implanted into the memory transistor region a using photolithography, and then F
A first polysilicon layer 42 that will become a floating gate electrode of the AMoS is formed, and this polysilicon layer 42 is left in the memory transistor region a by photolithography. The amount of boron implanted in channel dope 40 is 10”
/cm'' order, and the film thickness of the first polysilicon layer 42 at the time of formation was 1600.

次に、周辺回路トランジスタのゲート酸化膜の膜厚調整
と第1のポリシリコン層42からのオートドーピング防
止のため、周辺回路トランジスタ領域す、cのゲート酸
化膜38を300人程度になるまでエッチバックした後
、全面酸化を行なって、同図(B)に示されるように、
周辺回路トランジスタ領域す、cのゲート酸化膜44と
FAMoSの層間酸化膜46とを同時に形成する。ゲー
ト酸化膜44の膜厚を700人、層間酸化膜46の膜厚
を900人とした。
Next, in order to adjust the film thickness of the gate oxide film of the peripheral circuit transistor and to prevent autodoping from the first polysilicon layer 42, the gate oxide film 38 in the peripheral circuit transistor regions A and C is etched to a thickness of about 300. After backing up, the entire surface is oxidized, and as shown in the same figure (B),
The gate oxide film 44 of the peripheral circuit transistor regions S and C and the interlayer oxide film 46 of the FAMoS are simultaneously formed. The thickness of the gate oxide film 44 was 700 mm, and the thickness of the interlayer oxide film 46 was 900 mm.

その後、周辺回路のNMOSトランジスタ領域す及びP
MOSトランジスタ領域Cのそれぞれのしきい値電圧制
御用チャネルドープ48及び5゜をイオン注入によって
行なった後、FAMoSのコントロールゲート電極及び
周辺回路トランジスタのゲート電極となる第2のポリシ
リコン層52を形成する。ここで、チャネルドープ48
,50のイオン注入量をそれぞれ10”/am”オーダ
とし、第2のポリシリコン層52の形成時の膜厚を35
00人とした。
After that, the NMOS transistor area of the peripheral circuit and P
After channel doping 48 and 5° for threshold voltage control in each of the MOS transistor regions C is performed by ion implantation, a second polysilicon layer 52 that will become the control gate electrode of the FAMoS and the gate electrode of the peripheral circuit transistor is formed. do. Here, channel dope 48
, 50 ion implantations were each on the order of 10"/am", and the film thickness at the time of formation of the second polysilicon layer 52 was 35"/am".
00 people.

次に、同図(C)に示されるように、ホトリソグラフィ
技法により周辺回路トランジスタ領域す及びCをレジス
ト54で被うとともに、メモリトランジスタ領域aに形
成したレジストパターン56をマスクとして第2のポリ
シリコン層52をエツチングしてFAMoSのコントロ
ールゲート電極を形成し、続いてそのコントロールゲー
ト電極をマスクとしてその下層の眉間酸化膜46及び第
1のポリシリコン層42をセルファライン的にエツチン
グしてFAMOSメモリトランジスタのゲート58を形
成する。
Next, as shown in FIG. 5C, the peripheral circuit transistor areas A and C are covered with a resist 54 by photolithography, and a second polyester is applied using the resist pattern 56 formed in the memory transistor area a as a mask. The silicon layer 52 is etched to form a FAMoS control gate electrode, and then, using the control gate electrode as a mask, the lower eyebrow oxide film 46 and first polysilicon layer 42 are etched in a self-line manner to form a FAMOS memory. A gate 58 of the transistor is formed.

レジスト54.56を除去した後、今度は同図(D)に
示されるように、メモリトランジスタ領域aをレジスト
60を被うとともに、周辺回路トランジスタ領域す及び
Cにレジストパターン62゜64を形成し、第2のポリ
シリコン層52をエツチングして周辺回路トランジスタ
のゲート電極66及び68を形成する。そして、PMO
S )−ランジスタ領域Cに開口を有するレジストパタ
ーン70を形成してボロンのイオン注入を行いソース・
ドレイン領域72を形成するが、このときPMOSトラ
ンジスタのゲート電極68上のレジスト64は残したま
まボロンのイオン注入を行なう。
After removing the resists 54 and 56, as shown in FIG. 5D, the memory transistor area a is covered with a resist 60, and resist patterns 62 and 64 are formed in the peripheral circuit transistor areas and C. , etching the second polysilicon layer 52 to form gate electrodes 66 and 68 for peripheral circuit transistors. And P.M.O.
S) - A resist pattern 70 having an opening is formed in the transistor region C, and boron ions are implanted into the source region.
A drain region 72 is formed, and at this time, boron ions are implanted while leaving the resist 64 on the gate electrode 68 of the PMOS transistor.

このボロンのイオン注入はエネルギ30KeV、ドーズ
量1 (11M / 0mlオーダとした。
This boron ion implantation was performed at an energy of 30 KeV and a dose of 1 (on the order of 11 M/0 ml).

その後、通常の方法により、同図(E)に示されるよう
に、NMOSトランジスタ領域すのソース・ドレイン領
域74をイオン注入法で形成し、層間PSG (リンシ
リコンガラス)膜76、メタル配[78,パッシベーシ
ョン80を形成する。
Thereafter, as shown in FIG. 6(E), source/drain regions 74 of the NMOS transistor region are formed by ion implantation using a conventional method, and an interlayer PSG (phosphor silicon glass) film 76 and a metal wiring [78] are formed by ion implantation. , passivation 80 is formed.

(効果) 本発明によれば周辺回路トランジスタのゲート酸化膜を
全て除去する工程はなく、ゲート酸化膜を所定膜厚まで
エッチバックした後に酸化処理を施こすことによりその
膜厚調整を行なうので、オートドーピングの問題は発生
しない。
(Effects) According to the present invention, there is no step of completely removing the gate oxide film of the peripheral circuit transistor, and the film thickness is adjusted by performing oxidation treatment after etching back the gate oxide film to a predetermined film thickness. No autodoping problems occur.

また、CMOS構成の周辺回路トランジスタのうち、特
にPMOSトランジスタのソース・ドレイン領域の形成
の際、ゲート電極上にレジスト層を残したままでイオン
注入を行なうことができる。
Further, when forming the source/drain regions of a PMOS transistor among peripheral circuit transistors having a CMOS structure, ion implantation can be performed while leaving a resist layer on the gate electrode.

もし、レジスト層のない状態でボロンをイオン注入して
ソース・トレイン領域を形成しようとすれば、ボロンが
注入時又はその後の水素雰囲気での熱処理でゲート電極
を透過してチャネル領域に侵入し、PMOSトランジス
タのしきい値電圧が大きく変動してしまうことになる。
If an attempt is made to form a source/train region by implanting boron ions in the absence of a resist layer, boron will penetrate through the gate electrode and enter the channel region during implantation or during subsequent heat treatment in a hydrogen atmosphere. The threshold voltage of the PMOS transistor will vary greatly.

本発明方法ではこのようなしきい値変動を最小限に抑え
ることができる。
The method of the present invention can minimize such threshold fluctuations.

さらに、ポリシリコン層の形成工程は2回で済み、工程
数が少なくなる効果もある。
Furthermore, the process of forming the polysilicon layer only needs to be carried out twice, which has the effect of reducing the number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)ないし同図(E)は本発明の一実施例を示
す断面図、第2図は従来の方法を説明するためのNMO
8型FAMOSメモリ装置を示す断面図である。 38.39.44・・・・・・ゲート酸化膜、 42・
・・・・・第1のポリシリコン層、 46・・・・・・
層間酸化膜、52・・・・・・第2のポリシリコン層、
 54,56゜60.62,64.70・・・・・・レ
ジストパターン、58・・・・・・FAMOSのゲート
、 66.68・・・・・・周辺回路トランジスタのゲ
ート電極、  a・・・・・・メモリトランジスタ領域
、b、c・・・・・・周辺回路トランジスタ領域。
1(A) to 1(E) are cross-sectional views showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view of an NMO
FIG. 2 is a cross-sectional view of an 8-inch FAMOS memory device. 38.39.44...Gate oxide film, 42.
...First polysilicon layer, 46...
Interlayer oxide film, 52... second polysilicon layer,
54,56゜60.62,64.70...Resist pattern, 58...Gate of FAMOS, 66.68...Gate electrode of peripheral circuit transistor, a... ...Memory transistor area, b, c... Peripheral circuit transistor area.

Claims (1)

【特許請求の範囲】[Claims] (1)二層ポリシリコンゲート構造のFAMOSメモリ
トランジスタと、CMOS構成の単一ポリシリコンゲー
ト構造の周辺回路トランジスタとを同一基板上に形成し
てなる不揮発性半導体メモリ装置の製造方法において、 ゲート酸化膜形成後、メモリトランジスタ領域にFAM
OSのフローティングゲート電極となる第1のポリシリ
コン層を形成する工程、 周辺回路トランジスタのゲート酸化膜を所定膜厚にエッ
チングした後、FAMOSの層間酸化膜と周辺回路トラ
ンジスタのゲート酸化膜とを同時に形成する工程、 FAMOSのコントロールゲート電極及び周辺回路トラ
ンジスタのゲート電極となる第2のポリシリコン層を形
成する工程、 まず、周辺回路トランジスタ領域をレジストで被ってメ
モリトランジスタ領域をパターン化してFAMOSのゲ
ートを形成する工程、及び その後にメモリトランジスタ領域をレジストで被って周
辺回路トランジスタ領域をパターン化してゲート電極を
形成する工程、を含むことを特徴とする不揮発性半導体
メモリ装置の製造方法。
(1) In a method for manufacturing a nonvolatile semiconductor memory device in which a FAMOS memory transistor with a two-layer polysilicon gate structure and a peripheral circuit transistor with a single polysilicon gate structure in a CMOS configuration are formed on the same substrate, gate oxidation is performed. After film formation, FAM is placed in the memory transistor area.
Step of forming the first polysilicon layer that will become the floating gate electrode of the OS: After etching the gate oxide film of the peripheral circuit transistor to a predetermined thickness, the interlayer oxide film of the FAMOS and the gate oxide film of the peripheral circuit transistor are etched at the same time. Step of forming a second polysilicon layer that will become the control gate electrode of the FAMOS and the gate electrode of the peripheral circuit transistor: First, the peripheral circuit transistor region is covered with a resist, the memory transistor region is patterned, and the gate of the FAMOS is formed. 1. A method for manufacturing a nonvolatile semiconductor memory device, comprising the steps of: forming a gate electrode; and thereafter covering a memory transistor region with a resist and patterning a peripheral circuit transistor region to form a gate electrode.
JP16367984A 1984-08-02 1984-08-02 Manufacture of nonvolatile semiconductor memory device Pending JPS6142171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16367984A JPS6142171A (en) 1984-08-02 1984-08-02 Manufacture of nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16367984A JPS6142171A (en) 1984-08-02 1984-08-02 Manufacture of nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6142171A true JPS6142171A (en) 1986-02-28

Family

ID=15778535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16367984A Pending JPS6142171A (en) 1984-08-02 1984-08-02 Manufacture of nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6142171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395084A2 (en) * 1989-04-28 1990-10-31 Kabushiki Kaisha Toshiba Method of manufacturing a logic semiconductor device having non-volatile memory
US5188976A (en) * 1990-07-13 1993-02-23 Hitachi, Ltd. Manufacturing method of non-volatile semiconductor memory device
US6329247B1 (en) 1999-08-04 2001-12-11 Nec Corporation Nonvolatile semiconductor memory device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395084A2 (en) * 1989-04-28 1990-10-31 Kabushiki Kaisha Toshiba Method of manufacturing a logic semiconductor device having non-volatile memory
US5158902A (en) * 1989-04-28 1992-10-27 Kabushiki Kaisha Toshiba Method of manufacturing logic semiconductor device having non-volatile memory
US5188976A (en) * 1990-07-13 1993-02-23 Hitachi, Ltd. Manufacturing method of non-volatile semiconductor memory device
US6329247B1 (en) 1999-08-04 2001-12-11 Nec Corporation Nonvolatile semiconductor memory device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5449637A (en) Method of producing low and high voltage MOSFETs with reduced masking steps
JPH07183393A (en) Fabrication of semiconductor device
JPS6116571A (en) Manufacture of semiconductor device
JPH0348457A (en) Semiconductor device and manufacture thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH02264464A (en) Manufacture of semiconductor device
JPS6360549B2 (en)
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH07321212A (en) Forming method for channel stop diffusion layer
JPH07201844A (en) Formation of semiconductor integrated circuit
KR100929422B1 (en) Manufacturing method of semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device
JPS61239671A (en) Manufacture of semiconductor memory device
JPS6251248A (en) Manufacture of semiconductor device
JPH05283425A (en) Manufacture of mis type semiconductor device
JPH0113230B2 (en)
JPH04302170A (en) Manufacture of semiconductor device
JPH04260331A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH0745715A (en) Manufacture of semiconductor device
JPH0563193A (en) Manufacture of semiconductor device
JPH06196642A (en) Semiconductor device and manufacture thereof
JPH06224379A (en) Manufacture of semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPH0575071A (en) Manufacture of semiconductor device